Дыхание грибов. Морфологические особенности грибов Дыхание грибов схема

Автотрофные бактерии делятся на две группы.

1. Фототрофные бактерии, использующие световую энергию для синтеза веществ, к ним относятся зеленые, пурпурные и серые бактерии.

2. Хемотрофные бактерии - получающие энергию от окисления, минерализации соединений, - это железобактерии и нитрифицирующие бактерии.

Дыхание бактерий бывает: а) аэробное и б) анаэробное. Аэробные бактерии живут и развиваются с доступом свободного кислорода. Анаэробные бактерии развиваются без доступа свободного кислорода: сюда относятся бактерии молочнокислого брожения, маслянокислого брожения, уксуснокислого брожения.

Размножение бактерий. Бактерии размножаются путем дробления. Дробление удлиненных форм обычно осуществляется перпендикулярно к их продольной оси. При этом важно отметить два обстоятельства: деление происходит очень быстро, обычно в течение 20-30 минут (у высших деление клетки протекает в течение 90-120 мин). К интенсивному делению способна практически каждая клетка. Все это создает высокие темпы размножения в геометрической прогрессии. Дробление клеток - основная форма размножения бактерий, однако известны немногие группы, размножающиеся путем почкования. Некоторые палочковидные бактерии переживают неблагоприятные условия путем образования одноклеточных эндогенных спор.

Жизнедеятельность может протекать в разных температурных условиях. Некоторые способны развиваться при t от -2 0 до +75 0 С, но благоприятной считается от +4 о до +40 о С. При более высоких температурах гибнут. Губителен и прямой солнечный свет. В силу простоты организации и неприхотливости бактерии широко распространены в природе. Меньше всего в воздухе (особенно в природных условиях), но в местах скопления людей – городах присутствует в больших количествах. В водах рек, особенно вблизи больших городов, бактерий может быть до 400000 в 1 см 2 , ещё больше в почве – около 1 млрд. клеток в 1 г почвы.

Распространение бактерий. Роль бактерий в природе, промышленности, медицине, сельском хозяйстве. В природе и жизни человека бактерии играют важную роль: иногда положительную, а иногда резко отрицательную. Положительное значение бактерий определяется их участием в следующих процессах.


§ Минерализация органических соединений, гниение остатков и трупов животных. Гниение - это процесс разложения азотсодержащих соединений. Сапрофитные бактерии играют важную роль в создании плодородной почвы. Разлагая растительные и животные остатки, бактерии обеспечивают возвращение необходимых для жизни химических элементов от мертвых организмов к живым. Сами бактерии используют лишь часть образующихся низкомолекулярных веществ, остальные становятся доступными для растений.

§ Связывание свободного атмосферного азота. Этот процесс достигает в природе значительных масштабов и осуществляется азотфиксирующими бактериями. В сельском хозяйстве большое значение имеют бактерии, обогащающие почву солями аммония, азотной и азотистой кислот, доступными для высших растений. Это аммонифицирующие, нитрифицирующие и азотфиксирующие бактерии. Например, азот фиксируют клубеньковые бактерии, вступающие в симбиоз с бобовыми растениями.

§ Брожение: молочнокислое, маслянокислое, уксуснокислое. Используется в производстве молочнокислых продуктов, масле, сыров. Большое значение имеют также пектиновые бактерии, вызывающие пектиновое брожение. Пектиновое брожение широко используют для выделения из стеблей прядильных растений (лен, конопля) растительных волокон.

Велико значение бактерий и в биотехнологии; разработаны промышленные методы получения с помощью бактерий белков, аминокислот, используемых в качестве дешевых пищевых добавок.

Особую группу составляет хемосинтезирующие бактерии. В последние годы бактерии приобретают большое значение как продуценты многих антибиотиков, все более широко используемые в медицине.

Отрицательное значение многих бактерий настолько велико, что давно возникла необходимость в государственных, а иногда в международных мероприятиях по защите здоровья людей, растений и животных.

Многие бактерии - сапрофиты приводят к огромным потерям пищевых продуктов. А некоторые бактерии отличаются очень высокой токсичностью.

Бактерии встречаются повсеместно в самых разнообразных условиях среды: в воздухе, почве, воде, в глубинах земной коры, организмах растений и животных. Живые бактерии способные к размножению, были обнаружены в нефтяных водах на глубине 1700 м, на дне океана (глубже 10 км). В воздухе 1 м 3 лугов и полей содержание бактерий около 100 клеток, а в городском воздухе их число колеблется от 10 до 25 тысяч на 1 м 3 летом, до 4,5 тыс. зимой. Бактерии одни из наиболее стойких обитателей Земли.

При высушивании многие бактерии погибают, жизнедеятельность остальных сильно замедляется. Для сохранения грибов, мяса, плодов, зерна и др. применяют сушку. Высокие температуры вызывают свертывание цитоплазмы и гибель бактерий. На этом основаны пастеризация и стерилизация . При пастеризации жидкость нагревают до 60-70 0 С в течение 10-20 минут. Пастеризацию применяют для сохранения молока, соков и др. Стерилизация (освобождение среды от всех возможных живых существ и их зачатков) производится пламенем, кипячением в стерилизаторе, сухим жаром и др.

Для предупреждения порчи продуктов – мяса, рыбы - применяют охлаждение и замораживание , при этом бактерии не погибают, но приостанавливается их деятельность. На большинство бактерий оказывают парализующее действие высокие концентрации солей, кислая реакция, что используется при консервировании пищевых продуктов в крепких растворах соли или сахара, квашении овощей.

Многие химические элементы действуют на бактерии губительно: это соли тяжелых металлов, хлор, йод, перекись водорода, перманганат калия. Из органических веществ наиболее токсичны фенолы, формалин, спирт. Растворы этих соединений используют для дезинфекции , т.е. уничтожения патогенных бактерий. Дезинфицирующие средства применяют в медицине, пищевой промышленности, сельском хозяйстве. Прямой солнечный свет убивает большинство бактерий (действие ультрафиолетовых лучей, обладающих бактерифицидным действием). Их используют для стерилизации воды, посуды, воздуха в операционных и др.

ГРИБЫ

Отдел грибов - огромная группа организмов: их насчитывается свыше
100 000. Наука, изучающая грибы, называется микологией.

Грибы – особая группа ядерных гетеротрофных организмов, имеющих черты сходства как с растениями, так и с животными.

Сходства с животными – отсутствие пластид и способности к фотосинтезу, наличие хитина. Сходства с растениями: постоянный рост, неподвижность, наличие клеточной стенки, питание растворёнными веществами.

Размножение грибов. Грибы размножаются вегетативным, бесполым и половым путем.

Вегетативное размножение грибов может происходить частями мицелия, почкованием, распадением гиф на отдельные клетки - оидии или хламидоспоры. Части мицелия, попав в благоприятные условия, разрастаются в новые особи. Этот способ распространен почти у всех грибов. Почкование наблюдается у дрожжевых грибов. На клетке образуется сначала небольшой бугорок, затем в него переходит одно из образовавшихся в результате митоза ядер, и бугорок превращается в самостоятельную клетку. После кратковременного периода покоя она, в свою очередь, начинает почковаться. Гифы могут распадаться на оидии - тонкостенные клетки, каждая из которых прорастает затем в новую особь (например, у мукоровых), хламидоспоры - толстостенные клетки, одетые прочными оболочками, благодаря которым они могут пережить неблагоприятные условия (головневые грибы).

Бесполое размножение у грибов происходит тремя способами: зооспорами, спорангиоспорами, конидиями.

Зооспоры - подвижные споры с одним или двумя жгутиками. Они образуются в одноклеточных зооспорангиях у грибов, ведущих водный образ жизни. Поплавав некоторое время, они покрываются оболочкой и прорастают в новую особь (сапролегния).

Спорангиоспоры образуются внутри одноклеточных спорангиев. Это неподвижные споры, они разносятся ветром. В одном спорангии может быть примерно до 10 тыс. спор. Спора, попав в благоприятные условия, прорастает (мукор).

Конидии образуются на особых разветвленных вертикальных гифах, конечные клетки которых, округляясь, образуют цепочки спор - конидий. Созревая, конидии отчленяются и опадают. Каждая конидия прорастает в гифу (пеницилл).

Половое размножение грибов очень разнообразно. Половой процесс осуществляется разными способами, но всегда завершается половым спороношением.

У низших грибов половой процесс происходит при слиянии гамет: одинаковых по размеру и подвижных (изогамия), разных по размерам и подвижных (гетерогамия), неподвижной женской гаметы - яйцеклетки с подвижной мужской гаметой - сперматозоидом (оогамия). Половой процесс завершается образованием зиготы - ооспоры, которая после мейоза прорастает в спорангий со многими спорами в нем.

Для низших грибов характерна и зигогамия - слияние содержимого участков физиологически различных (гетероталличных) мицелиев. Половой процесс завершается образованием многоядерной зиготы. После периода покоя и мейоза она прорастает в спорангий с гетероталличными гаплоидными спорами (мукор).

У высших грибов половой процесс завершается половым спороношением в форме сумки, внутри которой после мейоза образуются гаплоидные споры или базидии с экзогенными спорами.

Грибы размножаются очень интенсивно. Одна особь способна образовать десятки тысяч и даже миллионы, а иногда и сотни миллионов спор. Многие грибы в течение вегетационного периода могут дать несколько поколений, размножающихся в геометрической прогрессии. Общее число зачатков, учитывая все способы размножения грибов, исчисляется астрономическими цифрами. В 1 г огородной почвы можно найти до 100 тыс. и более спор и других зачатков грибов.

Цикл развития у низших и высших грибов имеет существенное различие, связанное с ходом полового процесса. У низших грибов половой процесс заключается в одновременном слиянии цитоплазмы и ядер. Образовавшаяся зигота мейотически делится и прорастает в спорангий с гаплоидными спорами. У низших грибов есть только гаплоидный мицелий, диплоидна лишь зигота.

У высших грибов половой процесс двустадийный: слияние цитоплазмы (плазмогамия) предшествует слиянию ядер (кариогамии). В результате плазмогамии образуются двуядерные (дикарионные) клетки, содержащие сближенные, но не слившиеся гаплоидные физиологически различные («+» и «-») ядра. Ядра дикариона делятся синхронно, развивается дикарионный мицелий. Слияние ядер дикариона завершает половой процесс - образуется зигота. Она делится мейотически, формируя гаплоидные споры полового размножения. В цикле развития высших грибов представлены гаплоидный и дикарионный мицелий, диплоидна лишь зигота.

Шляпочные грибы хорошо известны. Они относятся к грибам сапрофитам и представлены подосиновиками, подберезовиками, опятами, шампиньонами, мухоморами и др. Они обитают на влажных кислых почвах. То, что принято называть грибом, - это плодовое тело, которое образуется на грибнице, скрытой в почве. Плодовое тело служит для образования спор и состоит из ножки или пенька и шляпки. Ножка образована параллельно расположенными одинаковыми гифами. Шляпка сверху покрыта кожицей, которая обычно легко снимается. Мякоть шляпки состоит из двух слоев. Под кожицей слой плотный, белый или окрашенный, иногда темнеющий на разрезе. Нижний слой шляпки у одних грибов состоит из многочисленных параллельно расположенных трубочек - это трубчатые грибы. Сюда относятся боровик, подберезовик, моховик. У других шляпочных грибов нижний слой шляпки представлен радиально расположенными пластинками. Такие грибы называются пластинчатыми. Это рыжик, сыроежка, шампиньон. В трубочках и на пластинках образуется громадное количество спор, необходимых для размножения. Распространению спор способствуют животные. Они переносят споры на поверхности своего тела. При благоприятных условиях спора прорастает и образуется новая молодая грибница, а после достаточного накопления питательных веществ начинают развиваться плодовые тела. Шляпочные грибы поселяются на богатых перегноем почвах. Из нее они получают воду, минеральные соли и часть готовых питательных веществ. Другая часть питательных веществ, а именно углеводы, грибница получает из корней деревьев. Гифы грибницы оплетают корни растений и даже проникают внутрь, располагаясь между клетками. Между грибницей и корнями растений устанавливается полезное для обоих растений сожительство (симбиоз) . В процессе симбиоза могут возникнуть новые образования, например микориза (грибокорень). Гриб снабжает растение водой и минеральными солями, заменяя на этих корнях корневые волоски. Грибы, разлагая недоступные для растений органические соединения почвы, обеспечивают растения фосфором, соединениями азота, вырабатывают витаминоподобные вещества и активаторы роста. В свою очередь, деревья уступают часть своих углеводов грибам. Без микоризы плохо растут многие лесные деревья.

Съедобные и ядовитые грибы. Среди шляпочных грибов есть как съедобные, так и ядовитые. Съедобные грибы: шампиньоны, сыроежки, рыжики, волнушки, грузди, маслята, подосиновики, подберезовики, белые грибы и др.; их используют в качестве пищевого продукта. В грибах содержится до 50% переваримого протеина, 25-40% экстрактивных веществ, ферменты, витамины. От других богатых белками продуктов грибы отличает низкая калорийность. Грибы имеют высокие вкусовые качества, но организмом плохо усваиваются и очень медленно перевариваются. К ядовитым грибам относят поганки, красный мухомор, сатанинский гриб, ложный опенок и др., вызывающие тяжелые отравления. Смертельно ядовитые два вида мухомора: бледная поганка и мухомор вонючий. Смертельная доза для человека около 30 г.

Правила сборов грибов и их охрана. В России большую часть съедобных грибов собирают в естественных условиях. Однако растущее загрязнение природной среды приводит к резкому ухудшению их пищевых свойств. Грибы – концентраторы, они поглощают из почвы соли тяжелых металлов и многие другие вредные соединения, которые накапливаются в мицелии и, естественно, в плодовых телах. Для получения экологически чистой продукции все чаще съедобные грибы выращивают в культуре.

Один из наиболее питательных грибов – шампиньон, который можно успешно и выгодно культивировать в неосвещенных теплицах на сильно унавоженных почвах. Размножают его частями мицелия. Шампиньоны выращивают в промышленных масштабах более чем в 70 странах мира. Все шире культивируются и другие грибы-ксилотрофы: вешенки, опята.

Распространено выращивание мицелия съедобных грибов в ферментерах. По вкусу мицелий почти не отличается от плодовых тел. Полученные таким образом концентраты – хороший пищевой продукт.

Грибы играют важную роль в жизни леса. Совместно с бактериями и другими микроорганизмами разлагают и минерализуют отмершие растительные остатки, превращая их в вещества для питания растений. Не будь грибов, ежегодно опадающие листья, хвоя, ветки накопились бы в большом количестве и препятствовали возобновлению леса.

Грибы-симбионты сожительствуют с деревьями, способствуют их лучшему росту, а также защищают корни деревьев от поражений болезнетворными грибами.

Ученые установили, что некоторые породы деревьев (например, сосна) при отсутствии микоризообразователей не могут нормально расти и развиваться.

Чтобы не иссякал источник пищевых грибов, не нарушались взаимосвязи в жизни леса, надо разумно относиться к грибам, даже к тем, которые человек в пищу не употребляет.

Важнейшей частью грибного организма является мицелий. Повреждение и уничтожение его способствует снижению численности грибов, а иногда приводит к их полному уничтожению. Большой вред грибам наносит выпас в лесу скота, особенно свиней. Крупный рогатый скот сильно вытаптывает подстилку, а свиньи в поисках желудей, сочных корешков трав раскапывают ее и повреждают.

Нетрудно заметить, что в тех местах, где паслись коровы и свиньи, исчезают грузди, белые и другие грибы. Некоторые неразумные грибники в погоне за грибочками на большой площади палкой-рогулькой разгребают и раскидывают лесную подстилку, высушивают и губят грибницу. Как правило, на таких местах долгое время не появляются грибы.

Как же собирать грибы, не повреждая грибницы? Трубчатые грибы, у которых кроме шляпок в пищу употребляются и ножки, следует осторожно выкручивать, поворачивая ножку сначала в одну, а потом в другую сторону. Место, где рос гриб, надо присыпать землей, прикрыть листьями и прижать. Пластинчатые же грибы лучше срезать ножом.

А теперь давай вместе прочитаем и проанализируем реферат, написанный ученицей 7-го класса Наташей Дмитриевой. Тема нам с тобой уже знакома: «Грибы».

ВВЕДЕНИЕ

Грибы представляют собой очень своеобразную группу организмов. Они являются эукариотами, т.е. имеют принципиально отличающее их от других микроорганизмов настоящее ядро, а не нуклеоид, как у бактерий, с которыми их сближает гетеротрофный тип питания.

В принципе, для введения найдена правильная фраза, но хорошо было бы продемонстрировать знание таких систематических категорий, как «царство» и «надцарство». Указать, что грибы – царство живых организмов, раньше их объединяли в одно царство с растениями, а потом обнаружили, что они сильно отличаются и от животных, и от растений, – об этом мы говорили на уроках, что эукариоты – это надцарство живых организмов, клетки которых имеют ядро.

СТРОЕНИЕ ГРИБОВ

(Для удобства обозначим номера абзацев цифрами в скобках. )

Грибы – эукариоты, значит, имеют клеточное строение организма. Грибы бывают одноклеточными и многоклеточными.

Примером многоклеточных грибов могут служить шляпочные грибы. Каждый шляпочный гриб состоит из мицелия и плодового тела, а плодовое тело – из пенька и шляпки. Отсюда и название – шляпочные грибы. Средняя толщина гифа 5 мкм.

У одноклеточных грибов отдельные клетки не образуют мицелия. К одноклеточным грибам относятся дрожжи. Дрожжи – это микроскопические грибы. Дрожжевые клетки имеют форму шариков. Они живут в питательной жидкости, богатой сахаром. Размножаются дрожжи почкованием. Сначала на взрослой клетке появляется небольшая выпуклость. Она увеличивается и превращается в самостоятельную клетку, отделяется от материнской. Почкующиеся клетки дрожжей похожи на ветвящиеся цепочки.

Многоклеточные грибы образуют длинные нити – гифы. Совокупность гиф образует мицелий, или грибницу. Мицелий, как правило, разделен септами. Септы – это перегородки между клетками. У некоторых грибов, например у мукора, перегородок нет, их грибница представлена одной гигантской многоядерной клеткой.

Клeткa гриба содержит ядро, расположенное в цитоплазме, органеллы, жесткую клеточную стенку. Грибная клетка не имеет пластид.

Органеллы (в переводе – маленький орган) – это обособленные структуры клетки, выполняющие свои особые функции (рибосомы, митохондрии, эндоплазматическая сеть, клеточные включения, вакуоль).

Довольно большую долю массы сухого мицелия грибов, а именно от 5 до 15%, составляет их клеточная стенки. Состав клеточной стенки сильно варьирует и часто весьма специфичен, а основной компонент ее – хитин – азотсодержащий полисахарид.

О том, что грибы – эукариоты, уже говорилось во введении, но из этого следует не то, что они имеют клеточное строение – клеточное строение имеют и прокариоты, – а то, что в их клетке есть ядро, о чем также сказано во введении.
Второй абзац явно не на своем месте, его место после четвертого абзаца. В третьем абзаце не надо было говорить о размножении дрожжей, потому что дальше размножению грибов отводится отдельный пункт, значит, эту информацию и надо туда поместить.
В четвертом абзаце следовало бы написать не «Мицелий, как правило, поделен на септы», потому что, как дальше верно указывается, септы – это перегородки между клетками гриба, а так: «Мицелий высших грибов септирован, т.е. поделен перегородками на отдельные клетки. У низших грибов, например у мукоровых, перегородок нет».
В шестом абзаце после слова «функции» лучше поставить точку, а информацию, содержащуюся в скобках, ввести отдельным предложением, сказав, что для клеток эукариотных организмов характерно наличие таких-то органелл (все перечисленные плюс аппарат Гольджи), но что аппарат Гольджи у грибов развит слабо.

СВОЙСТВА ГРИБОВ

1. Дыхание грибов

Грибы, как и все живые организмы, дышат для того, чтобы получать энергию, а следовательно, для того, чтобы жить. У грибов встречается два типа дыхания, одни из них аэробы, другие – анаэробы.
Аэробы – это живые организмы, которые используют для дыхания кислород. Анаэробы – живые организмы, которые не используют для дыхания кислород. К анаэробам относятся дрожжи, а к аэробам все остальные грибы, например шляпочные: сыроежка, подберезовик, лисичка и другие.
Анаэробное дыхание происходит в цитоплазме. В результате молекула глюкозы расщепляется с образованием двух молекул пирувата. Этот процесс называется гликолизом. В нем образуется две молекулы богатого энергией вещества – АТФ. Реакции гликолиза протекают в клетках как анаэробных организмов, так и аэробных. Далее пируват может превращаться в молочную кислоту или в этиловый спирт. В зависимости от этого различают молочнокислое или спиртовое брожение. Анаэробное дыхание дрожжей – это пример спиртового брожения. У аэробов происходит дальнейшее расщепление пирувата до углекислого газа и воды с участием кислорода, при этом образуется 36 молекул АТФ. Аэробное дыхание осуществляется в митохондриях – клеточных, органеллах, размером 0,2–7 мкм, имеющих двойную мембрану.

В первом абзаце первого пункта фраза «грибы... дышат для того, чтобы получать энергию, а следовательно, для того, чтобы жить» не очень удачна. Лучше: «... чтобы получать энергию, необходимую для жизни».
В этом пункте приведены некоторые общие сведения о дыхании, которые, казалось бы, можно было и опустить, но к тому времени, когда писался реферат, мы как раз изучили тему «Дыхание», поэтому я положительно оценила то, что Наташа показала свои знания по этой теме.

2. Выделение

У грибов нет специальных органов выделения. Удаление ненужных веществ они осуществляют через поверхность тела.

3. Движение

Движение у грибов отсутствует, если не считать небольшого движения во время роста плодового тела.

4. Рост

Если гриб одноклеточный, то рост происходит за счет максимального растяжения одной-единственной клетки. Если гриб многоклеточный, то рост происходит за счет деления клеток. Мицелий шляпочных грибов растет с ранней весны до поздней осени. За это время он вырастает на 10–30 см. Залегает мицелий на глубине 6–12 см, и нередко нити располагаются в уплотненной лесной подстилке, состоящей из разлагающихся листьев, хвои и веточек.

Мицелий – это грибница.
Следовало сказать, что грибы обладают верхушечным ростом и так же, как растения, способны расти всю свою жизнь. Последняя фраза «Мицелий – это грибница» не нужна, т.к. об этом уже сказано в первом разделе основной части.

5. Питание

Грибы имеют гетеротрофный тип питания. Гетеротрофы – это живые организмы, которые питаются готовыми органическими веществами. Среди грибов встречаются:

    сапрофиты – питаются органическими веществами отмерших организмов, выделениями или продуктами жизнедеятельности живых организмов;

    симбионты – образуют содружество с другими живыми организмами. Встречаются среди грибов и хищники, питающиеся беспозвоночными животными, которые попадаются в образованные ими ловчие сети.

Шляпочные грибы – симбионты. Часть органических веществ их мицелий всасывает вместе с водой и минеральными веществами из почвы, а часть получает из корней деревьев, под которыми эти грибы растут. Гифы многих грибов могут оплетать корни растений и даже проникать внутрь, в ткани. Питаясь отмершими растительными клетками, они снабжают корни нужными солями, витаминами, гормонами. Такая грибная оболочка называется микоризой (грибной шубой). Выгоду получает и гриб, и растение.

6. Размножение

Грибы размножаются бесполым и половым путем. К бесполому размножению относится размножение частями мицелия, почкованием и вегетативными спорами. Когда, же при размножении происходит слияние двух гамет (мужской и женской половых клеток) с последующим образованием зиготы, то это половой способ размножения. Созревшие половые споры подхватывает ветер или их могут переносить животные и насекомые. Попав во влажную, богатую перегноем почву, споры прорастают, образуя впоследствии мицелий, а потом и плодовые тела.

ЛИТЕРАТУРА

1. Беккер З.Э. Физиология и биохимия грибов. – М.: 1988, с. 8, 10.

2. Вашканов Л.Л., Гарибова Л.В., Горбунова М.В.,

Горленко М.В. Курс низших растений. – М.: Высшая школа. 1981, с. 292–294.

3. Корчагина В.А. Биология 6–7-й класс. – М.: Просвещение, 1992, с. 237–241.

4. Майсурян А., Артемов А. Грибы. В кн.: Энциклопедия для детей. – М.: Аванта+. 1995, с. 164–183.

5. Медников Б.М. Биология: формы и уровни жизни. – М.: Просвещение. 1994, с. 33–36.

6. Рогожкин А.Г. Энциклопедический словарь юного натуралиста. – М.: Педагогика. 1981, с. 58–61.

Реферат написан неплохо. Тема, заявленная в заглавии реферата, в основном раскрыта. Информацию о строении и свойствах грибов, их роли в природе можно считать достаточной. Недочеты в изложении указаны по ходу реферата. Можно отметить еще несколько мелких недостатков. Так, в разделе о строении грибов приводятся размеры средней толщины гифов, но ничего не говорится об их длине, а именно длиной гиф определяется поверхность микоризы, образуемой шляпочными грибами на корнях деревьев.
В качестве достоинства реферата нужно отметить, что для его написания использовано довольно много источников. Список литературы оформлен правильно.
К существенным недостаткам реферата следует отнести отсутствие заключения. Последнюю фразу реферата нельзя считать заключением, т.к. она относится только к восьмому пункту основной части.
Если будут внесены исправления в соответствии со сделанными замечаниями и написано заключение, то этот реферат может быть оценен высоко.

Для протекания процессов жизнедеятельности всем клеткам необходима энергия. Они получают энергию в процессе дыхания.

Дыхание и его значение

Дыхание - процесс, при котором под действием кислорода происходит разложение органических веществ (сахаров) с выделением энергии. Дыхание большинства живых организмов происходит одинаково. В процессе дыхания поглощается кислород, а выделяется углекислый газ. Схематично процесс дыхания можно изобразить так:

органические вещества+ кислород
вода + углекислый газ + энергия

Дыхание связано с непрерывным потреблением кислорода клетками живых организмов. Кислород необходим для расщепления сложных органических веществ до углекислого газа и воды. При этом освобождается энергия, которая расходуется на различные процессы жизнедеятельности: рост, развитие, размножение, синтез белков. Именно в освобождении энергии, заключенной в органических веществах, и состоит значение дыхания. В процессе дыхания сложные органические вещества распадаются на более простые постепенно. Поэтому энергия выделяется небольшими порциями и клетка не перегревается.

Дыхание растений

Дыхание растении - процесс, противоположный фотосинтезу. При фотосинтезе из углекислого газа и воды образуются органические вещества и выделяется кислород.

При дыхании органические вещества под действием кислорода расщепляются до углекислого газа и воды. Солнечная энергия, которая была запасена в процессе фотосинтеза, расходуется при дыхании. Фотосинтез осуществляется только днем. Дыхание идет во всех клетках непрерывно и днем, и ночью. Значит, на свету в растении происходят два противоположных процесса - фотосинтез и дыхание, а в темноте только дыхание. Кислорода при фотосинтезе выделяется гораздо больше, чем расходуется в процессе дыхания. Поэтому воздух богаче кислородом там, где больше зеленых растений. Дышат все органы растения. Большое значение для поступления кислорода к внутренним частям растения, особенно к подземным, имеют межклетники.

Дыхание и брожение бактерий

Бактерии, которые дышат, потребляя кислород для разложения органических веществ до углекислого газа и воды, называют аэробными Бактерии, не нуждающиеся в кислороде, называются анаэробными. Они добывают энергию в результате брожения - разложения сложных органических веществ (например, сахаров) на более простые органические вещества без потребления кислорода. По образующимся продуктам различают спиртовое, молочно-кислое, маслянокислое и другие виды брожения. При спиртовом брожении сахар распадается до спирта, при молочнокислом - до молочной кислоты.

Дыхание и брожение грибов

Большинство грибов дышат, используя кислород воздуха для расщепления органических веществ и освобождения энергии. Есть грибы, например дрожжи, которые могут жить в бескислородной среде. Они сбраживают органические вещества. Дрожжи широко используются в хлебопечении, пивоварении, виноделии.

Слайд 1

Тема урока
Дыхание растений, бактерий и грибов

Слайд 2

«фотосинтез», «питание»

Слайд 3

Зачем нужен кислород?

Слайд 4

Проблема. Почему погиб мышонок в опытах Пристли?
Что нам нужно сделать, чтобы решить эту проблему? узнать, что такое дыхание что нужно для дыхания что образуется в процессе дыхания что вызвало гибель мышонка.

Слайд 5

Процесс дыхания
1.Этап - газообмен 2.Этап - клеточное дыхание (расщепление органических веществ под действием кислорода на воду, углекислый газ и выделение энергии)

Слайд 6

Слайд 7

Опыт Дж. Пристли

Слайд 8

Ум хорошо, а два лучше. работа в группах
1 группа - Что же произошло? Какой можно сделать вывод? 2 группа - Кто же в этом случае прав? Почему у богатой дамы разболелась голова? 3 группа - Почему?

Слайд 9

Биологические исследования
Докажите, что в темноте растения выделяют только кислород?

Слайд 10

Необходимо решение
-А все ли органы растения дышат? -Отчего зависит интенсивность процесса дыхания?

Слайд 11

Слайд 12

Сравнение процессов фотосинтеза и дыхания.(таблица)


1. В каких клетках происходит?
2. Какой газ поглощается?
3. Какой газ выделяется?
4. В какое время суток происходит?
5. Что происходит с органическими веществами?
6. Энергия?

Слайд 13

Взаимопроверка
Черты процесса Фотосинтез Дыхание
1. В каких клетках происходит? В клетках, содержащих хлоропласты Во всех клетках растения
2. Какой газ поглощается? Углекислый газ Кислород
3. Какой газ выделяется? Кислород Углекислый газ
4. В какое время суток происходит? Днём Круглосуточно
5. Что происходит с органическими веществами? Образуются Окисляются (распадаются)
6. Энергия? Накапливается Выделяется

Слайд 14

Они были первыми на планете Земля

Слайд 15

Способы дыхания бактерий
Аэробное – потребление кислорода для разложения органических веществ. Анаэробное – дыхание в бескислородной среде. Брожение – разложение сложных органических веществ без потребления кислорода. Виды брожения: Спиртовое Молочное Маслянокислое.

Слайд 16

Дыхание грибов
Аэробное Анаэробное

Слайд 17

Дыхание. Сложные органические вещества + кислород = углекислый газ + вода + Е Брожение. Сложные органические вещества = спирт, молочная кислота + Е

Слайд 18

Биология:
История: дыхание древности – глядя на памятники прошлого. Литература: дыхание эпохи – когда описывается какое либо время. Обществознание: дыхание современности – при социальном опросе узнают результаты. География: дыхание ветра – тихо подул ветер; дыхание вулкана - вулкан начал «оживать» ; Ледяное дыхание зимы. Математика: амплитуда дыхания –графическое изображение.

Слайд 19

Дыхание – ………
дыхание и фотосинтез это два противоположных процесса, поступление кислорода, выделение углекислого газа, процесс идет во всех клетках непрерывно – и днем и ночью, процесс выделения энергии, она выделяется небольшими порциями и клетка не перегревается

Слайд 20

Реши утверждения. (поставь плюс или минус)
1.Дыхание происходит только на свету. 2.В процессе дыхания поглощается кислород и выделяется углекислый газ. 3.При дыхании кислорода потребляется значительно меньше, чем его образуется при фотосинтезе. 4.Анаэробы – организмы нуждающиеся в кислороде. 5.Аэробы – организмы не нуждающиеся в кислороде. 6.При спиртовом брожении сахар распадается до спирта. 7.Молочнокислые бактерии превращают молоко в простоквашу, кефир и другие молочные продукты. 8.Дрожжи бродят, разлагая на спирт и углекислый газ. 9.Углекислый газ, делает хлеб пористым и легким. 10.Мухомор, гриб анаэроб.

Слайд 21

Проверь утверждения
1.Дыхание происходит только на свету. (-) 2.В процессе дыхания поглощается кислород и выделяется углекислый газ. (+) 3.При дыхании кислорода потребляется значительно меньше, чем его образуется при фотосинтезе. (+) 4.Анаэробы – организмы нуждающиеся в кислороде.(-) 5.Аэробы – организмы не нуждающиеся в кислороде. (-) 6.При спиртовом брожении сахар распадается до спирта (+) 7.Молочнокислые бактерии превращают молоко в простоквашу, кефир и другие молочные продукты. (+) 8.Дрожжи бродят, разлагая на спирт и углекислый газ. (+) 9.Углекислый газ, делает хлеб пористым и легким. (+) 10.Мухомор, гриб анаэроб. (-)

Слайд 22