Формула описанной окружности около треугольника. Как найти радиус описанной окружности

Как найти радиус окружности? Этот вопрос всегда актуален для школьников, изучающих планиметрию. Ниже мы рассмотрим несколько примеров того, как можно справиться с поставленной задачей.

В зависимости от условия задачи радиус окружности вы можете найти так.

Формула 1: R = Л / 2π, где Л - это а π - константа, равная 3,141…

Формула 2: R = √(S / π), где S - это величина площади круга.

Формула 1: R = В/2, где В - гипотенуза.

Формула 2: R = М*В, где В - гипотенуза, а М - медиана, проведенная к ней.

Как найти радиус окружности, если она описана вокруг правильного многоугольника

Формула: R = А / (2 * sin (360/(2*n))), где А - длина одной из сторон фигуры, а n - количество сторон в данной геометрической фигуре.

Как найти радиус вписанной окружности

Вписанной окружность называется тогда, когда она касается всех сторон многоугольника. Рассмотрим несколько примеров.

Формула 1: R = S / (Р/2), где - S и Р - площадь и периметр фигуры соответственно.

Формула 2: R = (Р/2 - А) * tg (а/2), где Р - периметр, А - длина одной из сторон, а - противолежащий этой стороне угол.

Как найти радиус окружности, если она вписана в прямоугольный треугольник

Формула 1:

Радиус окружности, которая вписана в ромб

Окружность можно вписать в любой ромб, как равносторонний, так и неравносторонний.

Формула 1: R = 2 * Н, где Н - это высота геометрической фигуры.

Формула 2: R = S / (А*2), где S - это а А - длина его стороны.

Формула 3: R = √((S * sin А)/4), где S - это площадь ромба, а sin А - синус острого угла данной геометрической фигуры.

Формула 4: R = В*Г/(√(В² + Г²), где В и Г - это длины диагоналей геометрической фигуры.

Формула 5: R = В*sin (А/2), где В - диагональ ромба, а А - это угол в вершинах, соединяющих диагональ.

Радиус окружности, которая вписана в треугольник

В том случае, если в условии задачи вам даны длины всех сторон фигуры, то сначала высчитайте (П), а затем полупериметр (п):

П = А+Б+В, где А, Б, В - длин сторон геометрической фигуры.

Формула 1: R = √((п-А)*(п-Б)*(п-В)/п).

А если, зная все те же три стороны, вам дана еще и то можете рассчитать искомый радиус следующим образом.

Формула 2: R = S * 2(А + Б + В)

Формула 3: R = S/п = S / (А+Б+В)/2), где - п - это полупериметр геометрической фигуры.

Формула 4: R = (п - А) * tg (А/2), где п - это полупериметр треугольника, А - одна из его сторон, а tg (А/2) - тангенс половины противолежащего этой стороне угла.

А ниже приведенная формула поможет отыскать радиус той окружности, которая вписана в

Формула 5: R =А * √3/6.

Радиус окружности, которая вписана в прямоугольный треугольник

Если в задаче даны длины катетов, а также гипотенуза, то радиус вписанной окружности узнается так.

Формула 1: R = (А+Б-С)/2, где А, Б - катеты, С - гипотенуза.

В том случае, если вам даны только два катета, самое время вспомнить теорему Пифагора, чтобы гипотенузу найти и воспользоваться вышеприведенной формулой.

С = √(А²+Б²).

Радиус окружности, которая вписана в квадрат

Окружность, которая вписана в квадрат, делит все его 4 стороны ровно пополам в точках касания.

Формула 1: R = А/2, где А - длина стороны квадрата.

Формула 2: R = S / (Р/2), где S и Р - площадь и периметр квадрата соответственно.

Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Треугольник называется вписанным, если все его вершины лежат на окружности. В этом случае окружность называется описанной вокруг треугольника. Расстояние от ее центра до каждой вершины треугольника будет одинаковым и равным радиусу этой окружности. Вокруг любого треугольника можно описать окружность, но только одну.

Центр описанной окружности будет лежать в точке пересечения серединных перпендикуляров, проведенных к каждой из сторон треугольника. Если окружность описана вокруг прямоугольного треугольника, то ее центр будет лежать на середине гипотенузы. Для любого треугольника, вокруг которого описана окружность действует формула площади треугольника через радиус описанной окружности:

в которой a,b,c – стороны треугольника, а R – радиус описанной окружности.

Пример расчета площади треугольника через радиус описанной окружности:
Пусть дан треугольник со сторонами a = 5 см, b = 6 см, c = 4 см. Вокруг него описана окружность с R = 3 см. найдите площадь.
Имея все требуемые данные, просто подставляем значения в формулу:

Площадь треугольника будет равна 10 кв. см

Довольно часто по условиям можно встретить данную площадь описанной окружности, которую необходимо использовать для нахождения площади вписанного треугольника. Формула площади треугольника через площадь описанной окружности находится после вычисления радиуса. Его можно вычислить несколькими способами. Для начала рассмотрим формулу площади окружности:
Преобразовав эту формулу, мы получим, что радиус:
Используя эту формулу, мы получаем, что зная площадь описанной окружности, можно найти площадь треугольника следующим способом:

Зная все три стороны заданного треугольника можно применить для нахождения площади . Из нее же можно найти и радиус описанной окружности. То есть если в условиях даны все стороны треугольника и требуется поиск площади через радиус описанной окружности, мы сначала должны вычислить его по формуле:

То есть, зная длины всех сторон треугольника, мы можем найти площадь треугольника через радиус описанной окружности.

Пример расчета площади треугольника через площадь описанной окружности:
Дан треугольник, вокруг которого описана окружность с площадью 8 кв. см. Стороны треугольника a = 4см, b = 3 см, c = 5 см. Для начала найдем радиус окружности через ее площадь:

Попробуем найти радиус по другой формуле, которую мы вывели из способа нахождения

Окружность – геометрическая фигура, знакомство с которой происходит еще в дошкольном возрасте. Позднее вы узнаете ее свойства и характерные особенности. Если вершины произвольного многоугольника лежат на окружности, а сама фигура располагается внутри нее, то перед вами геометрическая фигура, вписанная в окружность.

Понятие радиус характеризует расстояние от любой точки окружности до ее центра. Последний располагается в месте пересечения перпендикуляров к каждой из сторон многоугольника. Определившись с терминологией, рассмотрим выражения, которые помогут найти радиус для любого вида многоугольника.

Как найти радиус описанной окружности – правильный многоугольник

Данная фигура может иметь любое количество вершин, но все ее стороны равны между собой. Для нахождения радиуса окружности, в которую поместили правильный многоугольник, достаточно знать число сторон фигуры и их длину.
R = b/2sin(180°/n),
b – длина стороны,
n – число вершин (или сторон) фигуры.
Приведенное соотношение для случая шестиугольника будет иметь следующий вид:
R = b/2sin(180°/6) = b/2sin30°,
R = b.

Как найти радиус описанной окружности – прямоугольник

Когда в окружности располагается четырехугольник, имеющий 2 пары параллельно проходящих сторон и внутренние углы 90°, точка пересечения диагоналей многоугольника и будет ее центром. Воспользовавшись соотношением Пифагора, а также свойствами прямоугольника, получаем необходимые для нахождения радиуса выражения:
R = (√m 2 + l 2)/2,
R = d/2,
m, l – стороны прямоугольника,
d – его диагональ.

Как найти радиус описанной окружности – квадрат

Помещаем в окружность квадрат. Последний является правильным многоугольником, имеющим 4 стороны. Т.к. квадрат является частным случаем прямоугольника, то его диагонали также в точке своего пересечения делятся пополам.
R = (√m 2 + l 2)/2 = (√m 2 + m 2)/2 = m√2/2 = m/√2,
R = d/2,
m – сторона квадрата,
d – его диагональ.

Как найти радиус описанной окружности – равнобокая трапеция

Если в окружность поместили трапецию, то для определения радиуса потребуется знание длин ее сторон и диагонали.
R = m*l*d/4√p(p – m)*(p – l)*(p – d),
p = (m + l + d)/2,
m, l – стороны трапеции,
d – ее диагональ.


Как найти радиус описанной окружности – треугольник

Произвольный треугольник

  • Чтобы определить радиус окружности, описывающей треугольник, достаточно знать величину его сторон.
    R = m*l*k/4√p(p – m)*(p – l)*(p – k),
    p = (m + l + k)/2,
    m, l, k – стороны треугольника.
  • Если известна длина стороны и градусная мера угла ей противолежащего, то радиус определяется следующим образом:
    Для треугольника MLK
    R = m/2sinM = l/2sinL = k/2sinK,

    M, L, K – его углы (вершины).
  • При наличии площади фигуры также можно вычислить радиус окружности, в которую она помещена:
    R = m*l*k/4S,
    m, l, k – стороны треугольника,
    S – его площадь.

Равнобедренный треугольник

Если треугольник равнобедренный, то 2 его стороны равны между собой. При описывании такой фигуры радиус можно найти по такому соотношению:
R = m*l*k/4√p(p – m)*(p – l)*(p – k), но m = l
R = m 2 /√(4m 2 – k 2),
m, k – стороны треугольника.

Прямоугольный треугольник

Если один из углов треугольника прямой, а около фигуры описана окружность, то для определения длины радиуса последней потребуется наличие известных сторон треугольника.
R = (√m 2 + l 2)/2 = k/2,
m, l – катеты,
k – гипотенуза.


Видно, что каждая сторона треугольника , перпендикуляр, проведенный из ее середины и отрезки, соединяющие точку пересечения перпендикуляров с вершинами, образуют два равных прямоугольных треугольника . Отрезки MА, MВ, MС равны.

Вам дан треугольник. Найдите середину каждой стороны – возьмите линейку и измерьте его стороны. Полученные размеры разделите пополам. Отложите от вершин на каждой половину ее размера. Отметьте результаты точками.

Из каждой точки отложите перпендикуляр к стороне. Точка пересечения этих перпендикуляров будет центром описанной окружности. Для нахождения центра окружности достаточно двух перпендикуляров. Третий строится для самопроверки.

Обратите – в треугольнике, где все углы острые, пересечения внутри треугольника . В прямоугольном треугольнике – лежит на гипотенузе. В – находится за его пределами. Причем перпендикуляр к стороне напротив тупого угла не к центру треугольника , а наружу.

Обратите внимание

Существует теорема синусов, устанавливающая зависимость между сторонами треугольника, его углами и радиусами описанной окружности. Эта зависимость выражается формулой: a/sina = b/sinb = с/sinc = 2R, где a, b, c – стороны треугольника; sina, sinb, sinc – синусы углов, противолежащих этим сторонам; R – радиус окружности, которую можно описать вокруг треугольника.

Источники:

  • как описать окружность четырехугольника

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом совершенно неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция или что-то иное. Также не играет роли, правильный или неправильный это многоугольник. Необходимо лишь учитывать, что существуют многоугольники, вокруг которых окружность описать нельзя. Всегда можно описать окружность вокруг треугольника. Что касается четырехугольников, то окружность можно описать около квадрата или прямоугольника или равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические понятия и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

Постройте многоугольник с заданными параметрами и , можно ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Каждая из них должна равняться 180°.

Для того, чтобы описать окружность , нужно вычислить ее радиус. Вспомните, где лежит центр окружности в разных многоугольниках. В треугольнике он в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для любого другого выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Разделив диаметр на 2, получаете радиус.

Вычислите радиус описанной окружности для треугольника. Поскольку параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Вместо этой стороны можно взять сторону и противолежащий ей угол.

Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - известные по условиям основания трапеции, h - высота, d - диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту можно вычислить по теореме синусов или косинусов, длины сторон трапеции и углы заданы в условиях . Зная высоту и учитывая подобия треугольников, вычислите диагональ. После этого останется вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет

Чтобы вычислить радиус окружности, описанной вокруг другого многоугольника, выполните ряд дополнительных построений. Получите более простые фигуры, параметры которых вам известны.

Совет 3: Как начертить прямоугольный треугольник по острому углу и гипотенузе

Прямоугольным называют треугольник, угол в одной из вершин которого равен 90°. Сторону, лежащую напротив этого угла, называют гипотенузой, а стороны, противолежащие двум острым углам треугольника, называются катетами. Если известна длина гипотенузы и величина одного из острых углов, то этих данных достаточно, чтоб построить треугольник, как минимум, двумя способами.