Гравитационная постоянная теряет вес. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Ученые из России и Китая уточнили гравитационную постоянную, используя два независимых метода. Результаты исследования опубликованы в журнале Nature.

Гравитационная постоянная G - одна из фундаментальных констант в физике, которую применяют при расчетах гравитационного взаимодействия материальных тел. Согласно закону всемирного тяготения Ньютона, гравитационное взаимодействие двух материальных точек пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Также в эту формулу входит постоянный коэффициент - гравитационная постоянная G. Массы и расстояния астрономы сейчас могут измерять значительно точнее, чем гравитационную постоянную, из-за чего у всех расчетов тяготения между телами накапливалась систематическая погрешность. Предположительно, связанная с гравитационной постоянной погрешность влияет и на исследования взаимодействий атомов или элементарных частиц.

Физики неоднократно измеряли эту величину. В новой работе международный коллектив ученых, в состав которого вошли сотрудники Государственного астрономического института имени П.К. Штернберга (ГАИШ) МГУ, решил уточнить гравитационную постоянную, используя два метода и крутильный маятник.

«В эксперименте по измерению гравитационной постоянной требуется произвести абсолютные измерения трех физических величин: массы, длины и времени, - комментирует один из авторов исследования, Вадим Милюков из ГАИШ. - Абсолютные измерения всегда могут быть отягощены систематическими ошибками, поэтому было важным получить два независимых результата. Если они совпадают между собой, то появляется уверенность, что они свободны от систематики. Наши результаты совпадают между собой на уровне трех стандартных отклонений».

Первый использованный авторами исследования подход - так называемый динамический метод (time-of-swing method, ToS). Исследователи вычисляли, как изменяется частота крутильных колебаний в зависимости от положения двух пробных тел, которые служили источниками масс. Если расстояние между пробными телами уменьшается, сила их взаимодействия увеличивается, что вытекает из формулы для гравитационного взаимодействия. В результате возрастает частота колебаний маятника.

Схема экспериментальной установки с крутильным маятником

Q. Li, C.Xie, J.-P. Liu et al.

Используя этот метод, исследователи учли вклад упругих свойств нити подвеса маятника в погрешности измерения и постарались сгладить их. Эксперименты проводились на двух независимых аппаратах, находящихся на расстоянии 150 м друг от друга. На первом ученые протестировали три различных вида волокна нити подвеса, чтобы проверить возможные ошибки, наведенные материалом. У второго значительно изменили конструкцию: исследователи использовали новое силикатное волокно, другой набор маятников и грузов для того, чтобы оценить ошибки, которые зависят от установки.

Второй метод, которым измеряли G, - метод компенсации угловых ускорений (Angular acceleration feedback, AAF). В нем измеряется не частота колебаний, а угловое ускорение маятника, вызванное пробными телами. Этот метод измерения G не нов, однако для того, чтобы увеличить точность вычисления, ученые кардинально изменили конструкцию экспериментальной установки: заменили алюминиевую подставку на стеклянную, чтобы материал не расширялся при нагревании. В качестве пробных масс использовали тщательно отшлифованные сферы из нержавеющей стали, близкие по форме и однородности к идеальным.

Чтобы снизить роль человеческого фактора, практически все параметры ученые измерили повторно. Также они подробно исследовали влияние температуры и вибраций при вращении на расстояние между пробными телами.

Полученные в результате экспериментов значения гравитационной постоянной (AAF - 6,674484(78)×10 -11 м 3 кг -1 с -2 ; ToS - 6,674184(78)×10 -11 м 3 кг -1 с -2) совпадают между собой на уровне трех стандартных отклонений. Кроме того, оба имеют наименьшую неопределенность из всех ранее установленных значений и согласуются со значением, которое рекомендовано Комитетом данных для науки и техники (CODATA) в 2014 году. Эти исследования, во-первых, дали большой вклад в определение гравитационной постоянной, а во-вторых, показали, какие усилия потребуются в будущем для того, чтобы достичь еще большей точности.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@сайт.

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - коэффициент пропорциональности G в ф-ле, описывающей всемирного тяготения закон .

Числовое значение и размерность Г. п. зависят от выбора системы единиц измерения массы, длины и времени. Г. п. G, имеющую размерность L 3 M -1 T -2 , где длина L , масса M и время T выражены в единицах СИ, принято называть кавендишевой Г. п. Она определяется в лабораторном эксперименте. Все эксперименты можно условно разделить на две группы.

В первой группе экспериментов сила гравитац. взаимодействия сравнивается с упругой силой нити горизонтальных крутильных весов. Они представляют собой лёгкое коромысло, на концах к-рого укреплены равные пробные массы. На тонкой упругой нити коромысло подвешено в гравитац. поле эталонных масс. Величина гравитац. взаимодействия пробных и эталонных масс (а следовательно, и величина Г. п.) определяется либо по углу закручивания нити (статич. метод), либо по изменению частоты крутильных весов при перемещении эталонных масс (динамич. метод). Впервые Г. п. с помощью крутильных весов определил в 1798 Г. Кавендиш (H. Cavendish).

Во второй группе экспериментов сила гравитац. взаимодействия сравнивается с , для чего используются рычажные весы. Этим способом Г. п. была впервые определена Ф. Йолли (Ph. Jolly) в 1878.

Значение кавендишевой Г. п., включённое Междунар. астр. союзом в Систему астр. постоянных (САП) 1976, к-рым пользуются до настоящего времени, получено в 1942 П. Хейлом (P. Heyl) и П. Хржановским (P. Chrzanowski) в Национальном бюро мер и стандартов США. В СССР Г. п. впервые была определена в Государственном астр. ин-те им. П. К. Штернберга (ГАИШ) при МГУ.

Во всех совр. определениях кавендишевой Г. п. (табл.) были использованы крутильные весы. Помимо названных выше, применялись и др. режимы работы крутильных весов. Если эталонные массы вращаются вокруг оси крутильной нити с частотой, равной частоте собственных колебаний весов, то по резонансному изменению амплитуды крутильных колебаний можно судить о величине Г. п. (резонансный метод). Модификацией динамич. метода является ротационный метод, в к-ром платформа вместе с установленными на ней крутильными весами и эталонными массами вращается с пост. угл. скоростью.

Величина гравитационной постоянной 10 -11 м 3 /кг*с 2

Хейл, Хржановский (США), 1942

динамический

Роуз, Паркер, Бимс и др. (США), 1969

ротационный

Реннер (ВНР), 1970

ротационный

Фаси, Понтикис, Лукас (Франция), 1972

резонанс-

6,6714b0,0006

Сагитов, Милюков, Монахов и др. (СССР), 1978

динамический

6,6745b0,0008

Лютер, Таулер(США), 1982

динамический

6,6726b0,0005

Приведённые в табл. среднеквадратич. ошибки указывают на внутр. сходимость каждого результата. Нек-рое расхождение значений Г. п., полученных в разных экспериментах, связано с тем, что определение Г. п. требует абсолютных измерений и поэтому возможны систематич. ошибки в отд. результатах. Очевидно, достоверное значение Г. п. может быть получено только при учёте разл. определений.

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) Эйнштейна Г. п. рассматривается как универсальная константа природы, не меняющаяся в пространстве и времени и независящая от физ. и хим. свойств среды и гравитирующих масс. Существуют варианты теории гравитации, предсказывающие переменность Г. п. (напр., теория Дирака, скалярно-тензорные теории гравитации). Нек-рые модели расширенной супергравитации (квантового обобщения ОТО) также предсказывают зависимость Г. п. от расстояния между взаимодействующими массами. Однако имеющиеся в настоящее время наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить изменения Г. п.

Лит.: Сагитов M. У., Постоянная тяготения и , M., 1969; Сагитов M. У. и др., Новое определение кавендишевой гравитационной постоянной, "ДАН СССР", 1979, т. 245, с. 567; Милюков В. К., Изменяется ли гравитационная постоянная ?, "Природа", 1986, № 6, с. 96.

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.

После изучения курса физики в головах у учащихся остаются всевозможные постоянные и их значения. Тема гравитации и механики не становится исключением. Чаще всего ответить на вопрос о том, какое значение имеет гравитационная постоянная, они не могут. Но всегда однозначно ответят, что она присутствует в законе всемирного тяготения.

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с 2 .

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • F т = G (m 1 *х m 2) : r 2 .

В ней введены такие обозначения:

Формула гравитационной постоянной вытекает из этого закона:

  • G = (F т Х r 2) : (m 1 х m 2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10 -11 Нˑм 2 /кг 2 . Прошло три года - и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10 -11 Нˑм 2 /кг 2 . Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10 -11 Нˑм 2 /кг 2 .

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r 2 .

Причем в ней используются такие обозначения:

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r 2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н) 2 , где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·10 23 кг, а радиус планеты 3,38·10 6 м.

Решение . Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10 -11 и 6,23 х 10 23 , которое потом нужно разделить на квадрат 3,38·10 6 . В числителе получается значение 41,55 х 10 12 . А в знаменателе будет 11,42 х 10 12 . Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ : 3,64 м/с 2 .

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение . Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ : отдалить их на расстояние, превышающее изначальное в 10 раз.

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…