Как найти длину медианы в треугольнике. Медиана

Медиана и высота треугольника – это одна из самых увлекательных и интересных тем геометрии. Термин «Медиана» означает прямую или отрезок, который соединяет вершину треугольника с его противоположной стороной. Другими словами, медиана – это линия, которая проходит из середины одной стороны треугольника в противоположную вершину этого же треугольника. Поскольку у треугольника только три вершины и три стороны, значит и медианы может быть только три.

Свойства медианы треугольника

  1. Все медианы треугольника пересекаются в одной точке и разделяются этой точкой в соотношении 2:1, считая от вершины. Таким образом, если нарисовать в треугольнике все три медианы, то точка их пересечения будет делить их на две части. Часть, которая располагается ближе в вершине, будет составлять 2/3 всей линии, а часть, которая располагается ближе к стороне треугольника – 1/3 линии. Пересекаются медианы в одной точке.
  2. Три медианы, проведенные в одном треугольнике, делят этот треугольник на 6 маленьких треугольников, чья площадь будет равна.
  3. Чем больше сторона треугольника, от которой исходит медиана, тем меньше эта медиана. И наоборот, самая короткая сторона имеет самую длинную медиану.
  4. Медиана в прямоугольном треугольнике имеет ряд собственных характеристик. Например, если вокруг такого треугольника описать окружность, которая будет проходить через все вершины, то медиана прямого угла, проведенная к гипотенузе, станет радиусом описанной окружности (то есть ее длина будет составлять расстояние от любой точки окружности до ее центра).

Уравнение длины медианы треугольника

Формула медианы исходит из теоремы Стюарта и гласит, что медиана – это квадратный корень из отношения квадратов суммы сторон треугольника, которые образуют вершину, за вычетом квадрата стороны, к которой проведена медиана к четырем. Другими словами, чтобы узнать длину медианы нужно возвести в квадрат показатели длины каждой стороны треугольника, а затем записать это в виде дроби, в числителе которой будет сумма квадратов сторон, которые образуют угол, откуда исходит медиана, минус квадрат третьей стороны. В качестве знаменателя здесь выступает цифра 4. Затем из данной дроби нужно извлечь корень квадратный, и тогда мы получим длину медианы.

Точка пересечения медиан треугольника

Как мы писали выше, всем медианы одного треугольника пересекаются в одной точке. Эту точку называют центром треугольника. Он делит каждую медиану на две части, длина которым соотносится как 2:1. При этом центр треугольника является и центром описанной вокруг него окружности. А другие геометрические фигуры имеют собственные центры.

Координаты точки пересечения медиан треугольника

Чтобы найти координаты пересечения медиан одного треугольника, воспользуемся свойством центроида, согласно которому он делит каждую медиану на отрезки 2:1. Обозначаем вершины как как A(x 1 ;y 1), B(x 2 ;y 2), C(x 3 ;y 3),

и вычисляем координаты центра треугольника по формуле: x 0 = (x 1 + x 2 + x 3)/3; y 0 = (y 1 + y 2 + y 3)/3.

Площадь треугольника через медиану

Все медианы одного треугольника делят этот треугольник на 6 равных треугольников, а центр треугольника делит каждую медиану в соотношении 2:1. Поэтому если известны параметры каждой медианы, можно вычислить и площадь треугольника через площадь одного из маленьких треугольников, а затем увеличить этот показатель в 6 раз.

Инструкция

Чтобы вывести формулу для медианы в произвольном , необходимо обратиться к следствию из теоремы косинусов для параллелограмма, получающегося путем достраивания треугольника . Формулу можно доказать на этом , она очень удобна при решении , если известны все длины сторон или их легко можно найти из других начальных данных задачи.

Фактически теорема косинусов представляет собой обобщение теоремы Пифагора. Она звучит так: для двумерного треугольника с длинами сторон a, b и c и углом α, противолежащим a, справедливо следующее равенство:a² = b² + c² – 2 b c cos α.

Обобщающее следствие из теоремы косинусов определяет одно из важнейших свойств четырехугольника: сумма квадратов диагоналей равна сумме квадратов всех его сторон: d1² + d2² = a² + b² + c² + d².

Достройте треугольник до параллелограмма ABCD добавлением линий, параллельных a и c. таким образом, со сторонами a и c и диагональю b. Удобнее всего строить так: отложите на прямой, которой принадлежит медиана, отрезок MD той же длины, соедините его вершину с вершинами оставшихся A и C.

По свойству параллелограмма диагонали делятся точкой пересечения на равные части. Примените следствие из теоремы косинусов, согласно которому сумма квадратов диагоналей параллелограмма равна сумме удвоенных квадратов его сторон:BK² + AC² = 2 AB² + 2 BC².

Поскольку BK = 2 BM, а BM – это медиана m, то:(2 m) ² + b² = 2 c² + 2 a², откуда:m = 1/2 √(2 c² + 2 a² - b²).

Вы вывели формулу одной из треугольника для стороны b: mb = m. Аналогично находятся медианы двух других его сторон:ma = 1/2 √(2 c² + 2 b² - a²);mc = 1/2 √(2 a² + 2 b² - c²).

Источники:

  • формула медианы
  • Формулы для медианы треугольника [видео]

Медианой треугольника называется отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы пересекаются в одной точке всегда внутри треугольника . Эта точка делит каждую медиану в отношении 2:1.

Инструкция

Задача по нахождению медианы может быть решена дополнительные построения треугольника до параллелограмма и через теорему о диагоналях параллелограмма.Продлим стороны треугольника и медиану , достроив их до параллелограмма. Таким образом, медиана треугольника будет половине диагонали получившегося параллелограмма, две стороны треугольника - его боковым (a, b), а третья сторона треугольника , к которой была проведена медиана, является второй диагональю получившегося параллелограмма. Согласно теореме, сумма квадратов параллелограмма равна удвоенной сумме квадратов его сторон.
2*(a^2 + b^2) = d1^2 + d2^2,
где
d1, d2 - диагонали получившегося параллелограмма;
отсюда:
d1 = 0.5*v(2*(a^2 + b^2) - d2^2)

Медиана - это отрезок, соединяющий вершину треугольника и середину противолежащей стороны. Зная длины всех трех сторон треугольника , можно найти его медианы. В частных случаях равнобедренного и равностороннего треугольника , очевидно, достаточно знания, соответственно, двух (не равных друг другу) и одной стороны треугольника .

Вам понадобится

  • Линейка

Инструкция

Рассмотрим общий случай треугольника ABC с не равными друг сторонами . Длину медианы AE этого треугольника можно вычислить по формуле: AE = sqrt(2*(AB^2)+2*(AC^2)-(BC^2))/2. Остальные медианы абсолютно аналогично. Эта выводится через теорему Стюарта, либо через достроение треугольника до параллелограмма.

Если ABC - равнобедренный и AB = AC, то медиана AE будет являться одновременно и этого треугольника . Следовательно, треугольник BEA будет прямоугольным. По теореме Пифагора, АЕ = sqrt((AB^2)-(BC^2)/4). Из общей длины медианы треугольника , для медиан BO и СP справедливо: BO = CP = sqrt(2*(BC^2)+(AB^2))/2.

Источники:

  • Медианы и бессектрисы треугольника

Медиана - это отрезок, соединяющий вершину треугольника и середину противолежащей стороны. Зная длины всех трех сторон треугольника, можно найти его медианы . В частных случаях равнобедренного и равностороннего треугольника, очевидно, достаточно знания, соответственно, двух (не равных друг другу) и одной стороны треугольника. Медиану также можно найти и по другим данным.

Вам понадобится

  • Длины сторон треугольника, углы между сторонами треугольника

Инструкция

Рассмотрим самый общий случай треугольника ABC с тремя не равными друг сторонами. Длину медианы AE этого треугольника можно вычислить по формуле: AE = sqrt(2*(AB^2)+2*(AC^2)-(BC^2))/2. Остальные медианы находятся абсолютно аналогично. Эта выводится через теорему Стюарта, либо через достроение треугольника до параллелограмма.

Если ABC - равнобедренный и AB = AC, то AE будет являться одновременно и этого треугольника. Следовательно, треугольник BEA будет прямоугольным. По теореме Пифагора, АЕ = sqrt((AB^2)-(BC^2)/4). Из общей длины медианы треугольника, для BO и СP справедливо: BO = CP = sqrt(2*(BC^2)+(AB^2))/2.

Медиану треугольника можно найти и по другим данным. Например, если заданы длины двух сторон, к одной из проведена медиана, например, длины сторон AB и BC, а также угол x между ними. Тогда длину медианы можно найти через теорему косинусов: AE = sqrt((AB^2+(BC^2)/4)-AB*BC*cos(x)).

Источники:

  • Медианы и биссектрисы треугольника
  • как находить длину медианы

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Длина медианы проведенной к стороне: (док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей )

Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника. Дано: ∆ABC, СС 1 , АА 1 , ВВ 1 - медианы
ABC . Доказать: и

Д-во: Пусть М - точка пересечения медиан СС 1 , АА 1 треугольника ABC. Отметим A 2 - середину отрезка AM и С 2 - середину отрезка СМ. Тогда A 2 C 2 - средняя линия треугольника АМС. Значит,А 2 С 2 || АС

и A 2 C 2 = 0,5*АС. С 1 А 1 - средняя линия треугольника ABC. Значит, А 1 С 1 || АС и А 1 С 1 = 0,5*АС.

Четырехугольник А 2 С 1 А 1 С 2 - параллелограмм, так как его противо­положные стороны А 1 С 1 и А 2 С 2 равны и параллельны. Следовательно, А 2 М = МА 1 и С 2 М = МC 1 . Это означает, что точки А 2 и M делят медиану АА 2 на три равные части, т. е. AM = 2МА 2 . Аналогично СМ = 2MC 1 . Итак, точка М пересечения двух медиан АА 2 и CC 2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треу­гольника. Совершенно аналогично доказывается, что точка пересечения меди­ан АА 1 и BB 1 делит каждую из них в отношении 2:1, считая от вер­шин треугольника.

На медиане АА 1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА 1 иBB 1.

Таким образом, n

T2. Докажите, что отрезки, которые соединяют центроид с вер­шинами треугольника, делят его на три равновеликие части. Дано: ∆ABC , - его медианы.

Доказать:S AMB =S BMC =S AMC . Доказательство. В, у них общая. т.к. равны их основания и высота, проведенная из вершины М, у них общая. Тогда

Аналогичным образом доказывается, чтоS AMB = S AMC . Таким образом,S AMB = S AMC = S CMB . n

Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис

Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.

Свойства

1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон

2. Биссектрисы внутренних углов треугольника пересекаются в одной точке - инцентре - центре вписанной в этот треугольник окружности.

3. Если в треугольнике две биссектрисы равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса).

Вычисление длины биссектрисы

l c - длина биссектрисы, проведённой к стороне c,

a,b,c - стороны треугольника против вершин A,B,C соответственно,

p - полупериметр треугольника,

a l ,b l - длины отрезков, на которые биссектриса l c делит сторону c,

α,β,γ - внутренние углы треугольника при вершинах A,B,C соответственно,

h c - высота треугольника, опущенная на сторону c.


Метод площадей.

Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).

1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур

2) Метод отношения S: основан на след опорных задачах:



Теорема Чевы

Пусть точки A",B",C" лежат на прямых BC,CA,AB треугольника. Прямые AA",BB",CC" пересекаются в одной точке тогда и только тогда, когда

Доказательство.

Обозначим через точку пересечения отрезков и . Опустим из точек С и А перпендикуляры на прямую ВВ 1 до пересечения с ней в точках Kи L соответственно (см. рисунок).

Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK:

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем и

Перемножим эти три равенства:

что и требовалось доказать.

Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.

Теорема (обратная теорема Чевы) . Пусть точки A",B",C" лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение

Тогда отрезки AA",BB",CC" и пересекаются в одной точке.

Теорема Менелая

Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C 1 – точка ее пересечения со стороной AB, A 1 – точка ее пересечения со стороной BC, и B 1 – точка ее пересечения с продолжением стороны AC. Тогда

Доказательство . Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B 1 C 1 .

ТреугольникиAC 1 B 1 иCKB 1 подобны (∟C 1 AB 1 = ∟KCB 1 , ∟AC 1 B 1 = ∟CKB 1). Следовательно,

ТреугольникиBC 1 A 1 иCKA 1 такжеподобны (∟BA 1 C 1 =∟KA 1 C, ∟BC 1 A 1 =∟CKA 1). Значит,

Из каждого равенства выразим CK:

Откуда что и требовалось доказать.

Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C 1 лежит на стороне AB, точка A 1 – на стороне BC, а точка B 1 – на продолжении стороны AC, причем выполняется соотношение

Тогда точки A 1 ,B 1 и C 1 лежат на одной прямой.

Медианой именуется отрезок, проведенный из вершины треугольника на середину противоположной стороны, то есть делит ее точкой пересечения пополам. Точка, в которой медиана пересекает противоположную вершине, из которой она выходит, сторону, именуется основанием. Через одну точку, называемую точкой пересечения, проходит каждая медиана треугольника. Формула длины ее может выражаться несколькими способами.

Формулы для выражения длины медианы

  • Зачастую в задачах по геометрии ученикам приходится иметь дело с таким отрезком, как медиана треугольника. Формула ее длины выражается через стороны:

где a, b и c - стороны. Причем с является стороной, на которую медиана опускается. Таким образом выглядит самая простая формула. Медианы треугольника иногда требуется проводить для вспомогательных расчетов. Есть и другие формулы.

  • Если при расчете известны две стороны треугольника и определенный угол α, находящийся между ними, то длина медианы треугольника, опущенной к третьей стороне, будет выражаться так.

Основные свойства

  • Все медианы имеют одну общую точку пересечения O и ею же делятся в отношении два к одному, если вести отсчет от вершины. Такая точка носит название центра тяжести треугольника.
  • Медиана разделяет треугольник на два других, площади которых равны. Такие треугольники называются равновеликими.
  • Если провести все медианы, то треугольник будет разделен на 6 равновеликих фигур, которые также будут треугольниками.
  • Если в треугольнике все три стороны равны, то в нем каждая из медиан будет также высотой и биссектрисой, то есть перпендикулярна той стороне, к которой она проведена, и делит надвое угол, из которого она выходит.
  • В равнобедренном треугольнике медиана, опущенная из вершины, которая находится напротив стороны, не равной никакой другой, будет также высотой и биссектрисой. Медианы, опущенные из других вершин, равны. Это также является необходимым и достаточным условием равнобедренности.
  • Если треугольник является основанием правильной пирамиды, то высота, опущенная на данное основание, проецируется в точку пересечения всех медиан.

  • В прямоугольном треугольнике медиана, проведенная к наибольшей стороне, равняется половине ее длины.
  • Пусть O - точка пересечения медиан треугольника. Формула, приведенная ниже, будет верная для любой точки M.

  • Еще одним свойством обладает медиана треугольника. Формула квадрата ее длины через квадраты сторон представлена ниже.

Свойства сторон, к которым проведена медиана

  • Если соединить любые две точки пересечения медиан со сторонами, на которые они опущены, то полученный отрезок будет являться средней линией треугольника и составлять одну вторую от стороны треугольника, с которой она не имеет общих точек.
  • Основания высот и медиан в треугольнике, а также середины отрезков, соединяющих вершины треугольника с точкой пересечения высот, лежат на одной окружности.

В заключение логично сказать, что одним из самых важных отрезков является именно медиана треугольника. Формула ее может использоваться при нахождении длин других его сторон.