10 хромосома за что отвечает. Смотреть что такое "10-я хромосома человека" в других словарях

Но в наши дни все не так страшно, не правда ли? Гене­тический барьер - это последний рубеж обороны организ­ма. Противомоскитные сетки, осушение болот, лекарства и инсектициды спасают людей от заражения малярией. Разнообразное питание, хороший сон, уверенность в за­втрашнем дне укрепляют иммунную систему организма и гарантируют бесславный конец микробам еще до того, как они вызовут болезнь. В предыдущих главах я немного увлек­ся описанием эгоизма и самодостаточности генов. Но при всем эгоизме генов их успех напрямую зависит от успеха ор­ганизма, т.е. от успешного взаимодействия всех генов. Пора нам от индивидуальных генов вновь вернуться к целому ор­ганизму. Пришло время познакомиться с наиболее социаль­ными генами, чья работа состоит в интеграции множества отдельных функций организма. Именно эти гены лежат в основе нашего дуалистического представления о себе как о единстве сознания и тела. Мозг, тело и геном сплелись друг с другом в хороводе. Мозг точно так же контролируется те­лом и геномом, как и они находятся под контролем мозга. Именно поэтому идеи генетического детерминизма оказа­лись ложными. Включение генов в работу и их выключение зависит не только от их собственных эгоистичных устремле­ний, но и от команд, поступающих от организма и от мозга.

Холестерин - слово, наводящее ужас на современного обывателя. Это причина сердечно-сосудистых заболева­ний. Вы получаете его вместе с жирной пищей и умирае­те. Нет большего заблуждения, чем холестерин в роли яда. Холестерин необходим организму. Он является централь­ным ингредиентом системы нейрогуморальных процессов, обеспечивающих единство организма. Холестерин- это небольшое химическое соединение, растворимое в жирах, но не в воде. Холестерин синтезируется главным образом из углеводов, и он необходим организму, поскольку являет­ся предшественником по крайней мере пяти важных гор­монов, отличающихся по своему действию: прогестерона, альдостерона, кортизола, тестостерона и эстрадиола. Все они объединяются в одну группу гормонов - стероидов. Между этими гормонами и генами организовано удивитель­ное по своей сложности и важности сотрудничество.

Стероиды синтезировались и использовались в живых организмах еще до того, как произошел их раздел на живот­ные, растения и грибы. Стероид - гормон, управляющий линькой насекомых. Стероидом является жизненно необ­ходимый нам с вами витамин D. С помощью одних синте­тических (или анаболических) стероидов можно снять воспалительные процессы, а другие стероиды заставляют расти мышцы атлетов. Стероид, выделенный из растений, настолько похож на человеческий гормон, что может ис­пользоваться в качестве контрацептива. Есть стероиды, яв­ляющиеся побочными продуктами на химических заводах и загрязняющие сточные воды. Они становятся причиной половой недоразвитости у самцов рыб и негативно влияют на сперматогенез у людей.

На хромосоме 10 находится ген под названием CYP ]T Его продукт катализирует реакции превращения холестерина в кортизол, тестостерон и эстрадиол. Без данного белка все эти ветви биосинтеза блокируются, и холестерин превра­щается только в два других гормона: прогестерон и корти- костерон. У людей с мутациями в обеих копиях этого гена не синтезируются половые гормоны, в результате чего не происходит половое созревание. Юноши с таким генетиче­ским дефектом выглядят как девушки.

Оставим пока половые гормоны и рассмотрим тре­тий важный гормон, для синтеза которого необходим ген CYP n - кортизол. Кортизол используется абсолютно во всех тканях организма, обеспечивая единство тела и созна­ния и оказывая влияние как на внутренние органы, так и на структуру мозга. Кортизол влияет на иммунную систе­му, обостряет слух, обоняние и зрение и управляет множе­ством других функций организма. Если в крови человека повышается содержание кортизола, то о таком человеке го­ворят, что он в состоянии стресса. Кортизол и стресс - это синонимы.

Стресс порождается внешними факторами: несданным экзаменом, утратой близких, страхом, внушаемым сред­ствами массовой информации, или изнурительным трудом. Краткосрочные стрессы немедленно повышают в крови со­держание адреналина и норадреналина - гормонов, кото­рые заставляют сердце биться чаще и порождают ощущение холода в конечностях. Эти гормоны подготавливают орга­низм к незамедлительной схватке или бегству. Длительные стрессы запускают другую биохимическую реакцию, кото­рая более медленно, но надолго повышает в крови содержа­ние кортизола. Наиболее непонятный эффект кортизола состоит в том, что он подавляет иммунную систему. Давно замечено, что люди, готовящиеся к важному экзамену или испытывающие длительный страх по другим причинам, легче подхватывают простудные заболевания или другие инфекции. От кортизола больше всего страдают лимфоци­ты - белые клетки крови, защищающие нас от микробов.

Работа кортизола состоит в том, что он запускает считы­вание информации с определенных генов. Повлиять он мо­жет лишь на те клетки, на поверхности которых есть спе­циальные рецепторы, чувствительные к кортизолу. Число рецепторов на поверхности клетки, в свою очередь, может зависеть от других факторов. Гены, которые «включает» кортизон, используются главным образом для «включе­ния» других генов внутри клетки, а те запускают следующие гены. Поэтому, чтобы понять влияние и побочные эффек­ты кортизола, нужно проследить работу и взаимодействие сотен генов и их продуктов. Но и кортизол синтезировался в коре надпочечников только потому, что были включены гены, необходимые для его синтеза из холестерина, в том числе и ген CYP 1T Одним щелчком запускается сложный лавиноподобный процесс. Только перечисление всех про­дуктов реакций, контролируемых кортизолом, и генов, от которых зависит его синтез, доведет любого до исступле­ния. Достаточно сказать, что для синтеза кортизола и вы­работки правильной реакции на него в организме необхо­дима согласованная работа сотен генов, многие из которых «включают» друг друга по цепочке. Нам следует запомнить, что роль многих генов организма состоит в том, чтобы ре­гулировать работу других генов.

Я обещал не нагружать вас длинными цепочками взаимо­отношений генов, но лишь в качестве примера рассмотрим, как кортизол действует на лимфоциты крови. Кортизол включает в этих клетках экспрессию гена TCF , который тоже лежит на хромосоме 10. В результате по прописи гена TCF синтезируется его собственный белок, подавляющий экспрессию другого гена, ответственного за синтез интер- лейкина-2. Интерлейкин-2 - это белок, активизирующий лейкоцит для поиска микробов. Таким образом, по цепочке взаимосвязанных реакций кортизол делает нас менее защи­щенными в отношении инфекций.

Я хочу поставить перед вами вопрос: кто управляет всеми этими процессами? Кто делает первый щелчок? Кто реша­ет, что настало время запустить в кровь немного кортизо- ла? Вы можете предположить, что в основе всех процессов в организме лежат гены, в том числе в основе дифферен­циации клеток на ткани за счет включения одних генов и выключения других. Но в этом рассуждении есть одно ло­гическое противоречие: не гены создают стресс. Смерть любимого человека или несданный экзамен не могут непо­средственно повлиять на гены. Эта информация поступает к нам через мозг.

Следовательно, управляет всем мозг. Гипоталамус дает команду гипофизу на синтез одного гормона, который дает команду надпочечникам на синтез кортизола. Гипоталамус, находящийся в середине мозга, получает команды от коры головного мозга, воспринимающей и анализирующей ин­формацию из окружающего мира.

Но это не может быть ответом на вопрос, поскольку мозг является частью тела. Гипоталамус: стимулирует гипофиз, а гипофиз - надпочечники не из-за того, что мозг т ак решил. С точки зрения мозга нет никакого смысла из-за прибли­жающегося важного экзамена делать вас чувствительнее к инфекциям. Такая закономерность сложилась в ходе эво­люции и естественного отбора (о естественных причинах такой взаимосвязи я расскажу ниже в этой главе). В любом случае повышение содержания кортизола в крови проис­ходит вне контроля нашего сознания. Точнее будет сказать, что это приближающийся экзамен запустил реакцию, а не мозг. И если причиной всему экзамен, то винить нужно общественные отношения. Но общественные отношения, это отношения между людьми, что опять возвращает нас к бренному телу. Кроме того, люди по-разному реагируют на стрессы. Если одних пугает экзамен, то другие не придают данному событию особого значения. В чем же состоят отли­чия между такими людьми? Где-то в цепи реакций синтеза, управления и чувствительности к кортизолуу людей, склон­ных к стрессам, находятся гены, немного отличающиеся от генов тех, кто ко всему относится философски. Но как по­явилась и почему закрепилась данная генетическая измен­чивость?

Мы сделали круг от генов к телу, от тела к мозгу, от мозга к обществу, а от общества - обратно к генам, чтобы понять, что у этой цепи нет начала и конца. Человеку труднее всего постичь самоорганизующиеся и самозависимые системы, над которыми нет «начальника». Примером такой системы может быть экономика. То, что экономика работает лучше, если ею кто-то управляет, - полная иллюзия. Как только кто- то начинает решать, где, кому, когда и сколько производить, происходит крах экономики. Так было уже много раз и не только в бывшем Советском Союзе. Хоть в Римской импе­рии, хоть в Европейском Союзе, попытки чиновников наи­лучшим образом организовать экономическую жизнь госу­дарства приводили к разрушению того, что складывалось в результате хаотического спроса и предложения. Экономика процветает, только когда она децентрализована.

То же самое и живой организм. Нельзя представить че­ловека как тело, управляемое мозгом с помощью гормонов. Неверным будет представление, что человек - это тело, включающее и выключающее гены гормонов, и так же лож­но представление, будто гены управляют телом и мозгом. Это замкнутый, децентрализованный и взаимозависимый процесс.

Дискуссии психологов старой школы обычно сводились к спорам вокруг ложной идеи единоначалия. Аргументы «за» и «против» в отношении «генетического детерминиз­ма» заключались в том, что одни ставили организм над ге­номом, а другие - наоборот. Но даже если предположить, что организм использует свой геном, включая и выключая гены по мере надобности, мотивацией такой регуляции, как мы видели это ранее, зачастую выступают сигналы от мозга, а точнее, от сознания и умственной оценки явных или мнимых событий в окружающем мире. Уровень кор­тизола может повыситься даже оттого, что вы просто по­думаете о каком-то неприятном событии, которое было в вашей жизни или только может произойти. Теперь уже споры перешли на новый уровень: одни психологи счита­ли такие расстройства психики, как синдром хронической усталости, следствием внешних стрессов; другие рассма­тривали эти расстройства как следствия органических по­вреждений мозга. Вновь вопрос первоисточника выходил на первый план, мешая увидеть в человеке и окружающей среде взаимозависимую систему. Если мозг в ответ на внеш­ние стрессы повышает в крови уровень кортизола, что, в свою очередь, ведет к снижению иммунитета, то в организ­ме могут проснуться спящие вирусные инфекции, которые и приведут к органическим повреждениям мозга, в резуль­тате чего человек станет острее реагировать на стрессы.

Постепенное осознание взаимосвязей между окружа­ющим миром, мозгом, организмом и геномом привело к рождению новой науки - психонейроиммунологии, рост­ки которой с трудом пробиваются сквозь консерватизм врачей и мракобесие знахарей, слишком уж вольно исполь­зующих новые научные концепции для объяснения своего «Божьего дара». Но факты влияния стрессов на организм продолжали накапливаться в многочисленных публикаци­ях. Хронически несчастные матери-одиночки чаще болеют вирусными респираторными заболеваниями, хотя те же вирусы выделяются и у их счастливых и здоровых соседей. Пессимистично настроенные люди чаще страдают от гер- песного поражения генитальных органов по сравнению с оптимистами. Новобранцы военной академии Уэст-Пойнт (West-Point Military Academy) чаще заболевают мононукле- озом, а болезнь особенно остро протекает у тех курсантов, которые в большей степени были подавлены сменой образа жизни. У людей, которые ухаживают за тяжелобольными, например за родственниками с синдромом Альцгеймера, в крови уменьшается содержание Т-лимфоцитов, необходи­мых для противодействия инфекциям. У людей, проживав­ших вблизи атомной станции на Три-Майл Айленд (Three Mile Island) через три года после аварии вырос процент смертности от рака. Но это было не следствием облучения (которого удалось избежать), а результатом стресса от ожи­дания облучения, в результате чего в крови хронически повысился уровень кортизола, а способность организма распознавать и уничтожать раковые клетки заметно сни­зилась. Люди, похоронившие супруга или супругу, в тече­ние нескольких недель становятся более восприимчивыми к инфекциям. К вирусным инфекциям становятся также чувствительными дети в течение нескольких недель после развода их родителей. Частота простудных заболеваний на­прямую зависит от количества стрессов, которые человек перенес не только в последнее время, но и на протяжении всей жизни. Не думайте, что все эти данные - результат подтасовок социологов для написания собственных диссер­таций. Убедительные свидетельства в поддержку теории взаимосвязи стрессов и иммунной системы были получены экспериментально на крысах (Martin Р. 1997. The sickening mind: brain, immunity and disease. Harper Collins, London).

В том, что мы с трудом принимаем тот факт, что мозг и тело взаимно влияют друг на друга, не находясь в под­чинении один другому, часто винят старого бедного Рене Декарта (Rene Descartes) и его философию дуализма, кото­рая господствовала на протяжении столетий над умами за­падных мыслителей. Но вряд ли его можно винить за наши ошибки. В конце концов, ошибка состоит не столько в идее дуализма - попытке отделить мысль от тела, сколько в об­щей тенденции человеческого мышления, направленного на поиск первопричины. Мы инстинктивно принимаем, что биохимические процессы внутри нас - это причина, а наше настроение и поведение - следствие. А поскольку ме­таболизмом управляют гены, то первопричиной автомати­чески становятся они. Последние открытия в генетике вро­де бы подтверждают тот факт, что гены управляют нашим поведением. Готовность ученых принять генетический де­терминизм стала не столько результатом успехов сторон­ников этой теории, сколько результатом ярких неудач их шумных и крикливых оппонентов. Неумело аргументируя свои доводы, отказываясь признавать очевидные факты влияния генетических мутаций на поведение человека и опираясь на устаревшие концепции классических психоло­гов, они только укрепляют позиции тех, кому милы идеи фатализма и генетической предопределенности. Вывод о том, что раз гены вовлечены во все сферы нашей жизни, то именно они стоят на вершине пирамиды, напрашивается сам собой. Но сторонники детерминизма и подчиненно­сти поведения генетике забывают о том, что гены, чтобы они начали работать, кто-то должен «включить». Не мень­ше, чем мы зависим от того, какие гены нам достались по наследству, так же и наши гены зависят от нас. Если наша жизнь - это взлеты и падения, или если нам досталась нерв­ная работа, или если нашу душу наполняет страх, то в ответ на эти стрессы организм включает и заставляет работать определенные гены, используя кортизол как кнут. И напро­тив, чтобы активизировать «центр счастья» в вашем мозгу, достаточно просто улыбнуться. Улыбка, даже без причин для радости, запускает каскад других реакций в организ­ме, которые снимают ощущение стресса. Получается, что, даже контролируя мимику, мы можем управлять генами в не меньшей степени, чем они управляют нами.

Интересные данные о том, как поведение может управ­лять генами, были получены в опытах над обезьянами. К счастью эволюционистов, природа - чрезвычайно бе­режливый мастер, и те механизмы борьбы со стрессами, которые она изобрела когда-то, остаются неизменными миллионы лет. Вспомните также, что наш геном на 98% со­впадает с геномом шимпанзе и на 94% - с геномом бабуи­нов. Поэтому мы можем быть уверены, что те же гормоны, которые работают у нас с вами, точно так же работают у обезьян и включают в работу те же самые гены. Итак, уче­ные занялись изучением содержания кортизола в крови ба­буинов. Наблюдения велись над стаей обезьян в Восточной Африке. Когда молодой самец присоединяется к стае обе­зьян (в определенном возрасте самцы бабуинов уходят из своих стай и ищут себе новую семью), он ведет себя край­не агрессивно по отношению к другим самцам, завоевывая для себя определенную иерархическую нишу в обезьяньем обществе. В результате содержание кортизола в крови по­степенно нарастает как у него, так и у его соперников. По мере повышения концентрации кортизола и тестостерона в крови число лимфоцитов снижается. Иммунная система бабуина первой оказалось под ударом его агрессивного по­ведения. В это же время в сосудах появляется и начинает накапливаться холестерин, связанный с высокомолекуляр­ными липопротеинами - типичная картина, предшеству­ющая острой коронарной недостаточности. Из-за своего характера, а точнее сказать, из-за выбранного поведения по отношению к другим членам стаи, бабуин подвергает себя повышенной опасности заразиться инфекционной болезнью или умереть от сердечного приступа (Becker J. В. et al. 1992. Behavioral endocrinology. MIT Press, Cambridge, Massachusetts).

Среди обезьян в зоопарках наиболее склонны к сердечно­сосудистым заболеваниям те обезьяны, которые находятся внизу иерархической лестницы. Попираемые своими более удачливыми соплеменниками, они испытывают постоян­ный стресс. В их крови много кортизола, в мозгу недостает гормона счастья серотонина, и иммунная система угнетена, а в коронарных артериях накапливаются нерастворимые холестериновые бляшки. Хотя чем вызывается отложение холестерина на стенках сосудов, до сих пор не ясно. Сейчас многие ученые полагают, что причиной появления бляшек на стенках сосудов является хроническое инфицирование сосудов хламидиями и вирусом герпеса. Инфекционная природа этих процессов была показана на обезьянах. Таким образом, влияние стрессов на сердечно-сосудистые заболе­вания может быть опосредовано ослаблением иммунитета.

Организм человека ничем не отличается от организма обезьян. Примерно в то же время, когда была установлена связь между склонностью к сердечно-сосудистым заболе­ваниям у обезьян и их местом в иерархии племени, были опубликованы весьма интересные медицинские данные о здоровье людей. Изучались медицинские карточки 17 ООО госслужащих правительственных учреждений Уайт-хол- ла (Whitehall- деловой центр Лондона- примеч. ред.). Оказалось, что чем более низкую ячейку в табели о рангах занимает чиновник, тем чаще он страдает сердечно-сосу- дистыми заболеваниями. Социальный статус чиновника гораздо в большей степени влиял на вероятность развития проблем с сердцем и сосудами, чем вес, курение и артери­альное давление. Риск заболевания в определенном возрас­те был выше в четыре раза у низкооплачиваемого курьера или рядового клерка по сравнению с завотделом или на­чальником департамента, даже если этот секретарь был тучным и курящим гипертоником. Если покопаться в ар­хивах, то точно такие же данные были опубликованы еще в 1960-х годах по результатам медицинского обследования миллионов служащих телефонной компании Bell (Marmot et al. 1991. Health inequalities among British civil servants: the Whitehall II study. Lancet 337: 1387-1393).

Задумайтесь на минутку о приведенных фактах. В них опровергается все, что вы знали до сих пор о сердечно-сосу­дистых заболеваниях. Холестерин с роли главного убийцы был низведен до массовки (высокое содержание холестери­на в крови повышает фактор риска, но лишь для тех, у кого есть врожденная предрасположенность к сердечно-сосуди­стым заболеваниям, при этом влияние диеты на содержание холестерина в крови весьма ограничено). Жирная пища, курение, высокое кровяное давление, на что обязательно вам укажут медработники, - все это, конечно, важно, но влияние этих факторов вторично; основная причина - пси­хологическая и материальная неудовлетворенность своим местом в обществе. Именно неудовлетворенность подчи­ненного в большей мере ведет к преждевременной смерти, чем тяжелая, нервная и полная других стрессов работа на­чальника. Невероятно, но болезни сердца зависят от зар­платы. Куда катится мир?

Между опытами над обезьянами и наблюдениями над людьми проявился неожиданный параллелизм. Чем ниже на иерархической лестнице находится обезьяна, тем в боль­шей степени ее здоровье отдано на волю судьбы. Так же и в обществе людей - уровень кортизола в крови зависит не от того, насколько тяжело вы работаете, а от того, как вы оцениваете себя по отношению к другим людям. Эту зави­симость можно проверить экспериментально. Если двум группам людей дать одно и то же задание, но одной группе позволить работать самостоятельно, а другую постоянно контролировать на каждом шаге, то содержание гормонов стресса, частота биения сердца и кровяное давление у вто­рой группы в среднем будут заметно выше, чем у первой.

Роль стрессов в развитии сердечно-сосудистых заболева­ний еще раз подтвердилась совсем недавно, когда в Англии прошла волна приватизации муниципальных служб. Госслу­жащие в Англии привыкли, что их рабочим местам ничто не угрожает. Когда еще только ходили слухи о приватиза­ции, в опросных листах социологических служб на вопрос «Боитесь ли вы потерять работу?» большинство госслужа­щих отвечали, что не рассматривают эту угрозу всерьез. Они были убеждены в том, что в крайнем случае дело за­кончится переводом из одного департамента в другой. Но к 1995 году каждый третий служащий уже знал, что значит остаться без работы. Уверенности в завтрашнем дне уже не чувствовал никто. Не удивительно, что такие условия привели к стрессам, а за стрессами последовали сердечно­сосудистые заболевания. Рост числа инфарктов среди гос­служащих невозможно было объяснить ни сменой диеты, ни курением, ни злоупотреблением алкоголем - ничем дру­гим, кроме хронического стресса.

Версия о том, что заболевания сердца являются след­ствием утраты контроля над ситуацией, объясняет спора-)а,ический характер возникновения сердечно-сосудистых заболеваний. Становится понятным, почему большие на­чальники, изнурявшие себя всю жизнь ненормированной работой, сваливаются с инфарктом вскоре после того, как выходят на пенсию, когда, казалось бы, жизнь стала простой и спокойной. От руководящей работы бывший начальник переходит к второстепенным домашним заботам - выгули­вание собаки, мытье посуды в доме, где хозяйством и им са­мим теперь управляет супруга. Этим же объясняется явле­ние «отложенного заболевания», когда сердечный приступ случается не во время праздничного торжества или важно­го экзамена, требующего от человека самоконтроля и вни­мания, а когда уже все прошло и контроль утрачен. Также становится понятным, почему безработица и очереди за социальным пособием - это путь на больничную койку. Ни один вожак обезьяньей стаи не преуспел так в контроле за субординацией своих подчиненных, как преуспели соци­альные работники в демонстрации своего превосходства над теми, кто обращается к ним за помощью. Этот же эф­фект потери контроля объясняет феномен, что в современ­ных зданиях, где окна можно только приоткрыть или они не открываются совсем, люди часто чувствуют себя хуже и подавленнее, чем в старых зданиях, где человек может от­крыть окно так, как ему заблагорассудится.

После приведенных фактов я хочу еще раз повторить свою мысль о том, что насколько наш образ жизни зависит от врожденных биологических особенностей организма, настолько и организм зависит от наших осознанных реше­ний и места в обществе.

Другие стероидные гормоны ведут себя так же, как кор- тизол. Уровень тестостерона коррелирует с агрессивно­стью. Но что от чего зависит: агрессивность от уровня те­стостерона или наоборот? Наше материалистическое со­знание подсказывает, что тестостерон должен управлять агрессией. Но, как обнаружилось в опытах с бабуинами, за­висимость противоположная. Агрессивное поведение пред­шествует повышению содержания тестостерона в крови.

Мысль управляет телом, а тело управляет геномом (Sapolsky R. М. 1997. The trouble with testosterone and other essays on the biology of the human predicament. Touchstone Press, New York).

Мы неспроста вспомнили Дарвина, ведь это его тео­рия проливает свет на назначение стероидных гормонов. Биологический смысл явления угнетения иммунной си­стемы тестостероном объясняется теорией полового от­бора- разновидностью естественного отбора. В своей второй книге об эволюции, «Происхождение человека», Дарвин пишет, что точно так же, как селекционер выводит разновидности голубей, тщательно отбирая пары для скре­щивания, самки продвигают эволюцию вида, выбирая пар­тнера по спариванию. На протяжении многих поколений, отдавая предпочтение самцам с определенными характе­ристиками, самки изменяют формы тела, размеры, цвет и брачную песню самцов своего вида. Именно так Дарвин объясняет появление яркого длинного хвоста у павлина, о чем мы уже говорили с вами в главе, посвященной половым хромосомам X и Y. Через 100 лет, в 7 0-х и 80-х годах про­шлого века, в серии экспериментальных и теоретических работ удалось подтвердить версию Дарвина о том, что по­явление ярких хвостов и оперения, оленьих рогов, а также соловьиные трели и размеры самцов - результат активного или пассивного выбора самок.

Такая версия полового отбора называется «теорией им- мунокомпетентной уязвимости». В соответствии с этой те­орией эффект угнетения тестостероном иммунной систе­мы - не случайность, а закономерность. Самец не может стать привлекательным для самок, не заплатив за это повы­шенной уязвимостью своей иммунной системы. Казалось бы, что самец, способный «отрастить хвост» без ущерба для своего иммунитета, смог бы оставить больше потомства и победить в эволюционном соревновании других самцов. Но это не так. Слабый самец «с большими рогами» передаст следующим поколениям «слабые» гены, которые приведут его род к вымиранию.

И все же что-то есть непонятное и необъяснимое в этой теории и в ее неотвратимости. Почему тело должно быть устроено так, что стероидные гормоны обязательно пода­вляют иммунитет? Это значит, что как только вам в жизни перестает улыбаться удача, ваш собственный организм спе­шит поставить подножку и ударить в спину, ослабляя имму­нитет и делая вас восприимчивее к инфекциям, онкологии и сердечно-сосудистым заболеваниям. И как только самец жи­вотного вступит в бой с конкурентом за самку или постарает­ся впечатлить ее своим внешним видом, так и тут тестосте­рон уже подтачивает его силы и сокращает жизнь. Почему?

Многие ученые задумывались над этой загадкой, но одно­значного ответа до сих пор нет. Поль Мартин (Paul Martin) в своей книге по психонейроиммунологии The sickening mind (Больное воображение) обсуждает два возможных объяс­нения этого феномена, но сам же опровергает оба предпо­ложения. Первая гипотеза состоит в том, что связь между стрессом, стероидными гормонами и иммунитетом ложная. Угнетение иммунитета происходит совсем по другим кос­венным причинам. Мартин отмечает, что это объяснение феномена, отмеченного с высоким постоянством у многих организмов, крайне неудовлетворительно. В сложной вза­имосвязанной системе, каковой является живой организм, очень редко встречаются «случайные» явления. Если бы угнетение организма было просто досадной случайностью, этот вредный побочный эффект уже давно был бы устра­нен в ходе эволюции.

Другое объяснение состоит в том, что угнетение имму­нитета происходит не из-за гормонов, а потому, что орга­низм не справляется со стрессом. Существует гипотеза, что в жизни наших предков не было таких сильных и постоян­ных стрессов, как в наши дни, и организм просто не готов к ним. Но ведь бабуины и павлины живут в той же среде оби­тания, что и их предки. Тем не менее у них, как, впрочем, и у всех других организмов, увеличение стероидов в крови закономерно ведет к ослаблению иммунитета.

В своих выводах Мартин приходит к заключению, что проблема взаимосвязи стресса и иммунитета чрезвычайно сложна и еще требует глубокого изучения. Я тоже не смо­гу дать вам ответ на этот вопрос. Возможно, верна гипоте­за Майкла Дэвиса (Michael Davies), состоящая в том, что депрессия нужна была для сбережения энергии в условиях недостатка пищи - один из наиболее обычных стрессовых факторов для всех организмов. Возможно также, что имму- нодепрессивный эффект кортизола вызван тем, что по хи­мическому составу он очень близок к тестостерону. А пагуб­ное влияние тестостерона на организм самцов может быть результатом проделок «женских» генов, которые помогают самкам подобрать лучшего партнера. Другими словами, дан­ный феномен мог появиться в результате полового антаго­низма, о котором мы говорили в главе 7, когда рассматри­вали хромосомы X и Y. Пока ученые в растерянности, вы можете сами выбрать то объяснение, которое вам больше нравится.

69,70,71. Трисомия 10p (10 p + ). 1,2,5; долихоцефалия, дугообразные брови, гипертелоризм, широкое переносье, «черепаший» рот, тонкая изогнутая верхняя губа, круглый, слабо контурированный подбородок.

72. Частичная трисомия 10q

Часть IV Синдромы хромосомы 10

73. Частичная трисомия 10q (10q+). 1,2,5; широкий лоб, овальное лицо, тонкие, широко расставленные брови, маленькие глазные щели, микрофтальм, выступающие скулы, рот в форме «лук купидона».

74. Частичная моносомия 10q (10q-). 1,2,5; микроцефалия, удлиненное треугольное лицо, выступающее широкое переносье, маленький кончик носа, короткий фильтр.

75. Кольцевая хромосома 10 (r . 10). 1,2; микроцефалия, аномалии внутренних органов.

Синдромы хромосомы 11

76. Частичная трисомия 11q (11q+). 1,2,5; микро-, брахицефалия, широкое лицо, уплощение лба, короткий нос, длинный фильтр, микроретрогнатия, короткая шея.

77. . Частичная моносомия 11q (11q-). 1,2,3,5; тригоноцефалия, килеобразный лоб, эпикант, гипертелоризм, короткий нос, широкое переносье, тонкие губы, опущенные книзу углы рта, микроретрогнатия.

78,79. Кольцевая хромосома 11 (r . 11). 1,2,3,5; микро-, брахицефалия, выступающие лобные бугры, эпикант, гипертелоризм, косоглазие, вдавленное переносье, сжатый кончик носа, короткий фильтр, микроретрогнатия, короткая широкая шея.

Синдромы хромосомы 12

80. Трисомия 12 (12+ ), мозаицизм. 1,2,3,5;. микроцефалия, узкий скошенный лоб, гипоплазия орбит, эпикант, гипертелоризм, широкое переносье, плоский фильтр, тонкие губы, узкие, длинные челюсти, мышечные атрофии.

81. Трисомия 12p (12 p + ).1,2,5; оксицефалия, выступающий лоб, толстая вывернутая нижняя губа, выступающие щеки, эпикант, короткий нос.

82. Частичная моносомия 12p (12 p - ). 1,2,5; микроцефалия, гипертелоризм, длинный с выступающим гребнем нос.

83. Частичная моносомия дистальной части 12q (12 q - ). 1,2,5; гипертелоризм, эпикант, широкое переносье, вывернутые кпереди ноздри, утолщенные крылья носа, микрогнатия.

Синдромы хромосомы 13

84. Трисомия 13 (13+ ). 1,2,5; микрокрания, тригоноцефалия, узкий скошенный лоб, узкие глазные щели, микро-, анофтальм, широкое вдавленное переносье, расщелины губы и небу, гемангиомы, избыточная кожа в области затылка, полидактилия.

85. Трисомия 13q (13 q + ). 1,2,5; выступающий лоб, луковицеобразный нос, длинный фильтр, гемангиомы.

86,87. Частичная трисомия проксимальной части 13q (13 q + ). 1,2; микрофтальм, колобомы радужки, расщелины губы и неба, микрогнатия.

88. Частичная моносомия 13q (13 q - ). 1,2;микроцефалия, маленький острый лоб, треугольное лицо, широкая спинка носа, гиперплазия срединного носового отростка.

89. Кольцевая хромосома 13 (r . 13), микроцефалия, эпикант, широкое выступающее переносье, короткая шея, аномалии скелета.

Идиограмма 2 й хромосомы человека 2 я хромосома человека одна из 23 человеческих хромосом и вторая по величине, одна из 22 аутосом человека. Хромосома содержит более 242 млн пар оснований … Википедия

22-я хромосома человека - Идиограмма 22 й хромосомы человека 22 я хромосома человека одна из 23 человеческих хромосом, одна из 22 аутосом и одна из 5 акроцентрических хромосом человека. Хромосома содержит о … Википедия

11-я хромосома человека - Идиограмма 11 й хромосомы человека 11 я хромосома человека одна из 23 пар человеческих хромосом. Хромосома содержит почти 139 млн пар оснований … Википедия

12-я хромосома человека - Идиограмма 12 й хромосомы человека 12 я хромосома человека одна из 23 человеческих хромосом. Хромосома содержит почти 134 млн пар оснований … Википедия

21-я хромосома человека - Идиограмма 21 й хромосомы человека 21 я хромосома человека одна из 23 человеческих хромосом (в гаплоидном наборе), одна из 22 аутосом и одна из 5 акроцентрических хромосом человека. Хромосома содержит около 48 млн пар оснований, что … Википедия

7-я хромосома человека - Идиограмма 7 й хромосомы человека 7 я хромосома человека одна из 23 человеческих хромосом. Хромосома содержит более 158 млн пар оснований, что составляет от 5 до 5,5 % … Википедия

1-я хромосома человека - Идиограмма 1 й хромосомы человека 1 я хромосома человека самая большая из 23 человеческих хромосом, одна из 22 аутосом человека. Хромосома содержит около 248 млн пар оснований … Википедия

3-я хромосома человека - Идиограмма 3 й хромосомы человека 3 я хромосома человека одна из 23 человеческих хромосом, одна из 22 аутосом человека. Хромосома содержит почти 200 млн пар оснований … Википедия

9-я хромосома человека - Идиограмма 9 й хромосомы человека 9 я хромосома человека одна из хромосом человеческого генома. Содержит около 145 миллионов пар оснований, составляя от 4 % до 4,5 % всего клеточного материала ДНК. По разным оц … Википедия

13-я хромосома человека - Идиограмма 13 й хромосомы человека 13 я хромосома человека одна из 23 человеческих хромосом. Хромосома содержит более 115 млн пар оснований, что составляет от 3,5 до 4 % всего материала … Википедия

14-я хромосома человека - Идиограмма 14 й хромосомы человека 14 я хромосома человека одна из 23 человеческих хромосом. Хромосома содержит примерно 107 млн пар оснований, что составляет от 3 до 3,5 % всего материала … Википедия

Книги

  • Эффект теломер. Революционный подход к более молодой, здоровой и долгой жизни , Элизабет Элен Блэкберн, Элисса Эпель. О чем эта книга Чтобы жизнь продолжалась, клетки тела должны непрерывно делиться, создавая свои точные копии - молодые и полные энергии. Они, в свою очередь, тоже начинают делиться. Так…

Типы метафазных хромосом, их строение. Различают четыре типа строения хромосом:телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце); акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

субметацентрические (с плечами неравной длины, напоминающие по форме букву L); метацентрические (V-образные хромосомы, обладающие плечами равной длины). Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода

Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать

в момент их наибольшей конденсации, т.е. в метафазе и начале анафазы митоза.

Каждая хромосома в метафазе митоза состоит из двух хроматид,

образовавшихся в результате редупликации, и соединенных центромерой

(первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена. В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими - субметацентрическими, с одним коротким и вторым почти незаметным - палочковидными или акроцентрическими (рис. 48).

Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник.

Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе

происходит образование ядрышка. В ядрышковых организаторах находится ДНК,отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками,

называемыми теломерами, не способными соединяться с другими хромосомами.

Число, размер и форма хромосом в наборе у разных видов могут варьировать.

Совокупность признаков хромосомного набора называют кариотипом

Хромосомный набор специфичен и постоянен для особей каждого вида. У

человека 46 хромосом, у мыши - 40 хромосом и т.д.В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского. Изменения в структуре хромосом или в их числе возникают в результате мутаций. Каждая пара хромосом в наборе индивидуальна. Хромосомы из разных пар называют негомологичными.

глотку.В цитоплазме есть многочисленные пищеварительные вакуоли, на заднем конце тела находится порошица. Есть две сократительные вакуоли. К крупному макронуклеусу вплотную прилегает микронуклеус. Инфузории способны инцистироваться. Сами инфузории и их цисты могут длительное время сохранять жизнеспособность вне организма хозяина. В водопроводной воде инфузории выживают до 7 суток. Цисты остаются живыми во влажной среде (при комнатной температуре) до двух месяцев. Балантидий локализуется в толстом (иногда в тонком) кишечнике у человека, вызывая изъязвления его стенок. Клинически это тяжелое заболевание выражается в кровавом поносе, коликах, лихорадке и мышечной слабости. Основным источником распространения балантидиаза служат свиньи, зараженные балантидиями. Балантидий в кишечнике свиней образуют цисты, которые с фекалиями попадают во внешнюю среду и там сохраняются длительное время. Заражение человека происходит при занесении цист в пищеварительный тракт с грязными руками или пищей.

Часто балантидиазом болеют люди, связанные с работой по уходу за

свиньями или с обработкой свинины. Диагноз ставят при нахождении балантидиев в фекалиях.

Билет 11 Реализация генетической информации в клетке. Регуляция активности генов про- и эукариот. 2. Онтогенез, его периодизация. Морфо-функциональные и генетические особенности половых клеток.

Реализа́ция генети́ческой информа́ции - процесс, происходящий внутри каждой живой клетки , во время которого генетическая информация , записанная в ДНК , воплощается в биологически активных веществах - РНК и белках . Переход генетической инфо рмации от ДНК к РНК и от РНК к белку является универс альным для всех без исключения клеточных организмов. Представление об этом информационном потоке называетсяцентральной догмой молекулярной биологии.Принципиальная схема реализации генетической информации у про- и эукариот.
ПРОКАРИОТЫ. У
прокариот синтез белка рибосомой (трансляция ) пространственно не отделен от транскрипции и может происходить еще до завершения синтеза мРНК РНК-полимеразой . Прокариотические мРНК часто поли цистронные , то есть содержат несколько независимых генов .
ЭУКАРИОТЫ. мРНК
эукариот синтезируется в виде предшественника, пре-мРНК, претерпевающего затем сложное стадийное созревание - процессинг , включающий присоединение кэп -структуры к 5" -концу молекулы, присоединение нескольких десятков остатков аденина к ее 3" -концу (полиаденилирование ), выщепление незначащих участков - интронов и соединение друг с другом значащих участков - экзонов (сплайсинг ). При этом соединение экзонов одной и той же пре-мРНК может проходить разными способами, приводя к образованию разных зрелых мРНК, и в конечном итоге разных вариантов белка (альтернативный сплайсинг). Только мРНК, успешно прошедшая процессинг, экспортируется из ядра в цитоплазму и вовлекается в трансляцию.

2. Онтогенез - индивидуальное развитие особи - начинается с момента слияния

сперматозоида с яйцеклеткой и образования зиготы, заканчивается смертью.

Внутриутробная форма характерна для млекопитающих и человека. Все

функции зародыша осуществляются за счет организма матери, с помощью

специального органа – плаценты.

Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки

3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.


Похожая информация.