Константин Владимирович Анохин: представления об организации психики. Мозг и разум А зачем всё это было

Анохин Константин Владимирович - профессор, нейробиолог, член-корреспондент РАН и РАМН, заведующий лабораторией нейробиологии памяти Института нормальной физиологии им. П.К.Анохина РАМН и руководитель отдела нейрон аук Курчатовского НБИК Центра.

Далее - ссылки на видеоролики с популярными и специальными лекциями и семинарами К.Анохина. Тексты К.Анохина я привожу не дословно, но с сохранением значим ого смысл а сказанного, и то, что показалось наиболее существенным.

Общее замечание: на мой взгляд, Константин Владимирович Анохин имеет наиболее адекватн ые представления и наибольший творческий потенциал в сравнении с другими Российскими исследователями организации психи ки в системе академической науки.

Стоит обратить внимание, что мои замечания основываются на существующей системы взаимовлияющих факторов в организации индивидуальной адаптивн ости и, возможно, они не сразу будут верно восприняты теми, кто имеет свою модель отдельных фрагментов.

Долгое время существовало мнение:

Животные в отличие от нас не могут путешествовать во времени (субъективно). У людей есть способности мысленно за счет сознания переноситься в наше прошлое.. или фантазировать о будущем.. Существует термин: me n tal time travel . Долгое время считалось, что животные живут только в настоящем... Они способны обучаться и адекватн ым образом действовать согласно опыту предыдущего поведения, но это поведение на основе предыдущего поведения вовсе не связано с состоянием сознания, а больше похоже на Декартовский автомат, который вырабатывается как условные рефлексы, реакции и без переживаний и воспоминаний о том, что происходило, действуют в соответствии с повторяющимися ситуациями.

Эта оценка стала меняться в последние полтора десятилетия, в значительной степени под влиянием экспериментальных эмпирическ их фактов, показавших на разных животных, что они, кажется (кажется потому, что это - предмет острых дискуссий специалистов), способны путешествовать во времени, перемещаться как в прошлое, так и в будущее. Например, иметь то, что для человека долгое время считалось одним из основных признаков существования сознания, так называемую эпизодическую память о прошедших событиях, о которых мы вспоминаем только благодаря нашему сознанию, т.е. .

Животные способны отвечать критериям такой эпизодической памяти, сформированным операционно. Критерий www: "что, где, когда".... Если мы способны ответить на вопрос: "что, где, когда", то воспоминание об этом эпизоде квалифицируется как наша субъективная память....Сойки способны, если их накормить едой, начать прятать оставшуюся еду. Сойке давали излишнюю пищу, которую она прятала. Но это было два типа пищи: одно то, что сойки очень любят - мучные черви и то, что они не так сильно предпочитают - орехи. Если проходит длинное время, то черви в заначке портятся и протухают, сойка ищет только спрятанные орехи. А если времени прошло еще немного, то сойка ищет еще не испортившиеся черви. Т.е. сойка помнила не только где она спрятала, но и что она спрятала и в зависимости от времени хранения учитывала, что черви портятся за некоторое время.

Существуют и другие трюки экспериментаторов, в том числе для млекопитающих. Так, мышь помещают в новую обстановку, где она впервые встречается с симпатичной и новой для нее самкой. Но в другой раз она может столкнуться с самцом, который раньше гонял ее по клетке вследствие доминантности. Такие встречи чередуются с разной периодичностью. Оказалось, что когда мышей помещают в новую обстановку, где нет следов ни самки ни самца, мышь способна распознавать, что в этом месте и в это время была самка и начинать искать ее, а в этом месте находился самец и нужно быть очень осторожным.

Подобные эксперименты показали, что даже животные, обладающие совершенно другим мозгом, не похожим ни на мозг млекопитающих, у которого есть кора как у нас, ни на мозг птиц, у которых нет типичной и понятной нам структуры: кора головного мозга, их эволюция шла разными путями, но оказалось, что путешествиями во времени обладают и разные беспозвоночные, в частности, каракатица и осьминог, с совершенно другим строением нервной системы.

Невозможность описать сознание на уровне конкретной организации мозговых структур ставит , что проявляется в большой схожести поведения, характеризующего сознание. И как должно выглядеть сознание у искусственного робота?

Комментарии.

>> сознание является тем, что извлекает такие следы памяти

Здесь нужно уточнить. Конечно, субъективные воспоминания воспринимаются, осознаются только при осознании, это самоочевидно. И сознательно возможно воспоминание того, что в данный момент следует из последовательности осознаваемого, а не просто вызвано внешними стимулами. Но само осознание затрагивает объект внимания не произвольно, а по определенному закону, который внешне проявляется как " " так, что не думать об большой оранжевой обезьяне оказывается невозможно, если только не перейти к еще более большой и яркой обезьяне. Таким образом, не сознание извлекает следы памяти, а сознание следует за процессом, требующим такого извлечения - за процессом "автоматизма мышлени я". При этом под словом мышлени е будем понимать именно цепочку извлекаемых следов субъективных образов в соответствии с приобретаемыми навыками обработки таких образов - навыками осмысл ения (как и поведенческие навыки в виде поведенческих автоматизмов, формируются при осознании данного момента поведения, так и мыслительные автоматизмы в точности так же формируются и корректируются для новых условий ).

>> вопрос о принципиальной, фундаментальной теор ии сознания, которая должна объяснить, что такое сознание вне зависимости от способа его организации

Попытки построения такой теор ии, методом наблюдения уже сложившейся системы, да еще во многом как черный ящик, практически не реализуемы, что и показывает сегодняшняя реальность. А вот если начать с самого начала, задавшись вопросом: а почему в ходе эволюции начали возникать системы, проявляющиеся такими свойствами, то становится понятно, что речь идет об индивидуальной адаптивн ости к новым условиям и развитии систем такой адаптивн ости. Т.е. нужно отбросить попытки рассматривать сразу с позиции разума, а стоит подойти к этому с позиций - как развитие индивидуальной адаптивн ости приводит к эффектам, внешне проявляющимся как разум. Таким образом, это будет предметная область - адаптология, а не когнитология . В плане личной адаптивн ости, прослеживая эффект "ориентировочной реакции", того как формируется поведенческий ответ в данных новых по отношению к привычным условиям, как оценивается (не)желательность реального поведенческого результата, как возникает задача нахождения решения, которое невозможно найти сразу, - формируется система взаимосвязей механизмов личной адаптивн ости, которая и проявляется как разумность. Модель такой системы уже становится возможно представить и с указанием , которая, при этом, добротно обоснована аксиом атикой.

Есть не слишком редкие, изучаемые феномены людей с памятью, позволяющей досконально воспроизводить события давности десятилетий (а что происходило такого-то числа месяца такого-то года?). Это говорит, что существуют некие биологические механизмы, способные поддерживать память в течение длительного времени. Но и обычные люди, возвращаясь к давним событиям, например, рассматривая старые фотографии одноклассников, способны с большой достоверностью воспроизводить значительную часть этой информации.

Может ли такая информация храниться на молекулярном уровне, как генетическая? Память - не свойство отдельных нейрон ов. Но может ли быть память у отдельного нейрон а?

Опыты показывают, что первичная (кратковременная) память хранит очень большое количество информации, но не долго, часы, а затем примерно только 20% остается на долговременное хранение. И есть критический момент, когда один вид памяти переходит в другой. Было показано, что в момент перехода из памяти кратковременной в долговременную, должны протекать активные процессы в нервной системе. Если дать новую информацию, маскирующую старую (однотипную, но другую), то процесс консолидации нарушается, который идет в первые минуты запоминания долговременно. И эти процессы нарушаются при судорожных припадках или при травмах головы или электрошоке и касаются именно нескольких первых минут процесса запоминания. Это было строго подтверждено и на крысах. Обнаружили, что существует всплеск синтеза белка в нервных клетках у животных, учащихся новому событию. Если ввести ингибиторы синтеза этого белка, то долговременного запоминания не происходит, хотя кратковременная память при этом никак не затрагивается. А если синтез не тормозится, то после часа уже ничто не нарушает образованную долговременную память.

Критическим фактором для начала синтеза является новизна в восприятии. Выяснили, что только в активных синапс ах (т.е. тех, которые были возбуждены новым стимулом), происходит локализация неспецифичных (универсальных по назначению и распадающихся в течение нескольких часов) белков (началом чего служит новизна в восприятии), приводящих к формированию проводящего синапс а, который до этого не проводил возбуждение. Так локально регулируется пластичность нервных клеток при обучении.

Еще есть .

Может ли быть, что организация памяти осуществляется не на молекулярном уровне, а на уровне целого мозга? В момент извлечения из памяти происходит что-то необычное - давно знали психологи. Если испытуемому показывать очень необычную картинку, которую трудно распознать и запомнить в деталях, а потом просить вспомнить через некоторые промежутки времени, то каждое воспоминание видоизменяет предыдущий образ . Так, буква М древнеегипетского алфавита у одного студента постепенно с каждым воспоминанием трансформировалась в некое животное с полной уверенностью испытуемого, что именно это и было им видено исходно. Каждая реактивация памяти - есть ее активная реконструкция, сопровождающаяся переоценкой вспомненного, что предполагает и реконсолидацию - переписывание памяти. . Ведь . Опыты с предварительным введением блокаторов белка памяти при воспоминании глубоко нарушает воспоминание через 24 часа. Для человека то же самое можно сделать если при воспоминании предъявить мешающий стимул - старая память нарушается.

Было обнаружено, что процессом, делающим память все более консолидированной, является сон. Во сне реактивируются те ансамбли нейрон ов, которые работали в момент приобретения нового опыта в бодрствовании, и что блокада синтеза белка во время сна способна нарушить эту память. Знания, образующиеся во время сна более категоризировано (отработано по значим ости), отличаясь от знаний этих же знаний до сна (самые разны модели, от выучивания пения птиц и кончая детьми и человеком). Т.е. переактивируясь во время сна, дневные воспоминания дорабатываются значим остью. Так что, .

Появились модели о том, как один нейрон может хранить свое состояние всю жизнь. Это - дополнительный геном в такой клетке.

Комментарии.

Описаны очень показательные для понимания особенностей осознаваемой памяти о событиях факты.

>> Модернизация памяти при воспоминаниях кажется странным и не правдоподобным явлением (зачем это нужно?)

Адаптивность организма заточена не на то, что бы вспоминать, а на то, чтобы приводить текущее состояние в наиболее адекватн ое соответствие с текущими условиями, т.е. соответствие желаемого получаемому.

>> это предполагает стирание старой памяти и образование новой

Не обязательно стирание старой. Дело в том, что если возникло осознание данного образа, это уже значит, что была достаточная новизна и высокая значим ость, которая сфокусировала внимание на образе. Это является условием коррекции памяти для этих новых условий (значим остью может быть осознанная необходимость вспоминания именно этого эпизода, а новизна всегда присутствует потому как тех условий, что были при первом воприятии эпизода уже нет). Так что новое воспоминание просто зафиксируется для этих новых условий, а старое останется доступным для старых. Теперь вспоминаться будет преимущественно новое, но это не значит, что нельзя извлечь и старый вариант, хотя он сильно перекрыт в доступе новым.

>> Опыты с предварительным введением блокаторов белка памяти при воспоминании глубоко нарушает воспоминание через 24 часа .

На самом деле это не означает, что была стерта старая память (да и нет механизма такого предварительного стирания, как это вдруг определенные синапс ы станут опять девственно непроводящими?). Но и сказать, почему именно блокаторы нарушают память при столь недостаточных деталях опыта трудно. Скорее всего, новые связи в течение 24 часов, все же, частично возникали, перекрывая доступ к ассоциации образа в старом виде. Здесь такой механизм: распознаватель данного образа активируется в случае наличия признаков определенных условий, в которых было запоминание плюс некий пусковой стимул. Для новых условий активация, возможно, того же самого распознавателя, но уже с профилем новых условий, в норме образует специфику распознавания в новых условиях при том же или ином пусковом стимуле. Или же функцию распознавания в данной специфике берет на себя соседний, схожий по полю входных признаков нейрон (даже группа нейрон ов).

>> возможно, длительность хранения памяти объясняется такой реконсолидацией во сне .

А как же опыты с феноменами, которые вспоминали даже то, что не вспоминалось ими в этом промежутке времени? Невозможно во сне вспоминать все то, что было в течение жизни постоянно для перезаписи, да это и не требуется для адаптивн ости индивиды (не стоит забывать: для того, чтобы понять функциональность сознания, мы на первое место поставили необходимость адаптироваться. Сознание не является самоцелью эволюции в адаптивн ости к новым условиям.). Вспоминается то, что было днем до сна. Непонятно, что мешает предположить, что образованные связи способны сохраняться при определенных условиях долго ? Особенно если они образуются не на уровне одного-двух нейрон ов, а целой группой нейрон ов. См. .

>> Появились модели о том, как один нейрон может хранить свое состояние всю жизнь. Это - дополнительный геном в такой клетке .

Непонятно, что за проблема с долгим сохранением памяти, если не было воспоминаний. Есть ли данные, что такое видоизменение синапс ов со временем обязательно нарушается и требует перезаписи или других механизмов поддержания? Вроде бы нет.

>> белки, возникающие в гиппокампе при запоминании

Тут должны возникать связи, зацикливающие образ для самоподдержания активности и подключающие его для осознания.

Несколько слов о том, что мы подразумеваем под "сознанием". Этот термин в языке несет огромное количество смысл ов, ведь субъективный мир связан с разными этажами этого процесса. Существует разделение высших уровней сознания, простых уровней, сознания, связанного с восприятием собственного Я, связанного с языком и т.д. Исследователи задаются вопросом: что происходит в мозге, когда мы начинаем что-то осознавать вокруг нас, когда у нас появляется субъективный опыт? .

Ученые придумали несколько экспериментальных уловок, с помощью которых они могут наблюдать за появлением сознания в мозге. Самый простой называется методом обратной маскировки. Если человеку предъявить на очень короткое время 0,03 секунды на экране вспышку, в которой будет написано слово, то мы способны осознать это. Но если сразу же за этим словом, на том месте, где оно было написано, дать вспышку набора каких-то букв, это называется маской, то человек уже не воспримет предыдущее слово. Но если маску отодвинуть на время позже, то с некоторого промежутка (> 0,05 сек) восприятие первого слова выходит из под блокирующего действия маски. Т.е. пока действует маска стимул воздействует на зрительные области мозга, но не осознается. Далее современными методами визуализации было обнаружено пять фундаментальных вещей, что происходит в мозге, когда мы осознаем какие-то события .

1. Когда происходит сознательное восприятие, то области коры, связанные с восприятием, например, зрительные области коры, начинают работать боле активно. Даже не осознаваемые стимулы (маскированные, например) приводят к активации зрительной коры, но при осознании стимула эта активность становится гораздо более высокой, иногда в десять раз более высокой.

2. В тот момент, когда у нас возникает осознание, вовлекаются еще и другие области коры, которые не работали до осознания. Больше всего это касается не сенсорных областей коры (первичных зон), а передних областей мозга, так называемой нижней фронтальной коры, которая связана у человека со многими высшими функциями, ассоциативными процессами, принятием решения и т.д.

3. Для того, чтобы возникло осознание дозированного во времени стимула, мозгу требуется достаточно много времени. Если мы будем регистрировать мозга в ответ на осознаваемые или неосознаваемые стимулы в первые десятки или даже сотни миллисекунд (0,01 - 0,2 сек), то окажется, что мозг их не различает (т.е. разные методы не могут обнаружить разницу в активности мозга в этом начальном интервале осознания). Когда появляется сознание, то разница в активности начинает проявляться в районе 0,27 сек, только затем это осознается.

4. В момент, когда развивается сознание, в мозге появляются определенные виды активности, например, возникает высокочастотная ритмическая активность в интервале 50-100 колебаний в минуту (~1-2 герц) - гамма-активность. По этой активности часто можно определить появление сознания.

5. Эта гамма-активность не только происходит с определенной частотой, но и при этом происходит синхронизация работы большого количества областей мозга.в том числе тех передних, активность которых начала проявляться с сознанием и тех задних (зрительных), которые были активны, но не настолько сильно. Это приводит к тому, что активность передних областей как бы возвращается через обратные связи к задним сенсорным областям, что существенно и усиливает их активность. Вот эта (самоподдерживающася) активность и является наиболее вероятным описанием того, что такое процесс сознания с точки зрения активности мозга.

Но есть вопросы .

Например: пусть существует момент осознания - некая гамма-активность,.. но почему это сопровождается тем субъективным чувством, которое мы называем сознанием?

Почему многие действия, которые мы совершаем вполне целенаправленно и целесообразно при их автоматизации уходят из сознания и выполняются автоматически? Только потом, , мы можем вернуться к этому сознательно. Почему сознание появляется в определенные моменты?

Почему синхронизация активностей большого количества клеток во время приступов эпилепсии не сопровождается сознанием.

Это все говорит о том, что нам необходима некая фундаментальная теор ия, не только описательного характера, но и показывала бы причины (т.е. речь идет о системной модели явления).

Комментарии.

>> Субъективный опыт многими используется как синоним понятия сознания

Собственный субъективный опыт, акутализированный в фокусе внимания - это и есть - осознание, а вот чужой - лишь проявление такого осознание в форме, доступной для восприятия другого.

Это - очень ценные констатации, которые очень хорошо согласуются с уже упомянутой моделью индивидуальной адаптивн ости.

>> пусть существует момент осознания - некая гамма-активность,.. но почему это сопровождается тем субъективным чувством, которое мы называем сознанием?

Гамма-активность - отражение самоподдерживающихся возбуждений , удерживающий субъективный образ даже после отсутствия стимула. Он всегда зацикливается через гиппокапм в момент осознания наиболее актуальной фазы поведенческого или мыслительного автоматизма из всех выполняющихся в данный момент. Степень актуальности - наибольшее произведение новизны и значим ости с точки зрения данной личности, т.е. то, что требует внимания из-за ситуации, не похожей на привычную и, тем самым, требует возможной корректировки поведения, переосмысл ения (это и вопрос о корректировки воспоминаний, эпизодической памяти). После перехода фокуса внимания на более актуальное, происходит переход к осознанию другой фазы, требующей внимания, а предыдущая отключается гиппокампом от лобных долей, но остается пока что (скажем, до гашения во сне или торможением соседней активности) самоподдерживающейся и замкнутой, - там может продолжаться прогностическая обработка поступающей информации и инсайд, привлекающий опять фокус внимания, если результат окажется преобладающе актуальным.

Вот этот самоподдерживающийся образ и является субъективно значим ым потому, что он ассоциирован с ранее связанной значим остью результата поведения - связью с распознавателями (детект орами) значим ости в зоне (стилей поведения в зависимости от условий). Окрашенный в позитивную или негативную значим ость именно для данных условий (в ждугих условиях - другая значим ость), это дает субъекту его значим ость, определяя личное отношение и возможные реакции, которые доступны сознанию в виде прогностических подвозбуждений .

Чтобы понять, что такое для нас, например, зеленый цвет, причем, не вообще, а конкретно в данных условиях, нужно понять, какое эмоциональное отношение с этим связано у данной личности: зеленый лист растения в вазе - одно, зеленая ядовитая лягушка другое, т.е. отношение вырабатывалось в практическом опыте, в данной фазе какого- поведенческой цепочки и строго для каких-то условий. Вот это и станет для этой личности субъективным ощущением. Если мы вызовем воспоминание о каком-то моменте осознанного внимания, то воспроизведем закрепившееся отношение, но уже в новых условиях вспоминания, которые могут привести к переоценке и корректировке. Тут очень много можно сказать, но формально все описано на уровне именно основных принципов организации личной адаптивн ости.

Несколько непривычный взгляд на эти вещи порождает трудности понимания .

>> Почему многие действия, которые мы совершаем вполне целенаправленно и целесообразно при их автоматизации уходят из сознания и выполняются автоматически?

Потому, что целью осознания является отслеживание наиболее актуального с помощью единственного канала внимания (переключатель - гиппокамп) к ситуации новизны, что предполагает неприемлемость ранее привычного поведения. Цель - не просто осознать, а выделить объект внимания для его обработки лобными долями и формирования приемлемого для новых условий варианта с желательным исходом и блокировкой нежелательных вариантов. После выработки такого варианта привлечение внимания уже не нужно, и действие выполняется автоматически, лишь отслеживая сознанием несколько новых условий: лужа на дороге, прогностические варианты: перепрыгнуть, обойти пройти прямо по ней и т.п. Только потом, если оказывается, что что-то идет не так , мы можем вернуться к этому сознательно.

И только если условия таковы, что нет достаточно уверенного прогноза желательного результата, начинается прерывание действия с осмысл ением, с привлечением уже мыслительных автоматизмов решения задачи.

Почему сознание появляется в определенные моменты?

Потому, что канал осознания только один, и гиппокамп подключает к лобным долям только один из образов восприятия-действия по вполне определенному алгоритм у: наиболее актуальный в данный момент.

>> Почему разрушение коры или таламических ядер приводят к потерям сознания, а нарушение интеграции в мозжечке не приводит к этому?

Таламические ядра как раз и обеспечивают распознавание значим ости, связываемые с результатами поведения, то, что придает смысл и определяет отношение и возможные действия. Если его нет, все становится бессмысл енным и неуправляемым, нет субъективной окраски, нет осознания. Мозжечок же формирует цепочки программ поведения, которые не касаются собственно осознания, а являются вторичными программами действий.

>> Почему во время сна, когда существуют медленноволновые фазы сна, не связанных со сновидениями, активность нервных клеток не уменьшается и даже может стать больше?

Здесь необходимы дополнительные исследования по специфике сна .

>> Почему синхронизация активностей большого количества клеток во время приступов эпилепсии не сопровождается сознанием .

Потому, что субъективный образ это - не беспорядочная синхронизация, а определенный ансамбль связанного с данной фазой поведенческой реакции в с элементами восприятия и действия, присущими именно данной фазе реакции. Обширное возбуждение полностью смешает все связанные эмоциональные оценки и сделает все бессмысл енным.

Три вопроса:

1. Возможно ли прочтение, декодирование человеческих мыслей?

2. Возможно ли мысленное управление человеком машинами?

3. Возможна ли передача мыслей человека на мозг другого человека?

Я готов дать утвердительные ответы на каждый из них.

Есть специальные устройства, которые считывают мысли парализованного человека, позволяя ему управлять действиями искусственной руки или других роботизованных устройств.

Рене Декарт задавался вопросом: Декарт проводил пропасть между разумом и телом, что порождает проблему души и тела. Декарт предполагал, что между ними есть взаимодействие. Это - ложно поставленная проблема.

Мысль не может непосредственно без какого-то субстрата подействовать на другую мысль (в другом теле), она сначала должна подействовать на собственное тело, вызвать речевые действия, те через среду подействуют на другое тело и там породят мысль. Но в этом случает нет передачи мысли между двумя телами. Решение в том, что . И эта активность и вызывает активность поведения. И тут уже нет разделения души и тела. Психика и мысль - есть организованная определенным образом во времени синхронная работа групп клеток .

Задача переноса мысли сводится к техническому вопросу: как снять сигналы с одной популяции клеток, представляющую мысль, и передать в роботизированное устройство, осуществляющее движение или в другой мозг, чтобы вызвать там аналогичную активацию и породить мысль.

Если крысе вживить электроды в область коры, управляющей движениями, а затем научить ее нажимать на педаль после чего появление намерения нажать на педаль, эта отведенная активность управляла поворотом кормушки. Через некоторое время крыса перестала сама нажимать на педаль, а только думать об этом в виду достаточности для получения пищи.

Но есть трудность. Оказалось, что соседние два нейрон а могут кодировать совершенно различные действия. Например, один нейрон отвечает за образ чернокожей кинозвезды, а соседний - матери Терезы. Понятно, что никакая поверхностная электроэнцефалограмма не может разделить эти активности.

Комментарии.

>> Психика и мысль - есть организованная определенным образом во времени синхронная работа групп клеток.

В другом ролике К.Анохин задавал вопрос: " существует момент осознания - некая гамма-активность,.. но почему это сопровождается тем субъективным чувством, которое мы называем сознанием? ".

Вот если взять каким-то образом и выделить точную копию таких активировавшихся клеток, будет ли при этом субъективность восприятия? Нет, не будет потому, что текущее - это самый общий контекст отклика системы значим ости на состояние гомеостаза , это текущее воздействия внешних раздражителей, создающий свой , уточняющий более общий и именно в этом контекст е активность самоподдерживающейся активности образа восприятия приобретает определенный смысл (=значим ость ), опять же от системы значим ости, т.е. смысл , который был связан с нею предыдущим опытом подобного восприятия. И все это предполагает возможность перемещаться в пространстве субъективных прогнозов , цепи развития которых могут уводить далеко, но в соответствии с текущим контекст ом. Так что сделанное утверждение - неверно.

Мысль в субъективном плане - связанная последовательность актуализации субъективных образов восприятия-действия, а в плане механизмов организации - результат последовательности смещения фокуса осознанного внимания по ранее сформированным цепям мыслительных автоматизмов с подключением этих звеньев к каналу осознанного восприятия (в лобных долях) . Это - не просто " синхронная работа групп клеток " самоподдерживающейся активности, формирующей гамма-ритм.

А психи ка - проявление общей системы организации индивидуальной адаптивн ости поведения с использованием личной системы значим ости и канала обработки наиболее актуального для текущей адаптивн ости.

>> снять сигналы с одной популяции клеток, представляющую мысль, и передать в другой мозг, чтобы вызвать там аналогичную активацию и породить мысль

Т.к. формирование системы личной адаптивн ости чрезвычайно индивидуально и совершенно не совместимо с такой системой у другой особи, то и передать напрямую субъективные образы, связанные с личным представлением системы значим ости и личным отношением, принципиально невозможно.

>> мысль - такая же организованная активность физиологических процессов, как и действие

Вот это - верно! Как и при формировании поведенческих автоматизмов действия, мыслительные автоматизмы или цепочка стереотипа последовательных воспоминаний образов восприятия, сформированных ранее в моменты осознания, использует в точности те же механизмы. Причем, последовательность осознания не отслеживает звенья цепи какого-то одного поведенческого автоматизма, а перескакивает с одного на другой в соответствии с изменением наибольшей актуальности отслеживания происходящего.

>> соседние два нейрон а могут кодировать совершенно различные действия

Мало того, у разных людей это - совершенно разные нейрон ы или даже их отсутствие. Мало того, в разных условиях за один и тот же образ может отвечать совершенно разные нейрон ы - в силу к .

>> каким образом мысль способна оказать воздействие на физический объект?

Это - условное противопоставление разных сторон одной действительности: субъективного представителя носителя сознания и объективного содержания механизмов субъекетивизации. Разделять это невозможно в точности так же как попытаться разделить форму куба от собственно куба как объекта. Понятно, что никаких форм, никаких объектов в природе не существует. Объекты выделяет наше внимание и придает им определенный смысл форм. Это то, чем оперирует только субъективность. Об этом

Это - необычная вещь, по крайней мере для нейробиолога. Нейрофизиология - эмпирическ ая дисциплина и теор ии в ней почти нет, она отчасти инициируется приходящими физиками или математиками, но большинство нейрофизиологов выросло на скептическом отношении к любым теор етическим поискам .

После это К.Анохин надолго перешел к эмпирике своих экспериментов...

Условием для прогресса в этой области станет пересмотр традиционных представлений о сознании, происходящее из обыденного опыта и созерцательной философии. Должна быть теор ия, описывающая сознание - как результат динамической организации процессов в мозге. Эта теор ия не должна быть просто описательной теор ией, она должна быть формализ ована как математическая теор ия сознания.

В частности, может помочь изучение механизмов эпизодической памяти .

Нейронаука является лишь одной из составляющих когнитивной науки. Несмотря на серию попыток за истекшие более, чем полвека, единой теор ии в когнитивной науке так и не появилось.

Первым методолог ическим условием я выдвигаю, что построение общей теор ии не может быть результатом междисциплинарного синтеза, так же как и создание эволюционной теор ии не может быть синтезом разных дисциплин. Это вытекает из убеждения, что различные локальные взгляды на предмет когнитивной науки не могут соединиться вместе . Они должны стать производными от понимания целостной природы этого предмета. Выражаясь словами Эйнштейна: мы хотим, чтобы наблюдаемые факты вытекали логически из нашего понимания природы. Это не просто сумма существующих представлений, а новое переопределение предмета.

Я введу новое понятие: я обозначу скрытую от непосредственного восприятия и проявляющуюся в феноменологии и поведении когнитивную реальность термином когнитом. Читается так же как геном . Когнитом - полная система субъективного опыта, формированная в организме в процессе видовой эволюции, развития и индивидуального познания. Когнитом представляет собой архитектуру разума, включая бессознательную составляющую.

Главный вопрос теор ии: "как материя мозга рождает субъективное явление?" Другие вопросы - в списке Эдельмана . В частности:

1 . Соотношение мозга и разума

2. Соотношение сознательного и бессознательного

3. Соотношение разума человека и разума животного

4. Соотношение локализованных и распределенных функций мозга.

Любой существующий мозг представляет собой когнитом. Это - очень важное утверждение: эволюция нервных систем представляла собой эволюцию когнитомов, и никакое понимание мозга невозможно без теор ии когнитома. И далее глубокое погружение в этот еще не познанный, но уже объявленный объективно существующим объект: когнитом.

Существуют проекты, строящие сетевые связи между нейрон ами реального мозга и это - первый шаг в построении теор ии. Разум с его элементами тоже можно рассматривать как сеть , и тогда проблема соотношения мозга и разума - это проблема картирования и проекции одной сети на другую - как двух математических объектов.

Но коннектом - тупик в решении проблемы общей теор ии. Это не означает, что мы не должны пользоваться сетевым представлением о мозге, с возможностью применения теор ии сетей. Это означает, что сетевые представления о мозге не достаточны для создания единой теор ии: если мы рассматриваем все, вытекающее из работы нервной сети, но не даем неких новых специальных правил, то сталкиваемся с тем, что нервной системе не нужен разум, а разум не связан с нервной системой. Так что необходима теор ия более высокого уровня.

Когнитом, обладая зернистой структурой, состоит из когов - когнитивных частиц групп нейрон ов качественно специфического индивидуального опыта - квант системы индивидуального опыта, обладающий качественными характеристиками. Это нечто, обобщающее понятие функциональных систем П. Анохина и клеточных ансамблей Д.Хебба. Далее - глубокое погружение в эту теор етическую идею.

Но теор ия сетей - это - тупик. Сеть формализ ует попарные, но не множественные отношения объектов. И эта теор ия не имеет аппарата описания новых уровней в многоуровневых системах. С начала 2014 года у меня существует другая позиция: гиперсети, теор ия которых была развита физиком Р.Аткеном в 60-у годы. Гипресети обобщают понятие сетей и гиперграфов и т.д. это - сети сетей сетей.

Когнитом - гиперсеть мозга, где коги - гиперсимплексы, основания которых образованы нейрон ными когнитивными группами (?) , а вершины образуют узлы гиперсети. и т.д. очень скомкано.

Константин Анохин родился в Москве в 1957 году. В 1980 году окончил лечебный факультет Первого московского медицинского института имени Сеченова. В 1984 году защитил кандидатскую диссертацию в НИИ нормальной физиологии имени Анохина. В 1992 получил степень доктора медицинских наук за диссертацию «Ранние гены в механизмах обучения и памяти».

С середины 1980-х годов исследует молекулярные, клеточные и нервные механизмы памяти, её формирование, хранение и извлечение. В последние годы ведёт исследование биологических основ сознания. В 2002 году избран членом-корреспондентом Российской академии медицинских наук, а в 2008 - членом-корреспондентом Российской академии наук. С 2011 года руководит отделением нейронаук в Национальном исследовательском центре «Курчатовский институт».

Ольга Орлова: Вы и ваши коллеги, говоря об устройстве мозга, как правило, имеете в виду место, где хранится информация. Например, вы неоднократно использовали метафору Вавилонской библиотеки из рассказа Борхеса. И в таких случаях людям, далеким от науки легко понять, что где-то у нас в организме складываются какие-то кусочки информации. Но, с другой стороны, мы ещё думаем, что наше сознание связано с такими вещами, как память чувств, в конце концов - душа. Как быть с этим? Такие вещи для вас вне науки?

Нет, это ошибка. Во-первых, любая метафора имеет свои границы. Это всегда способ объяснить что-то. Это не модель. Метафора мозга как большой телефонной станции не означает, что наш мозг - это большая станция. Мы хотим понять мозг как мозг. Вавилонская библиотека тоже несёт какую-то идею, которую нужно объяснить. И основная идея этой метафоры: Вавилонской библиотека безгранична, как считал Борхес. Энтузиасты посчитали, что она на невероятное гиперастрономическое число степеней превосходит видимую Вселенную.

И наш разум, наше сознание, наша душа, если хотите, имеет такое количество степеней свободы, она может создать такое количество миров в себе, которое нельзя сосчитать. В ней содержатся все образы того, что мы видели каждую секунду, она может генерировать то, что мы видим, это то, что создают эти клетки мозга. Все восходы и закаты, все кадры фильмов, которые мы когда-либо видели, все мелодии, которые мы когда-либо услышали, и более того, все восходы и закаты, которые когда-либо человечество сможет увидеть или все фильмы, которые когда-либо оно сможет увидеть, все книги и поэмы, которые когда-либо сможет прочитать. Это бесконечность.

Есть ещё другая сторона, когда вы сказали про память чувств, что Вавилонская библиотека (это может вводить в заблуждение) - это текст. Это что-то, что хранится. И наш разум и сознание - это первое, что мы способны в нём создать как некий образ, но и другая сторона - это то, что мы помним. Если я вас спрошу, попытайтесь вспомнить какие-нибудь из закатов, которые вы видели в своей жизни. Вы, наверное, несколько вспомните особенно красивых. На самом деле вы видели сотни и тысячи закатов. То есть в вашей памяти остаются далеко не все. Но и то, что создаётся в этой библиотеке, и то, что остаётся потом небольшая часть в виде текстов - это не только справочная информация. В вашей или моей Вавилонской библиотеке и первый поцелуй, и рождение ребёнка, и, может быть, смерть близкого человека, и все эмоции и чувства, которые мы испытывали. И «Тристан и Изольда», и «Ромео и Джульетта» - они все в этой Вавилонской библиотеке.

Чуть раньше вы употребили через запятую «разум, сознание, душа». В истории культуры, в истории искусств традиционно противопоставлялись разум и душа. А для нейробиолога это через запятую, это почти знак равенства?

Я думаю, что мы разберёмся с этим. То, что мы называем разумом - это некоторая структура, которая есть у нас, и мы несём и храним её в любое время, даже когда мы находимся без сознания. Например, во время глубокого сна без сновидений. Сознание - это процесс в этой структуре. Когда она активна и там что-то происходит, то наш разум бодрствует, мы находимся в сознании.

Душа, поскольку это очень древнее понятие, оно в себя очень многое включает, но более сложное. Когда мы говорим, что душа отлетает во время сна и возвращается, как древние греки, в момент пробуждения, то мы говорим, наверное, о сознании. С другой стороны, душа содержит всё наше «я». Нам трудно представить понятие души без того внутреннего содержания. Я думаю, что на самом деле душа - это та часть нашего разума, которая не просто рациональна, она эмоциональна. Это всё, что накоплено нашим опытом. А наш субъективный опыт есть продукт работы нервных клеток. Я могу это сказать другим образом. Нет мозга - нет души, нет психики. Наш мозг умирает - душа не остаётся.

- Получается, что мы - это наш мозг?

Это было бы слишком просто. С одной стороны, мы - это наш мозг. С другой стороны, это наш мозг, организованный определённым образом. В нём должна быть записана вся эта информация Вавилонской библиотеки. Она должна туда как-то попасть. Эти тексты должны возникнуть.

Представьте себе, что у вас есть эта библиотека, в которой огромное количество букв и слов, но которые не образуют смыслов. Можете ли вы себе представить ситуацию, что есть мозг, который не содержит развитого разума, интеллекта, души и чувств? Вполне может быть, есть трагические случаи, когда рождаются дети с интеллектуальным недоразвитием. Они не развиваются. Они имеют некоторые задатки, которые дала эволюция, но большого глубокого содержания… Тогда, просто глядя на мозг, вы не увидите это по сегодняшним понятиям. Вы должны понять, что за свойства организации, которые возникают в этом мозге.

Поэтому вещь, которую мне последние несколько лет кажется очень важным понять - это то, как должен быть организован мозг, чтобы в нём появился разум. Разум - это некая надстройка над просто физической материей мозга.

А мы понимаем хотя бы какие-то базовые принципы, как рождается мысль на нейрофизиологическом уровне, именно на уровне клеток?

Да, мы понимаем. Для меня сверхзадачей является создать такую теорию, которая позволит для самых разных видов нервной системы - человека, обезьяны - объяснить, как на основе работы нервных клеток появляются вся система разума. Я думаю, что эта теория достаточно простая. Она должна быть простой и красивой. Она должна объяснять, как в эволюции появлялся разум. Так же как глаз изобретался эволюцией много раз, судя по всему, разум, интеллект изобретался тоже очень много раз в самых разных таксонах, которые шли деревьями эволюции, не встречающимися друг с другом. Один, например - это у моллюсков. И мы знаем сегодня, что осьминоги обладают очень развитым интеллектом. Другой - у птиц. Значит, эволюция, имея какие-то базовые принципы, изобретала разум и, возможно, создавала его не один раз.

Решение должно быть простым и красивым. Оно должно автоматически выводить из некоторых фундаментальных принципов, свойства, которые мы знаем в отношении разума. Как он возникает? Откуда у ребёнка, который родился таким же, как многие другие, имеет такой же эволюционный опыт, появляется всё богатство его индивидуального опыта? Как появляются эти новые элементы, как они связаны друг с другом? Как она мысль влечёт за собой другие? Где они все хранятся? Как мы способны за несколько сот миллисекунд в этой огромной библиотеке мыслей, содержания нашего опыта, чувств, эмоций вытягивать нужную нам? Как организован этот поиск? Какова эта архитектура?

Я думаю, что простой ответ, короткий ответ заключается в следующем. Что наш мозг - это огромная сеть. Она очень похожа на сеть огней в большом городе или сеть интернета, социальную сеть.

- 86 миллиардов огней?

Да, 86 миллиардов огней. Это больше, чем какой-либо город, который мы видим и знаем. И они связаны между собой. Они ещё имеют провода. Это физически связанная сеть. Но наш разум автоматически не живёт в этой сети, он должен там появиться. И он появляется как гиперсеть. Ключевое слово для понимания разума, на мой взгляд, теория, которая описывала то, что из себя представляет разум, что это тоже сеть. Это сеть, в которой элементами являются элементы нашего субъективного опыта. Они могут быть разными, они могут быть целостными воспоминаниями.

- Это сеть над сетью?

Да, сеть над сетью. Когда вы говорите, что сеть, у вас сразу же возникает: первое - у сети должны быть какие-то узлы, единицы, которые должны быть как-то связаны.

- Динамика процесса должна быть.

Вы можете потянуть за одну, узнать, какие активируются другие. Когда я вам скажу «Том Круз», вы вытащите из памяти фильмы, которые вы видели, может быть, девушки, с которыми он был знаком, эпизоды, в которых вы… Дальше можете вспомнить, когда вы смотрели эти фильмы, что с вами происходило, с кем вы в это время были. Это огромная сеть, по которой распространяется… Но сеть, обратите внимание - это не просто нервные клетки, это ваш субъективный опыт. Каждый из элементов - глаза Тома Круза, его причёска, его рост - это какие-то элементы, которыми вы как целое, как личность, соотносились с окружающим миром в каких-то контактах.

Как образуются узлы и связи в этой сети? Термин «гиперсеть» объясняет математически или геометрически, как это происходит. Гиперсеть - это такая сеть, где узлом в этой сети является какая-то совокупность узлов ниже лежащей сети. Каждый из таких элементов нашего опыта - это много-много клеток. Но вместе они образуют что-то новое. У этой пирамиды есть вершина. И вершина несёт другие свойства, чем много-много элементов. У вас есть хвост, шерсть, цвет, уши - они вместе образуют собаку. И она что-то для вас значит. Вещь, которую очень сложно понять и исследовать - во-первых, откуда берётся собака, а, во-вторых, как собака связана с кошкой, с вами и так далее, то есть как образуются связи в этой гиперсети.

Это сложно метафорически, потому что если вы представите себе много-много разбросанных элементов, как собаку по вашему мозгу, то она связана с другими элементами, с кошкой или с вашим домом, хозяином и так далее теми связями, которые эти элементы связаны с теми элементами. То есть на самом деле существует мозг. Физически существуют только нервные клетки, которые связаны с другими нервными клетками.

- В этом-то и проблема.

Но у них появляются свойства, которые образует эта гиперсеть. И эта гиперсеть - это и есть наше «я». Это и есть наша Вавилонская библиотека, в которой записан текст. Обратите внимание, что они записаны не просто. Это не книжка, которая стоит на одной полочке. Вы не можете вынуть собаку из одного места в нашем мозге. У вас цвет её шерсти хранится в одном месте, её хвост и лапы хранятся в другом, её свойства как друга хранятся в третьем, её лай хранится в четвёртом. Это много-много книг, где по одной фразе в самых разных частях библиотеки записано что-то о собаке. Они должны собраться вместе, чтобы создать это новое качество. И мозг умеет это делать.

Однажды мой сын, будучи в классе пятом, когда осознал процесс развития человеческой цивилизации и понял, что в России примерно от петровских времён был потрясающий взрыв, а в обратную сторону тысячи, сотни тысяч лет медленное- медленное развитие он был так потрясен, что заплакал. Я спросила: почему ты плачешь? Он сказал: почему так неравномерно?! Эту неравномерность развития нашей цивилизации действительно очень трудно осознать. А если говорить об эволюции мозга в нейрофизиологическом смысле, это как было?

Это вопрос, которым сегодня очень активно занимаются нейробиологи и молекулярные биологи. Мы имеем некоторые летописи, по которым мы можем восстанавливать этот процесс, мы можем сравнивать себя с нашими относительно недавними предками, с которыми мы разошлись, мы знаем эти геномы, мы знаем, как в этих геномах закодированы гены, которые отвечают именно за развитие мозга, потому что они имеют специфическую экспрессию и нужны, для того чтобы наш мозг сформировался во время индивидуального развития. Тогда мы можем задать вопрос: сколько изменений произошло за то время, когда мы разошлись, например, от шимпанзе, и где они произошли? И что за счёт этого возникло в мозге? То есть это исследование вопроса.

Черновой ответ, который сегодня существует, заключается в том, что в ответ на вопрос вашего сына: всё, что было создано на этапе человеческой цивилизации, было создано мозгом таким же, как у нас, то есть мы уже десятки тысяч лет имеем тот же самый мозг. Всё, что происходит после этого - это культурные вещи.

- То есть наши культурные, технологические, научные прорывы с эволюцией нашего мозга напрямую не связаны?

Если бы оказалось, что за время развития человеческой цивилизации, например, за несколько тысяч лет какие-то вещи перешли в наше биологическое наследство и стали частью мозга, который создаётся теперь врождённо, то это был бы крупнейший переворот в понимании механизма биологической эволюции. Пока мы знаем, что биологическая эволюция не поспевает за темпами того, что возникает за счёт культурного наследования. По крайней мере, сегодняшняя наука не знает никаких способов наследования культурных вещей так быстро. Это всегда десятки и сотни тысяч лет.

Константин Владимирович, а как вы объясняете абсолютно параллельные эволюции нашей цивилизации и человека как биологического вида? Вот когда-то люди начали сами себя описывать - от первых о попыток осмыслить себя на уровне наскальных рисунков до развитых серьёзных религиозных картин. Потом наступает новая эпоха, когда все эти религиозные картины мира рушатся и, собственно, начинается научное познание, которое заканчивается тем, что вы сидите здесь и рассказываете о том, как устроен наш мозг. И при этом же вы только что сказали, что в принципе это всё было создано тем мозгом, который мы уже имеем. Как это объяснить?

А в чём проблема?

- А зачем всё это было?

А ведь эволюция не имеет вопроса «зачем?». Она всегда движется вперёд, так же как и научное познание. Помните, как у Гёте у «Фаусте» - «Что есть дорога? А дороги нет. Вперёд в неизвестное». Вот как живёт человеческий мозг и биологическая эволюция.

Как вы относитесь к религиозному опыту ваших коллег, учёных-естественников? Некоторые физики, которые занимаются фундаментальными проблемами устройства Вселенной, говорят, что-либо ты смотришь на это как физик и понимаешь, что всё намного сложнее, и тогда религиозный взгляд и опыт для тебя просто невозможен…

Мне всегда казалось и продолжает казаться, что разделение на нетелесную божественную душу и мозг приводит к тому, что человек, занимающийся мозгом, долгое время исследует его, пытаясь понять, (особенно это видно на многих западных учёных, великих нейрофизиологов XX в.ека, которые были нобелевскими лауреатами, которые делали выдающиеся открытия), а в конце своего пути или даже в середине пути приходили к тому, что они задавались вопросом: а как все эти процессы, которые я очень хорошо изучил на уровне отдельных клеток, сигналов между ними, передатчиках и так далее соотносятся с душой и как душа входит в мозг? А на самом деле вы самого начала должны в теории мозга одновременно объяснить и разум. В русском языке, я недавно для себя открыл это, есть прекрасная возможность сказать, что-то, что мы должны понять - это МИР, МИР большими буквами - Мозг и Разум. Вы должны понять, что такое мозг, что такое разум, мы должны понять самое сложное, «А и Б сидят на трубе» - мы должны понять «и». И это описывается большими буквами «МИР».

Кстати, очень многие физики не принимают идею эволюции, то есть не понимают. Идея эволюции же ужасно сложная. Это идея часовщика, как одна из метафор. Если вы находите камень, то ударяете и отбрасываете. Если находите часы, то у вас возникает вопрос: откуда возникла такая сложная вещь, и где часовщик? Если у вас нет идеи эволюции, что это часовщик, который работал миллионы лет миллиардами проб и ошибок, и это собралось постепенно, то, конечно, весь мир выглядит чудом.

Вы отмечали, что ваш дедушка Пётр Кузьмич Анохин оказал довольно сильное влияние на ваше формирование как учёного. А его биография в свою очередь тоже была полна встреч с выдающимися людьми: Павлов, Ухтомский, Бурденко. Он был знаком с Луначарским, Вишневским. Из этой блестящей плеяды из научной биографии вашего деда с кем бы вам было бы интересно поговорить?

Я бы назвал ещё Бехтерева, потому что он начинал работать у Бехтерева. Я попросил бы полчаса разговора со всеми ними, прежде чем ответить на ваш вопрос, если нужно выбрать одного, и задал бы такие же вопросы, как вы задаёте мне. И по ним я смог бы определить, с кем мне интереснее всего продолжить этот разговор. Потому что учёные ведь хотят поговорить с теми, кто был до них, не только потому, что это мудрые люди. Они лелеют надежду, что, может быть, великие умы и личности предыдущих поколений знали ответы на некую загадку мира, тайну, которую они пытаются сами раскрыть, и что они им помогут.

А если наоборот? Ваш дед слушал лекции Нобелевского лауреата физиолога Павлова. У вас сейчас есть какое-то знание, которое могло бы его поразить?

Конечно! Столько всего произошло! Ели бы мне захотелось сделать ему приятное и интересное, я бы ему рассказал о наших возможностях с условными рефлексами, которые его интересовали больше всего. А он говорил, что вы должны понять всю силу учения об условных рефлексах, если вы можете показать пальцем, где было возбуждение, куда оно перешло, он был сильным материалистом. Так вот мы сегодня можем заставить условные рефлексы соединяться и устраиваться по нашему желанию, зная, как работают нервные клетки, и образуя искусственные условные рефлексы без внешних сочетаний. И это, является, на мой взгляд, очень ярким воплощением его такого материалистического строгого взгляда на то, как работает нервная система.

Константин Анохин – профессор, член-корреспондент Российской академии медицинских наук, заведующий отделом системогенеза Института нормальной физиологии им. П.К. Анохина и руководитель российско-британской лаборатории нейробиологии памяти. Лекция посвящена новейшим исследованиям физиологии памяти, механизмам хранения, извлечения и воспроизведения информации, способности к запоминанию, зависимости процессов памяти от обстоятельств.

Стенограмма лекций Константина Владимировича Анохина:

На симпозиуме в Массачусетском технологическом институте, который назывался «Будущее мозга», выражая общее мнение многих. И есть все основания думать, что в 21-ом веке, в науке 21-го века наука о мозге и разуме будет занимать такое же место, как в 20-ом веке занимала наука о генах и наследственности. И за этим стоит очень конкретная мысль.

Точно так же, как наука о генах, молекулярная биология создала единый язык, объединив огромное количество биологических дисциплин единой концептуальной базой: собственно биологию, ее различные отрасли, биологию развитии я, эволюционную биологию, микробиологию, вирусологию, затем далее – молекулярную медицину, в том числе и молекулярную биологию мозга среди всех отраслей, точно так же ожидается, что развивающиеся в 21-ом веке науки о мозге и разуме будут цементирующим фактором, объединяющим и дающим объективные основания для всех видов человеческой интеллектуальной деятельности, всего, что связано с этим. Начиная от развития человека и нашей личности, образования, обучения, языка, культуры, и двигаясь в области, которые пока еще не почерпнули конкретные сведения о том, как это делает мозг, в области поведения человека в экономических ситуациях, которая получает сейчас название нейроэкономики. В области и поведения человека вообще в социальных системах. И в этом смысле социология, история, юриспруденция, искусство, потому что все искусство – это, с одной стороны, то, что генерирует человеческий мозг, а, с другой стороны, то, как наш человеческий мозг воспринимает что-то, как произведение искусства. Все они будут зависеть от этого нового синтеза, науке о мозге и разуме.

Но этот синтез многим из вас может казаться естественным. Я хочу противопоставить его тому, что было раньше, чтобы было понятно, где мы находимся и в какую фазу мы переходим?

Платон писал в одном из своих «Диалогов» о важности умения разделять природу по суставам, то есть, разделять ее на естественные составные части так, чтобы после этого анализа мы могли вернуться естественным образом к синтезу. Кстати, эту способность в устах Сократа Платон назвал диалектикой, противопоставляя это неумению некоторых поваров разрубать тело на разные части, несмотря на суставы, это ведет к бессмысленному набору частей, которые очень трудно потом синтезировать.

Вот у нас есть основание сегодня думать, что Платон в разделении природы по суставам, делал крупную ошибку. Великие умы делают великие ошибки. Он разделил мозг и разум, он разделил тело и душу. Вслед за этим такое разделение, разделение мозга и разума, укоренилось после трудов другого великого философа Рене Декарта. По Декарту, весь мир можно разделить на две фундаментальные части.

Первая – это протяженная материальная субстанция, res extensa — это наши тела, это наш мозг, это тела животных, то, чем обладают животные. А вторая – это бессмертная душа, не протяженная духовная субстанция, которой обладает только человек. Значит, животные – это автоматы, они способны вести себя без участия души и разума, человек же обладает душой, она определяет его действия. И эти два мира трудно совместимы, потому что это мир пространственных и непространственных явлений.

Вот, по сути, мы находимся в, как минимум, 400-летней традиции и инерции восприятия мира, разделенного на эти две части – мозг и разум. И то, что происходит сегодня в науках о мозге, почему это важный момент – стирает эту грань и показывает, что работа мозга – это и работа разума, что мозг работает как огромная популяция из миллионов, десятков миллионов, может быть, иногда сотен миллионов синхронно активирующихся, включающихся вместе с какую-то деятельность нервных клеток. Эти группы клеток, функциональная системы хранятся как структура нашего индивидуального опыта. А наш разум – есть манипуляция этими группами.

Таким образом, что одна группа способна вызывать к действию другую группу, и свойствами этих огромных групп являются не просто физиологические свойства, а те субъективные состояния – мысли, эмоции, переживания, которые мы и испытываем. В этом отношении наш мозг и разум едины.

Кстати, идеи такие же древние, как и идеи Платона о раздельности, потому что Аристотель придерживался как раз концепции единства мозга и разума, или души и тела.

Собственно, вот биологическую программу объединения мозга и разума, возвращения разума в природу, сформировал другой великий мыслитель 19-го века Чарльз Дарвин. И это очень важно. Он соединил назад разум животных и разум человека, введя эволюционную идею, он записал в своей записной книжке, которая называлась «М» — метафизическая, он начал ее под влиянием разговором с отцом, и записывал там свои мысли о поведении и разуме.

Кстати, после расшифровки этих записных книжек, опубликованных в 80-е годы, начинаем понимать, насколько глубок был Дарвин, и как он глубоко думал о мозге и разуме, и о душе и мышлении, так же глубоко, как о биологии в целом и об эволюции. И, как видите, он записал в 38-ом году, кстати, удивительно, за полтора месяца до его знаменитой записи, когда его осенила идея о естественном отборе, продиктованным чтением Мальтуса. Он записал это в августе 38-го года: «Происхождение человека теперь доказано, эти мысли бродили в нем.

И после этого метафизика должна процветать, потому что тот, кто понимает бабуина, сделает больше для метафизики, чем Локк». Это программа биологических исследований. Это программа, показывающая, что наш мозг и разум составляют единое целое. Разум является функцией мозга, возникавшей в эволюции. Она нужна была для адаптации, и мы не отличаемся от животных кардинальными свойствами присутствия души или разума и отсутствия их у животных. Мы должны создать новую теорию того, как мозг генерирует процессы мышления, сознания, психики, опираясь на эти эволюционные принципы.

И вот, собственно говоря, 20-й век стал свидетелем одной из таких радикальных программ. Когда то, что считалось на протяжении многих веков свойством человеческой души, память, и, кстати, еще в начале 20-го века в учебниках психологии вы могли увидеть такое определение: «Память – это свойство души». Так вот то, что считалось свойством нашей души, а это наша личность, наша память, наш субъективный опыт, был переведен в изучение того, как биологические процессы движут, формируют нашу память и как она работает в мозге.

Иначе говоря, в 20-ом веке наука о памяти, возникшая, как писал историк науки Ян Хакинг, чтобы секуляризовать душу, эту неподатливую сердцевину, западной мысли и практике, двигалась под влиянием трудов нескольких из выдающихся ее пионеров Эббингауза в Германии, Рибо во Франции, Корсакова в России, от философии к объективным исследованиям в философии. И потом, что более важно, к исследованиям памяти в работающем мозге. Память в середине 20-го века стала изучаться не как явление, находящееся вовне человеческого мозга и продукт человеческого мозга, но и как процессы, происходящие внутри человеческого мозга, когда он запоминает или извлекает воспоминания.

И объективных нейробиологических исследованиях памяти принято разделять вопрос о механизмах памяти на три вопроса, на три проблемы.

Первая – как память формируется в мозге? Вторая – как память хранится в мозге на протяжении многих лет? И третья – как память избирательно извлекается, когда это необходимо? Один из первых вопросов, который подвергся объективным исследованиям, был вопрос о формировании памяти. И здесь исследования за последние несколько десятков лет перешли от наблюдения за поведением в момент формирования памяти у человека, животных, к тому, как память хранится за счет работы генома нервных клеток?

Первые шаги в этом отношении сделал молодой начавший молодым заниматься памятью немецкий… Эббингауз, он наткнулся на книгу «Объективной психологии» Лунта, который описывал объективно психологические исследования восприятий, и подумал о том, что, может быть, память человека можно использовать таким же… можно исследовать таким же образом? И он насочинял небольшое количество бессмысленных слогов, которые написал на табличках, тасовал эти таблички и показывал их самому себе, потом, проверяя через некоторое время свою способность вспомнить их через разные интервалы времени. И одна из первых вещей, которая была им обнаружена, что память в момент запоминания, проходит две фазы. Первая – это короткая фаза в течение первых минут после получения новой информации, где мы способны хранить почти всю полученную информацию.

Затем происходит резкое уменьшение объема заполненной информацией, но оставшаяся после этого периода информация хранится очень долго. Она способна хранится на неизменном уровне в течение недели или даже месяцев, как обнаружил Эббингауз. Таким образом, Эббингауз сделал фундаментальное открытие – он показал, что процессы запоминания неравномерны и имеют две фазы. Первую кратковременную, где хранится много информации, и вторую, долговременную, где объем информации невелик, но она поддерживается в течение длительного времени.

Очень быстро, вдохновленный работами Эббингауза, два других немецких психолога Мюллер и Пильцекер, работавшие в Геттингене в конце 19-го века, задались вопросом, а что происходит на границе этого перехода от одной фазы памяти к другой? Активный ли это процесс? И они показали, что, если в момент запоминания и перехода от кратковременной в долговременную память человеку дается новая задача, которую он должен запомнить, то эта новая задача мешает запоминанию старой информации, интерферирует с ним. Они назвали это ретроградной интерференцией, влиянием новой информации назад, на процесс, который происходит в мозге.

Исходя из этого, они решили, что в мозге, когда происходит запоминание, идет очень активный процесс, и он требует максимального количества ресурсов. Если мозгу дать в это время другую задачу, то вторая задача перекрывает первую, и не дает памяти сформироваться. Очень интересно, что, если эти вторую задачу давать чуть позже, через 15-20 минут, то этого не происходит. Из этого они сделали важный вывод, что память переходит в мозге в этом переходном этапе в устойчивую фазу хранения.

Неврологи очень быстро подтвердили это своими наблюдениями, что в случаях нарушений, связанных, например, с контузиями, с сотрясениями мозга, память теряется на короткое время, предшествовавшее этому сотрясению, что опять говорит о том, что воздействие на активный процесс не дает запомниться недавней информации. Кстати, такие же вещи происходят и при судорожных припадках.

Стало ясно, что, первое – память можно исследовать объективно. Второе – что в формировании памяти существуют некие фазы, связанные с активными процессами в мозге, нервной системе, и, соответственно, эти активные процессы в нервной системе могут быть объектов для изучения, для того, чтобы понять, как формируется память.

Дальше был довольно большой период, когда фундаментальных открытий в этой области не было, потому что исследовать эти процессы на человеке чрезвычайно сложно. Вы же не будете искусственно травмировать или создавать сотрясение человеку для того, чтобы проверить, что он запомнил, что нет? Вы не сможете или, по крайней мере, в те годы нельзя было заглянуть в то, что происходит в мозге человека во время этих процессов. И поэтому следующий радикальный шаг в этой программе редукции психического, редукции души, движением молекул в клетках мозга был сделан, когда американский психолог Карл Дантон показал, что у животных все то же самое. Если хотите, это замечательная иллюстрация дарвиновской программы возвращения разума в природу.

Он показал, что крысы запоминают массу вещей. Это было известно до него во многих исследованиях. Дальше он показал следующую вещь. Что, если крысам после того, как они выучили какую-нибудь новую задачу, нанести интерферирующее воздействие, например, вызвать у них кратковременный приступ судорог электроконвульсивным шоком, то, если эти судороги наносятся сразу после того, как животное училось чем-то, оно не способно запомнить на долгое время эту информацию. У него есть кратковременная память, а долговременная память не формируется. То есть, это вот переход, который был открыт Эббингаузом, он есть у животных, и он точно также подвержен воздействию на нервную активность.

А оказалось, что так же, как в опытах Мюллера и Пильцекера, если этот электроконвульсивный шок отодвинуть, например, на 15 минут после сеанса обучения, то он никак не влияет на формирующуюся память. Значит, эти процессы универсальны. И действительно, последующие 20-30 лет оказалось, что их можно наблюдать у всех животных, способных к обучению, начиная от приматов, и кончая беспозвоночными, например, виноградными улитками. Вы можете вызывать у виноградной улитки судорожную активность, введя специальные препараты, вызывающие судороги, и она запомнит то, чему она училась, если это судороги, которые наносятся сразу после обучения. Значит, это универсальная биология процесса.

Но дальше возник вопрос, если мы теперь обладаем инструментарием для моделирования памяти и ее консолидации в мозге животных, мы можем задать и следующий вопрос – каковы механизмы, что происходит в клетках мозга? Это была эпоха расцвета молекулярной биологии. И сразу несколько групп ученых подумал, что, то, что хранится в течение длительного времени как информация в клетках организма, должно быть связано с генетической информацией, потому что белки разрушаются очень быстро, значит, должны произойти какие-то изменения в активности геномов, которые связаны с ДНК нервных клеток и изменениями ее свойств.

И возникла гипотеза, что, может быть, формирование долговременной памяти, смотрите какой скачок от души, — это изменение в свойствах активности генома нервных клеток, изменение в свойствах работы и их ДНК.

Чтобы проверить это, шведский ученый Хольгер Хиден делал разнообразные и очень красивые эксперименты. Например, он учил крыс добираться до кормушки с едой по… балансируя по тонкой натянутой наклонной струне. И животные учились новому навыку, вестибулярному навыку, и моторному навыку ходить по этой струне. Или, например, доставать пищу лапой, которые животные не предпочитают доставать ее из цилиндра, а среди крыс есть так же, как среди нас, левши и правши, он смотрел какое это животное, а потом давал ему возможность достать только противоположной лапой. Опять животные учились.

Оказалось, что, когда животные учатся этим и другим задачам, в их мозге происходит всплеск экспрессии генов, происходит увеличение синтеза РНК и увеличение синтеза белка. И это происходит как раз в эту фазу сразу после приобретения новой информации и перехода ее в долговременную форму, которую открыл Эббингауз. То есть, здесь опять все совпадает.

Но в биологических исследованиях, как правило, вслед за чисто коррелятивными исследованиями, особенно, если это касается животных, где можно манипулировать биологическими процессами, следуют и причинные вопросы. Мало того, что одновременно с обучением увеличивается синтез РНК и белка, то есть, экспрессируются гены, важно задать – а нужны ли они для того, чтобы запомнилась новая информация? Это может быть случайно сопутствие одного процесса другому. И чтобы проверить это, очень быстро несколько групп исследователей, например, группа Флекснера в США, начали вводить животным, когда они учатся новой задаче, ингибитора синтеза белка или РНК, то есть, препятствовать этой волне, всплеску, экспрессии генов, сопровождающих процесс научения.

Оказалось, что животные при этом нормально учатся, у них не нарушаются никакие старые формы поведения уже выработанные, более того, они способны в течение короткого времени помнить то, чему научились. Но, как только дело доходит до длинной фазы перехода в долговременную память и хранения этой памяти в течение недели, месяцев, эта память у животных отсутствует. То есть, вмешательство в работу генома и препятствие синтезу молекул РНК и белков в моменты обучения не дает сформироваться долговременной памяти. Значит, долговременная память, действительно, зависит от работы генома нервных клеток. И очень важно понять тогда вопросы, что за гены включаются в нервных клетках, что запускает их в момент обучения, и каковы их функции? Каким образом это переходит в то, что мы способны ощущать сами как субъективный … наш субъективный опыт?

В середине 80-х (70-х) годов две группы исследователей, одна в Советском Союзе, а вторая в Германии и в Польше, одновременно обнаружили такие гены. В группе, работавшей у нас в стране, мы направлено искали эти гены вместе с сотрудниками в Институте молекулярной биологии и молекулярной генетики. И нам помогла их найти гипотеза, что процессы, происходящие в мозге в момент формирования нового опыта, может быть, вовлекают те же клеточные принципы и механизмы, которые вовлекаются в процессы развития нервной системы, установление связей и дифференцировкой клеток?

И, обнаружив работу одного из генов–регуляторов развития кодирующего белок, управляющий работой многих, многих других генов, так называемый «транскрипционный фактор», мы решили посмотреть,здесь эта экспрессия показана красным, видите, да, красным цветом в коре головного мозга у 19-дневного эмбриона крысы. Мы решили посмотреть, а что происходит во взрослом мозге с работой этого гена?

Оказалось, что животные, которые находятся в условиях знакомой им обстановке и не учатся ничему новому, практически не экспрессируют этот ген, нервные клетки не содержат продуктов работы этого гена. Но, как только животное попадает в ситуацию, которая для него нова и она ее запоминает, в мозге происходит взрыв экспрессии этого гена.

Причем, как вы видите, по полям этой экспрессии, эта экспрессия касается огромного количества нервных клеток. Расположен в самых разных структурах мозга. Как потом оказалось, места экспрессии очень сильно зависят от того, какой субъективный индивидуальный опыт приобретается в данный момент мозгом. Для одних форм памяти – это одни зоны экспрессии, для других – другие. Мы вернемся еще к этому, когда будем говорить о картирование памяти.

А пока посмотрим на упрощенную схему того, что происходит в клетках нервной системы, когда возникает обучение? Стимулы, транслируясь в те или иные химически молекулы, действующие на мембрану нейрона, нервной клетки, передают сигналы через цитоплазму клетки к ядру. И здесь и активируются гены, которые я показал, один из них на предыдущем слайде, это транскрипционный фактор c-Fos.

Транскрипционные факторы отличаются тем, что синтезируемые ими белки – это появление белков в цитоплазме – не остаются в цитоплазме, а возвращаются назад в ядро. И в случае с генами семейств c-Fos и c-Jun, второй ген, который, оказалось, тоже активируется в ряде ситуации обучения, они образуют сложные комплексы белков друг с другом, способные влиять на огромное количество участков в геноме нервной клетки. Эти участки – это регуляторные участки других генов. Иначе говоря, сигнал, приходящий к нервной клетке при обучении, через многие, многие входы, переходит в узкое место активации нескольких транскрипционных факторов, а дальше их эффект разветвляется и изменяет программу работу целой клетки, потому что некоторые из этих генов – мишеней, регулируемых транскрипционными факторами, увеличивают свою активность, а некоторые – подавляются. Если хотите, клетка перестраивает программу своей работы под влиянием ситуации обучения.

Чем эта схема оказалась интересной? Во-первых, оказалось, что формирование памяти проходит как бы две фазы синтеза белка и экспрессии генов. Первая – это сразу после обучения, тогда, когда это видел Эббингауз, и тогда активируются так называемые ранние гены. Но, вслед за этим существует вторая волна активации после действия продуктов ранних генов на геном. Так называемые поздние гены.

Второе – поскольку структура ранних генов, их регуляторные участки, а также их способность действовать на определенные регуляторные участки других генов были хорошо изучены в клеточной биологии, появилась возможность расшифровать и другие два вопроса. Значит, мы, первое — узнали какие это гены? Второе – двигаясь назад от таких генов, вот здесь показан, например, один из ранних генов. Вы видите, что на регуляторном участке этого гена, представленном вот этой последовательностью, группируется масса транскрипционных факторов, среди которых есть фос и джуна, о которых я говорил, есть гены, имеющие другие название, есть транскрипционный фактор, имеющие другие названия, например, креп.

И оказалось, что, двигаясь назад по этой цепочке, задавая вопрос при обучении, активировались ранние гены, что их вызвало, какие сигналы сели на их регуляторные участки, какие сигналы вызвали связывание регуляторов с их регуляторными участками, какие из вторичных посредников клетки передали эти сигналы, и, наконец, какие рецепторы были активированы?

Удалось расшифровать последовательность сигналов от ядра, от мембраны к геному нервной клетки, работающих при обучении. И один из пионеров в этих исследованиях, американский нейробиолог Эрик Кендел из Колумбийского университета получил Нобелевскую премию за расшифровку этого каскада.

В этих исследованиях есть масса интересных следствий. Они оказались неожиданными. Например, оказалось, что дефекты в некоторых из этих элементов каскада не только вызывают нарушение обучения у взрослых животных, но и являются причиной заболеваний, связанных с нарушениями умственного развития у детей. Это удивительная вещь. Потому что такие заболевания, например, синдром Рубинштейна –Тэйби считались в течение долгого времени врожденными заболеваниями. Теперь мы поняли, что в действительности это нарушения, которые ведут к недостаткам возможности раннего обучения, формирование памяти у ребенка в первые недели, месяцы их жизни. И именно из-за этого нарушается умственное развитие.

И следствия для этого тоже разные. Одно дело, когда по медицинским причинам этот ребенок может получать те или иные препараты, улучшающие эти способности обучения; другое дело, было считать, что это врожденное заболевание, которое не подвергается терапии после рождения.

Другая неожиданная вещь, которая постепенно стала выясняться в расшифровке этих каскадов, что они жутко, действительно, напоминают по своим составным частям те клеточные процессы, которые происходят во время дифференцировки нервных клеток в развивающемся мозге. Они используют часто одни и те же молекулы сигнальные, причем, некоторые из этих молекул вначале были открыты при развитии, а потом, оказалось, как, например, различные нейротрофины, что они являются сигнальными молекулами и в моменты обучения.

А другие молекулы, например, глютамат- и NMDA-рецепторы, которые принимают его, вначале исследовались в связи с обучением, а потом оказалось, что они играют критическую роль и во время, зависимое от активности стадии установления нервных связей в развитии. Точно также касалось и различных вторичных мессенджеров протеинкиназ, и, наконец, транскрипционных факторов и генов-мишеней.

В результате мы получаем картину, что, когда мы смотрим на развитие и обучение, мы видим очень сходные молекулярные каскады. Это означает, что каждый эпизод развития очень напоминает эпизод обучения, или, что во взрослом мозге процессы развития никогда не заканчиваются. Каждый акт познания для нас – это маленький эпизод морфогенеза и следующего развития. Но обратите внимание –какой? — под когнитивным контролем, в отличие от того, что происходит во время эмбрионального развития. Иначе говоря, наши знания, наша психика, наш разум, определяя процессы приобретения новых знаний, являются также триггерами и для дифференцировки клеток, хранящих эти знания.

И, наконец, еще одно важное следствие. То, что память имеет молекулярные механизмы и многие из них связаны с процессами, происходящими не между клетками, а внутри клетки, когда сигнал передается от мембраны геному, означает, что кроме психотропных препаратов, которые появились в психиатрии в 50-х годах и способны действовать на передачу сигналов между нервными клетками, которые способны регулировать наше восприятие, эмоции, боль, поведение и так далее.

А в перспективе у нас появится, и начинают появляться мнемотропные препараты, которые обладают совершенно другим эффектом. Поскольку они действуют и должны будут действовать на процессы, происходящие уже после переработки информации в нервных сетях, связанных только с их хранением, мы не заметим их эффектов на наше поведение, они не будут иметь побочных эффектов возбуждения, торможения, изменения процессов нашего восприятия или внимания. Но они способны будут модулировать процессы запоминания информации на долгое время. И такие препараты сейчас ищутся.

Таким образом, вопросы молекулярной биологии памяти, возникшие из исследований биологических основ хранении информации в мозге, привели к следующим решениям: что формирование долговременной памяти основано на активации универсального каскада ранних и поздних генов, ведущей к перестройке обучающегося нейрона, его молекулярного, белкового фенотипа.

Мы также знаем из исследований последних лет, то, о чем я не говорил пока, что хранение памяти на протяжении жизни осуществляется за счет эпигенетических перестроек, то есть, изменяется состояние хроматина нервных клеток. Изменяется состояние эпигенетической памяти у нейрона, состояние дифференцировки клетки, хранящееся в результате обучения возможно также долго, как состояние дифференцировки клетки, сохраняющее ее свойства нервной клетки определенного типа в момент развития.

Давайте, мы закончим вот этот фрагмент. По-моему, я говорю 42 минуты, да? У нас есть некоторое время на вопросы?

Вопрос: (плохо слышно) У меня такой вопрос. … теория, ..бессознательно быть…

Ответ: Может. Я расскажу об этом во второй части.

Вопрос: Спасибо. И тогда второй вопрос. Насколько конечная наша память…

Ответ: Никакие из экспериментальных попыток определить объем и пределы памяти не приводили к лимитам. Например, в одном из экспериментов, проведенным канадским психологом Стенлингом, исследовалось, сколько лиц способны запомнить испытуемые студенты. И им показывали разные фотографии с интервалом коротким, а потом, через некоторые время, показывая две фотографии, просили узнать, какая из них показывалась, а какая является новой? Оказалось, что первое, что точность воспроизведения высока и не зависит от объема, то есть, все было ограничено только утомляемостью студентов. До 12 тысяч фотографий, например, воспроизводилось с точностью до 80 процентов.

Обратите внимание, здесь, конечно, важно, что делалось, здесь была память на узнавание, а не активное воспроизведение. Но, тем не менее, это другая форма памяти.

Вопрос: Добрый день!

Ответ: Добрый день.

Вопрос: Студентка РГГУ, если вы позволите, я хотела бы задать следующий вопрос. Вот в вводной части лекции вы говорили о такой новой проблеме, как наука о мозге и наука о разуме. Это, безусловно, связано и с той проблематикой, которой вы занимаетесь, это искусственный интеллект. Вот со временем, мне кажется, интеллектуальные формы жизни должна стать адаптивными революционными развивающимися, что, в общем-то, может привести, выйти из-под контроля. Вот насколько сейчас данная проблематика изучается и когда она может стать актуальной? И второе, что, создавая вот такие новые формы интеллектуальной жизни, как вам кажется, мы будем готовы к развитию таких событий, когда эти новые интеллектуальные формы жизни станут, ну, возможно, таким же существами, как сейчас являемся мы, ведь когда-то это тоже не за горами и возможен такой вариант событий. Спасибо.

Ответ: Я боюсь ошибиться в прогнозе. Вообще, опыт последних лет показывает, что успехи, которые делаются в этой области, в области исследования мозга и разума, кстати, не в такой же степени в области искусственного интеллекта, там прогресс медленнее, но, тем не менее, настолько удивительны и непредсказуемы, что любые прогнозы могут оказаться ошибкой уже через несколько лет. Но мой прогноз будет следующим.

Мы пока не имеем существ, способных в качестве искусственного интеллекта к – первое: решению тех же задач, которые решает человек, даже приблизительно, особенно в условиях меняющихся адаптивных ситуаций.

Специалисты из ДАРПА, оборонного агентства США, пару лет назад начали новую программу искусственного интеллекта, сказав, что они перестают финансировать все исследования по классическим схемам искусственного интеллекта, потому что они посчитали, что в условиях решения адаптивных задач биологический мозг превосходит по эффективности лучший из существующих форм искусственного интеллекта, построенных на текущие архитектуры, в разы от миллиона до миллиарда раз. Представляете разница?! Это не вопрос скорости операций. Это вопрос способности к генерации новых решений в динамически меняющейся среде.

Когда будет преодолен этот барьер в миллионы и миллиард раз? Ну, может быть, это обозримое будущее, по крайней мере, несколько групп университетов и компания IBM начали исследование новой архитектуры, где элементы ее одновременно и учатся и способны вычислять, то есть, похоже на то, что делает реально нервная система, где нет отдельного хранилища памяти, а отдельно – информационных элементов.

Я думаю, что у искусственного интеллекта есть еще другая сложная проблема. Что до сих пор все системы, которые мы создаем, начальное условие их поведения вкладываются в них творцом человека, то есть, она не способна сама генерировать эти начальные условия. У нее не было эволюции. Но и это преодолевается в моделях искусственной жизни, эволюционной работике, где начинают с очень простых нервных сетей. Затем дают им развиваться в окружающей среде, решая постепенно адаптивные задачи. И даже сами адаптивные задачи возникают для этого интеллекта новые, которых не было заложено создателями.

Так что, может быть, в ближайшие 10-15 лет мы увидим существенный прогресс в этих областях. Достигнут ли они субъективного опыта и психики человека – это очень сложный вопрос, думаю, что нет.

Вопрос: ….Марина… гимназия 1529. если на сегодняшний день нам известны механизмы обучения человека, то как вы расцениваете возможность моментального изучения языков, моментального приобретения навыков человеком, которые… многие контакты?

Ответ: Из того, что мы знаем про обучение у человека и животных, это процесс, который состоит из отдельных, повторяющихся актов. В каждом из них приобретается некая единица нового знания. Для того, чтобы освоить язык, мы не можем это сделать одним скачком. Для этого нужны тысячи, или десятки тысяч повторений у ребенка, который генерирует новые гипотезы относительно окружающего мира и звуков, которые он воспринимает, пробует их, отбрасывает их, утверждается, строит схему.

Перенести результаты такого обучения, которое, кстати, исторично в том смысле, что у каждого ребенка оно проходит по-своему, механически в голову другого человека или даже в искусственный интеллект, это невозможная сегодня задача. Одномоментного обучения новому языку невозможно так же, как одномоментное приобретение опыта пяти лет жизни ребенка.

Вопрос: Спасибо.

Ответ: Пожалуйста. Перерыв? Как мы думаем, перерыв или есть еще вопросы?

Вопрос: Новиков Дмитрий, гимназия 1529, я хотел спросить, я слышал, есть такие препараты, способствующие улучшению развитию памяти, есть результаты, и какие процессы в мозге они купируют?

Ответ: Такие препараты существуют. Они известны давно. Некоторые из них – это средства, известные веками, это, как правило, растительные препараты. Другие из них, это химические препараты. Например, препараты из группы амфетаминового ряда, регулирующего процессы передачи сигналов в нервных клетках, использовались для стимуляции способностей к запоминанию, вниманию, обучению еще во время Второй мировой войны, причем, обеими сторонами, и немецкой и английской, и американкой.

В 50-е годы был бум их попыток использования их, например, и студентами для улучшения способностей запоминать большие объемы информации во время подготовки к экзаменам. И сейчас более мягкие версии этих препаратов, таких как риталин, например, ходят по…, по крайней мере, по американским университетам, и часть студентов пользуются ими. Но стало ясно, что они имеют побочные эффекты.

Что, во-первых, они не влияют специально на память, они влияют, скорее, на процессы, связанные вот… они являются психотропными, а не мнемотропными, они влияют на процессы, связанные с восприятием, вниманием, концентрацией, так далее.

Второе. К ним может вырабатываться зависимость, это очень неприятно. Чем в более раннем возрасте это происходит, тем более опасным это может оказаться. Сейчас создаются препараты, которые способны действовать на сигналы, передающиеся уже внутри нервной клетки. Часть из этих каскадов, которые были открыты, они запатентованы. Ищутся препараты, способные избирательно модулировать эти свойства памяти, без влияния на психотропную составляющую, то есть, на психогенную составляющую.

Рынок таких веществ пока очень мал, они создаются в основном для лечения все-таки нарушения памяти у пожилых людей, особенно при нейродегенеративных заболеваниях, но некоторые из них, может быть, будут использоваться в будущем и как когнитивные стимуляторы. По крайней мере, в последние годы ведется активная дискуссия об использовании таких когнитропных или мнемотропных препаратов здоровыми людьми. Об ответственности использования есть специальные этические комиссии, которые обсуждают, допустимо ли это или нет? Но тенденция тут явная. Такие витамины памяти.

Хорошо. Да, давайте.

На прощание мне хотелось сказать следующее, что вот, видите, вопросы, которые были заданы, они касались тех или иных технологий, то есть, возможности управления памятью, возможности получить сразу большой объем информации, возможности перенести и освоить язык за короткое время, возможности получить безопасные и эффективные таблетки улучшении памяти. Это все так. Но, поскольку мы находимся на канале «Культура», мне хочется сказать о другой стороне, что познания нашей памяти – это познание нами самих себя. Потому что, как сказал Габриэль Гарсия Маркес: «Жизнь – это не те дни, которые прожиты, а те, которые запомнены». И изучение механизмов работы мозга и памяти — это в значительной степени для ученых, исследующих этот вопрос, не проблема создания новых технологий, хотя это важно, а проблема следования древнему оракулу, инструктировавшему – познай самого себя!

Давайте будем обращать внимание и на это. Спасибо большое.

После перерыва вторая лекция

Последние исследования физиологии памяти, механизмов хранения, извлечения и воспроизведения информации. Способность к запоминанию, зависимость процессов памяти от предлагаемых обстоятельств.

Стенограмма 2-й лекции Константина Владимировича Анохина, вышедшей в эфир на телеканале «Культура» в рамках проекта «ACADEMIA»:

Я бы хотел сейчас продолжить рассказ о памяти, но обратиться к другой стороне памяти. Ведь память – это не свойство молекул, или даже не свойство контактов между нервными клетками, изменяющимися в результате опыта. Да, она зависит от работы генома нервных клеток, как мы видели в прошлый раз, но память, как и другие психологические функции мозга, — это производное от одновременной работы миллионов и миллионов нервных клеток. И чтобы понять, что такое память, мы должны понять, как устроены эти системы нервных клеток, хранящие следы памяти.
Вот интересно, что изучение молекулярной биологии памяти неожиданным образом пролило свет и на проблемы того, как память работает в целом мозге. Потому что достаточно давно известно, что человеческая память делится на несколько разных систем. Некоторые из форм памяти сильно зависят от сознания, некоторые из них являются бессознательными, и мы автоматически воспроизводим эти навыки, например, навыки, приобретаемые в результате длительного обучения. Среди памяти, которая доступна нашему сознанию, мы можем выделять память, связанную с событиями и фактами, то, что мы произвольно извлекаем из нашего прошлого опыта, и это получило название семантической памяти. Мы можем вспоминать целые эпизоды прошедшего в их последовательности и развертывании – это получило название эпизодической памяти.
И исследованиями клиницистов было обнаружено, что у человека при тех или иных повреждениях головного мозга могут страдать одни, но не другие формы памяти. Например, при повреждении структуры мозга, которая называется гиппокамп, нарисован вот здесь, у человека нарушается возможность запоминать новую информацию, нарушается память о нескольких годах, предшествующих этому повреждению, но удивительным образом сохраняются многие способности вырабатывать навыки. И тогда у таких пациентов, несколько из которых подробно исследовали нейропсихологи и психологи, возникает странное состояние, когда они учатся каким-то вещам, но абсолютно не помнят, что они приобретали эти навыки.
Например, наш знаменитый психиатр и один из пионеров изучения памяти Сергей Сергеевич Корсаков писал, описывания синдромы нарушения памяти у человека, что эти пациенты, кажется, ничего не помнят в таком состоянии, но, находясь в клинике, Корсаковской клинике, клиника, которая носит его имя, они за время нахождения изучают расположение комнат, месторасположение столовой и способны находить свой путь в этих, довольно запутанных лабиринтах коридоров клиники. Точно так же пациенты клиники с повреждением гиппокампа, не помня, что они учились чему-то, способны решать сложные лабиринтные задачи перехода из одной точки в лабиринте в другую, или чтение слов задом наперед, или решение головоломок, отрицая, что они когда-либо это видели.
Некоторые формы памяти, такие как прайминг, не осознают, но, тем не менее, способны влиять на наше последующее восприятие и поведение. Прайминг – это свойство нервной системы запоминать некие сенсорные характеристики окружающего мира или воздействие на мозг, реагируя на них неосознанно, как на знакомое, по сравнению с тем, что не было. Например, если человеку читают слова, заканчивающиеся разным образом, а потом, через некоторое время дают посмотреть на слово, начинающееся и имеющее несколько вариантов окончания, то он, скорее всего, закончит его тем образом, которым он видел слово в первом тесте.
Интересно, что прайминг, например, не нарушается при повреждении гиппокампа, и пациент не помнит, что ему показывали эти слова, но заканчивает их ровно так, как нужно. Есть даже некоторые исследования, показывающие, что при наркозе во время операции, если человеку читать этот лист, то, когда он пробуждается от наркоза, он будет заканчивать слова неоднозначного окончания тем образом, которым он слышал слова под наркозом.
Как устроены все эти системы памяти в мозге, можем ли мы увидеть следы работы памяти в мозге, можем ли увидеть следы самой памяти в мозге? Оказалось, что те методы, которые были использованы для изучения памяти у животных, для изучения молекулярной биологии памяти, подходят для того, чтобы визуализировать след памяти в целом мозге. Потому что работа генов в момент запоминания происходит только в отдельных клетках. Вот желтым здесь показаны нервные импульсы, бегающие по многим сетям нейрона, а красным – активация гена в одном из нейронов огромной сети, которая, на самом деле, продолжается далеко-далеко и складирует миллионы клеток, связанным с запоминанием новой информации.
Значит, если бы мы могли увидеть все клетки, которые включили этот ген, когда животное сталкивалось с чем-то новым, например, мышь-девушка увидела понравившегося ей мыша-юношу. И это целый комплекс ощущений, который связан для мышей в значительной степени с обонянием, зрительными и другими вещами, можем мы увидеть свет этой памяти? Оказывается, можем.
И у нейрофизиологов давно существовала мечта, вот, если бы сделать мозг прозрачным и смотреть за работой нервных клеток в этом мозге, как за работой загорающихся лампочек в большой электрической сети, используя генные зонды, выявляющие активацию генов, включающихся в нейронах во время формирования памяти, мы, по сути дела, выявляем такую электрическую сеть. Осталось только ее визуализовать. И методы физики и оптики в исследованиях мозга позволяют сделать и это.
Вот на этой картинке вы видите гиппокамп мышки, которая попала в новую для нее ситуацию и запомнила ее. В это время в тех нейронах, которые вовлекались в формирование такого следа, произошла активация генома, и включились генно-транскрипционные факторы, о которых я рассказывал в прошлый раз.
Мы с помощью разных методов, антител к этим белкам, или других молекулярных зондов можем увидеть эти отдельные нервные клетки в объеме всего гиппокампа, структура, которая, как мы знаем из наблюдений с повреждением памяти у человека, критична для формирования следа памяти. Можем начать разглядывать эту огромную сесть нервных клеток, и исследовать закономерности ее формирования при самых разных задачах обучения, памяти, воспоминания, задавая вопросы, что происходит в мозге, когда формируется память одной формы или другой формы? Что происходит, когда память извлекается в работающем мозге? Влияет ли это каким-то образом на свойства старой памяти?
Эти исследования дали несколько удивительных результатов. Одно из неожиданных открытий заключалось в том, что гены, которые, казалось, нужны для того, чтобы запоминать новую информацию в момент обучения – помните первую фазу перехода из кратковременной в долговременную память и блокаду синтеза белка, который мешает этому?- казалось, что после того, как память перешла в долговременное хранилище, и произошел всплеск работы генома, она фиксирована. И последующие воздействия на мозг не способны каким-то образом изменить или стереть, или повлиять на старую память, она стабильно хранится теперь в сетях дифференцировавшихся нейронов.
Однако, когда мы и другие авторы стали исследовать, а что же происходит в мозге в момент извлечения такой старой памяти, то неожиданным фактом оказалось, что в мозге в момент извлечения старой памяти активируется зачем-то очень похожие молекулярные механизмы, похожие на те, которые активируются в момент запоминания.
Значит, на что это похоже? Если бы память была похожа на компьютерную память, на некий CD-rom, на который мы записываем информацию, то запись информации требует интеграции ее в оптическую среду диска – это консолидация. После этого информация хранится на этом диске и не подвержена каким-то влияниям, интерферирующим с моментом записи, то есть, диск стабилен, и вы можете извлекать эту информацию по мере необходимости.
Представьте себе ситуацию, каждый раз, когда вы считываете информацию с этого CD-rom`а, она у вас меняется по своему содержанию, и там происходят процессы перезаписи, в общем, не зависящие от интересующего вас считывания. Вот обнаружение активации работы генов в мозге у животных в момент извлечения старой давно сформированной памяти очень похоже на эту необычную ситуацию. Получается, что каждый раз, когда память извлекается или в значительном числе случаев, когда память извлекается, на нашем диске происходят какие-то изменения, там происходит некая перезапись.
Каково значение этой перезаписи? Мы можем использовать тот же самый прием, который использовали исследователи 60-х годов, мы можем попробовать не дать вновь синтезирующимся белкам – продуктам работы тех или иных генов – образоваться, потому что будем вводить блокаторы синтеза белка, и посмотрим, а что происходит со старой памятью? Предсказания, которые, прежде всего, приходят в голову, что ничего не должно произойти. Может быть, эти изменения в работе нервных клеток, которые мы видим у животного, извлекающего память, связано с тем, что оно запоминает что-то дополнительно, поверх старой памяти, самое вероятно.
Но, посмотрим, что происходит в эксперименте? Вот здесь показаны два эксперимента. В одном цыплята учились задаче, где им давалась бусинка, они с радостью клюют эту бусинку как потенциально съедобный предмет, она горькая, она покрыта веществом типа хинина. Они отплевываются от нее и никогда больше не хотят ее клевать, если им давать эту бусинку. Они прекрасно ее помнят, и отличают от других бусинок, которые они с радостью клюют.
А дальше мы делаем следующее. Мы через некоторое время, когда память уже консолидировалась, когда она перешла в прочное хранение, вновь возвращаемся к этой ситуации, и в этот раз только показываем бусинку ту самую, которая была в момент обучения. Они ее, естественно, не клюют. Почему? Потому что они ее вспоминают, и с негодованием отвергают, то есть, они извлекают память. Никакого нового обучения и нового клевка здесь не происходит. Но извлечение происходит. И этот момент, или немножко раньше мы вводим цыплятам вещества, которые нарушают возможность синтезироваться новым белкам. Так что, если происходил всплеск экспрессии генов, такой, какой вы видели на предыдущем слайде, мы его снимем. И нас интересует, каковы будут последствия?
Оказывается, что, если мы протестируем этих животных через некоторое время, через сутки, например, то цыплята, которые получали только инъекцию ингибитора синтеза белка, но не извлекали память, — это одна контрольная группа, они все прекрасно помнят. У них уровень воспоминания на уровне 90 процентов, то есть, действительно, память, кажется, консолидировалась. Цыплята, которые получали только бусинку, но не получали блокаторы синтеза белка, также все прекрасно помнят, это естественно, извлечение памяти никак не должно повлиять. Если вы считываете CD-rom, то это никак не должно повлиять, кажется, на то, что там хранится.
Но, вот ситуация совмещения. Цыпленок вспоминает то, что было связано с этой бусинкой на фоне невозможности заново синтезировать белки. Посмотрите, что происходит с памятью? Это комбинация этой группы и этой группы, они вместе приводят к тому, что животное теряет память, которая, казалось, давно сформировалась. И то же самое происходит в других моделях. Сейчас таких исследований в мире очень много. И они показывают, что это универсальный феномен, он существует у нас с вами. Иначе говоря, если вы вспомните что-то старое и в этот момент будет интерференция с процессом запоминания, — то это шанс вам забыть это старое. Это совершенно нетривиальная вещь, совершенно не интуитивная.
Почему мы должны забывать старое, или почему, собственно говоря, каждое новое воспоминание должны перезаписывать, то, что происходит и заменять старый след памяти? Специалисты в изучении памяти сейчас работают над изучением того, что это за механизм, но ясно, что он имеет фундаментальное значение для памяти, которая была открыта с помощью этих методов. Открыта кем, нейробиологами.
На самом деле, это показывает, как часто исследователи одного и того же предмета не знают или не обращают внимания на то, что делается в изучении этого предмета другими специалистами. На самом деле, психологи, изучающие свойства памяти, знали о чем-то подобном, пускай не в терминах «нервных механизмов», очень давно.
Выдающийся английский психолог Фредерик Бартлетт, работавший в Кембридже в начале 20-го века, делал опыты по изучению как раз процессов воспоминания. Он, например, показывал своим испытуемым разные картинки и просил их через интервалы времени, недели, например, нарисовать то, что они помнили в прошлый раз, и аккумулировал такие картинки, одну, вторую, третью, четвертую… или давал сложную историю, которая была трудно интерпретируемая, и просил ее пересказывать с интервалом в неделю.
Оказалось, что в результате таких перерисовок или рассказов, история в голове испытуемого или изображение в голове испытуемого с каждым следующим извлечением может радикально трансформироваться, заменяя предыдущую. И, как в случае с этими изображениями, так и в случае с такими историями, испытуемый совершенно уверен, что историю, которую он рассказывает или картинку, которую он рисует, и была та история или то изображение, которую он видел в первый раз. Бартлетт писал, завершая свою книгу, что я настаивал на протяжении всей это книги на том, что описание воспоминаний как фиксированных и безжизненных, есть всего лишь ошибочная фантазия. И, как видите, он дальше пишет, что воспоминание не является повторным возбуждением неисчислимых фиксированных фрагментов следов, оно всегда творческое воссоздание или конструирование, складывающееся из нашего отношения ко всей активной массе реакции и опыта прошлого.
Исследования нейробиологии последних лет показывают, что это не только каждое следующее извлечение памяти, это активная реконструкция версий того, что было, но и перезапись новой версии, которая может подавлять или угашать предыдущую. Процесс, который получил название «реконсолидация памяти».
Второе неожиданное открытие. Подумайте об огромной функциональной системе из клеток, которая стоит за каждым следом нашей памяти. Я вам показывал отпечаток такого следа только в одной структуре мозга – гиппокампе у мыши. На самом деле, в такой след вовлечены десятки других структур, которые образуют единое целое, и количество нейронов может достигать десятков и сотни миллионов.
А теперь попробуйте представить себе, а как можно разрушить такую память? Как можно эту огромную сеть элиминировать из нашего опыта? Это очень сложная вообще задача. Вы не можете уничтожить все нейроны один за одним, потому что они распределены среди других нейронов, нужно будет уничтожить весь мозг. Этот вопрос довольно давно стоял опять-таки среди психологов.
И, когда двое из известных американских психологов сделали опрос ведущих специалистов в области исследования памяти, задав им вопрос, как они считают, нарушения памяти связаны с тем, что она теряется в мозге или тс тем, что теряется способность просто доступа к этой памяти? То большинство из специалистов ответили вторым образом. Действительно, кажется, что самым вероятным при нашем взгляде на таких системные механизмы памяти, представить себе, что нарушение памяти – это то, что мы не можем собрать и систему этих дифференцировавшихся нейронов назад вместе. Возможно, как это бывает с возрастом, я нейродегенеративными заболеваниями, какие-то из звеньев небольшое число нейронов, составляющих эту систему, начинают терять связи. Но не все же сразу, очень небольшой процент. И это приводит нас к необычной идее, что, может быть, даже в случае потери памяти значительная часть ее следа, может быть, 90, может быть, 95, может быть, 99 процентов остается в нашем мозге. И, может быть, мы можем увидеть следы таких неокончательно исчезнувших воспоминаний, даже, если они не извлекаются на уровень осознаний поведения.
Вот, мы, собственно говоря, сделали один из таких экспериментов, пытаясь задать мозгу этот вопрос с помощью методов выявления нейронов, вовлекающихся в момент извлечения в нервные сети воспоминаний. Мы обучали животных определенной задаче условного рефлекса, а потом нарушали эту память введением блокаторов синтеза белка. При тестировании у этих животных они вели себя таким же образом, как и обычное животное – они попадали в эту ситуацию, не демонстрировали никакого знакомства с ней.
Но нас интересовало, а как реагирует мозг на нее, и нет ли признаков того, что в мозге эта ситуация, может быть, знакома, хотя поведенчески и субъективно животное не распознает ее. Мы посмотрели реакцию мозга на эту ситуацию у обученных и необученных животных. Оказалось, что у обученных животных область мозга, которая была связана с эмоциональной реакцией и исполнительными действиями, эта ситуация, в которую мы помещали животных, была для них опасна в действительности. Они не помнили это.
Но в прошлый раз, когда их учили, они попадали в эту ситуацию, им давали короткий удар тока по лапам, не очень сильный, но неприятный. И животные, которые попадают в такую ситуацию единожды, при повторном помещении в эту ситуацию начинают бояться и даже, если ничего не следуют из окружающих воздействий, они начинают замирать и затаиваться – типичное поведение грызунов в ситуации опасности, которую нельзя избежать.
И определяется это активностью, это поведение, в частности, активностью структуры, которая называется «миндальная», которая связана, с одной стороны, с эмоциональной оценкой ситуации, с другой стороны, — с исполнительными механизмами поведения затаивания. Так оказалось, что у животных, у которых было нормально все с памятью, наблюдается очень большая активность миндалин, когда они попадают в эту ситуацию. Они помнят ее этой миндалиной. У животных, у которых мы стирали память, как вы видите, миндалины не активируются. Они, действительно, ходят по этой камере, они ее не боятся, принюхиваются и не замирают. И активности этих частей мозга, связанных с таким поведением, нет.
Однако, когда мы посмотрели на другую структуру мозга, гиппокамп, о которой я уже говорил, и которая у человека и у животных связана с сохранением следов памяти, поддержанием их в течение некоторого времени, оказалось, что в разных областях гиппокампа животные, попадавшие в эту ситуацию и помнившие ее, и животные, у которых мы стерли память, демонстрировали одинаковую активацию гиппокампа. Иначе говоря, вот эти животные с зелеными столбиками, они не боятся этой ситуации, кажется, не узнают ее. Но мы видим по активности мозга объективной активности мозга, что мозг их узнает эту ситуацию. Только, смотрите, он не связан в единую интеграцию поведения с областями, которые отвечают за страх. Эти области не активируются. Вместе все из функциональной системы, которая бы извлеклась и заставила этого животного затаиться и продемонстрировать все поведенческие признаки страха и памяти, мы не наблюдаем.
Но память, получается, части этот мозг хранит? А раз так, то, может быть, мы можем ее восстановить? Вернуть назад утраченную память. И мы показали, что в принципе в эксперименте возможно и такое. Вот этим животным, это цыплята, вот в этой же задаче, но им делалось в тех экспериментах другое воздействие. Они получали блокатор синтеза белка в тот момент, когда учились. И поэтому, когда их тестировали через некоторое время, то животные, которые нас интересуют, животные вот этой вот желтой, оранжевой группы, вот это серая и синяя – это контрольные животные, — они не клюют, они не избегают бусинки, в отличие от цыплят, которых вы видели на одном из предыдущих слайдов, они ее активно клюют с радостью, потому что они забыли, что она была горькая и опасная.
Но дальше мы сделали следующую вещь. Мы смочили клюв этих цыплят горьким веществом, хинином, который они испытывали, этот вкус в момент клевка старой бусинки, нового обучения при этом не было. Но, если хотите, был некий компонент старого опыта, который вызывает сильную эмоциональную реакцию. А дальше у разных групп цыплят начали смотреть, что происходит через разные интервалы времени после такого напоминающего воздействия? Оказалось, что, если посмотреть через полчаса, то цыплята не помнят ничего. Если посмотреть через три часа, то они не помнят, если посмотреть через пять часов, то они не помнят. Но в интервале между 5 и 7-ю часами память медленно возвращается к ним.
Обратите внимание, что это не психологическое воспоминание чего-то забытого, типа – ага!.. вот вертелось на языке, но не мог вспомнить, и вот сейчас это пришло… Это медленный процесс. Я могу сказать, что мы проводили такие опыты с самыми разными нарушениями памяти и с восстановлением. И каждый раз восстановление происходит в этой модели вот в этот критический интервал от 5 до 7 часов.
После смачивания клюва хинином прошла масса времени. Они уже поспали, они занимались совершенно другими вещами, в мозге идет медленный процесс, который постепенно реконструирует назад нервную сеть, связанную с прошлым опытом. Более того, мы знаем, что, если сделать это напоминание на фоне блокатора синтеза белка, то есть, не дать нервной системе в момент этого стимула заново синтезировать белки и выстроить какие-то свои связи, то этого возвращения памяти назад не происходит. Так что этот процесс происходит в фоне, глубоко в мозге. Это достраивание связей и систем, которые были когда-то разрушены. Этот процесс зависит от синтеза новых белков. Но мы знаем еще ряд свойств этого процесса – зависит от синоптической активности и так далее.
Явно, конечно, кроме удивительного свойства памяти к репарации, это может иметь фундаментальные практические приложения, если мы научимся память, теряемую при нейродегенерации из-за разрушений части нервной сети, достраивать и возвращать назад, то у нас появится возможность помочь многим людям, которые теряют память с возрастом или при тех или иных заболеваниях.
И опять-таки, хотя мой первый слайд об этих фактах назывался «Неожиданное открытие», возвращаясь назад в историю исследований памяти, и особенно в историю исследования памяти человека, мы видим, что люди, глубоко занимавшиеся проблемой нарушения памяти, замечали такое свойство. И Корсаков в одной из своих работ писал, что чаще всего амнезия обуславливается не потерей способности фиксации, а потерей способности к воспроизведению фиксированного. И дальше он описывает ряд случаев в этой работе, показывавших, что больной, который казался совершенно безнадежным и в момент нахождения в клинике не помнил ничего, что с ним происходило, через некоторое время, через год, два при повторных исследованиях и контактах с Корсаковым рассказывал о событиях, которые происходили в тот момент, когда он находился в глубокой амнезии. Он запоминал. И эта память возвращалась. И Корсаков, кстати, пишет, что на его взгляд, это одно из самых интересных свойств синдрома потери памяти, которое он открыл.
Это свойство лежало грузом и к нему не обращались экспериментаторы на протяжении более ста лет. И сейчас мы начинаем активно изучать этот процесс.
Теперь я хочу переключиться. Это переключение естественное, потому что мы все время говорили сейчас о памяти, как свойстве больших популяций или систем, функциональных систем нервных клеток. Вообще, если мы задумаемся, то память – это только одна из характеристик работы таких систем. Память – это ведь искусственно выделенный нами аспект работы мозга. И обратите внимание еще на интересную особенность – это для нас с вами, возможно, наши воспоминания прошлого дороги нам, как память о прошлых событиях. Но для эволюции, вырабатывавшей способность к обучению и памяти, и для биологической нагрузки памяти центральным является другой вопрос. Она могла возникнуть и развиться в эволюции живого, если только она приносила пользу для будущего поведения.
И вот исследования показывают, что, действительно, несмотря на многовековую традицию обращения к памяти, как к отпечаткам прошлого, боле внимательный анализ показывает, что память имеет, прежде всего, проспективные функции, что опыт прошлого используется для того, чтобы планировать и воображать будущее. И, например, люди, пациенты с нарушениями памяти, оказывается, также не способные вообразить себе новые картины, спланировать будущее, как они не способны вспомнить свое прошлое. Когда им предлагают задачу представить себя, например, на берегу южного океана, на пляже с шелестом волн, под лучами жаркого южного солнца, и сконструировать эту картину. Оказывается, что способности к каким-то фантазиям и, вообще, к проецированиям чего-то будущего при повреждении гиппокампа страдают так же глубоко, как способность запомнить что-то новое или вспомнить прошлое.
И этот вновь возвращает нас в изучение механизмов памяти, к взаимодействию памяти с сознанием, с субъективным, с воображением, целый комплекс процессов, который характеризует работу функциональных систем. Но в отличие от следа памяти, следа прошлого, эти процессы динамические. В этих процессах память выступает как динамическая составляющая.
То же самое, кстати, касается сознания. Сознание – это не след, а процесс. Если что-то самое важное можно сказать о свойствах сознания, то то, что это процесс. Он существует в течение какого-то времени, он имеет начало, он имеет продолжительность, он имеет конец. Эти состояния меняют друг друга одно за другим, но мы должны исследовать их, если мы хотим теперь их исследовать не снаружи, а внутри мозга объективными методами, динамическими. Для этого нужны новые подходы.
Моментальные фотографические снимки следа памяти, которые я показывал в предыдущих иллюстрациях, недостаточны для понимания процессов субъективного опыта в ходе самого поведения в момент осознания. Для этого нужна регистрация активности отдельных нервных клеток. И такие методы появились. Они появились достаточно давно. Вначале они были несовершенны, но позволяли, тем не менее, зарегистрировать то, как работает мозг, а мы теперь понимаем, у бодрствующего мозга и разум, в ходе решения тех или иных задач, в ходе мышления и поведения.
Вот на этом видео сейчас будет показана регистрация активности отдельных нервных клеток в мозге у кролика, который в экспериментальной камере обучен решать задачу – нажимать на педаль или потягивать за кольцо для того, чтобы достать морковку из кормушки. Этих кормушек две и педалей тоже две. У него довольно сложное поведение. Он выучился ему. Это видео – это реальный эксперимент, запись реального эксперимента, такого, который проводится в Институте психологии в Лаборатории нейрофизиологических основ психики.
А то, что тарахтит – это слышно работу отдельной нервной клетки. Вот видите, это кормушка, это педаль. Нажал на педаль – кормушка передвинулась. Нейрон работает. Послушайте, вот здесь, да? Теперь он переходит на другую кормушку и нажимает другую педаль. А здесь вы можете видеть активность отдельных нервных клеток.
Вот такие эксперименты и здесь показаны результаты этих экспериментов тоже в Лаборатории нейрофизиологических основ психики в Институте психологии выявили удивительные свойства работы нервных клеток во время поведения. Оказалось, что эти нервные клетки чрезвычайно специализированы относительно тех или иных элементов субъективного опыта животного. Вдумайтесь, отдельный нейрон – обычная клетка, такая же, как клетка печени, кожи, сердца, она имеет ядро, она имеете геном, она имеет цитоплазму, она синтезирует такие же белки или похожие белки, но в мозге поведение этих клеток связано с субъективным опытом, глубоким субъективным опытом.
Вот, посмотрите, как это выглядит. Здесь показана одна ситуация, когда кролик потягивает за кольцо и получает пищу из кормушки, причем он это может делать с левой и с правой стороны. А здесь он нажимает на педаль, и получает пищу из кормушки с левой и с правой стороны. А здесь показана активность отдельной нервной клетки во время такого поведения. Причем, каждая такая вот полосочка – это один поведенческий акт от нажатия на педаль до получения пищи в кормушке. Потом он его повторяет, повторяет, повторяет, и мы можем видеть закономерность работы отдельной нервной клетки в связи с выполнением этого акта.
Вот здесь, например, активность этого нейрона синхронизована и происходит в момент, когда животное потягивает за кольцо, оно тянет за кольцо, как только оно вытянуло его на достаточную длину, и щелкнула кормушка, оно перебегает к кормушке, и активность этого нейрона обрывается. Посмотрите, этот нейрон специализированно работает, когда кролик потягивает за кольцо с правой стороны или с левой стороны.
А что такое «потягивание за кольцо»? Вообще, кольцо – это объект, который животное никогда не видело. Это объект в его индивидуальном опыте. Он познакомился с ним, как со средством получения пищи, в первый раз попав только в эту клетку. Но, посмотрите, гораздо более удивительные вещи.
Вот этот нейрон, другой нейрон, значит, здесь показано четыре нейрона из коры головного мозга кролика. Этот нейрон активен только, когда животное потягивает на кольцо, за кольцо с левой стороны, и не активен, когда он потягивает за кольцо с правой стороны. Это говорит о том, что этот нейрон, в кавычках я говорю это, «узнает» и «различает» кольцо с левой стороны и правой стороны. Это и не странно, потому что кролик учился этому поведению вначале на левой, потом на правой, это два разных куска его индивидуального опыта. Но мы видим, что, читая работу нейронов мозга, мы можем считывать элементы этого прошлого опыта, субъективного опыта в мозге животного, мы можем видеть, как устроен и размечен субъективный опыт.
Обратите внимание еще на следующую вещь. Что и кольцо, и кормушка – это средство получения корма морковки, то есть, и кольцо, и педаль – это средство получения корма, морковки, который, кажется, работают для одного и того же, то есть, это можно было бы считать для животного одним и тем же. Но, посмотрите, вот здесь есть несколько поведенческих актов, вот эта темная полоса актов, когда кролик потягивает за кольцо. Потом кольцо делается неэффективным. И ему предлагают получать корм из кормушки, нажимая на педаль. И вот здесь показано сколько-то там десяток таких циклических актов, когда он нажимает на педаль. А здесь возвращает обратно эффективное кольцо.
Посмотрите, этот нейрон не только работает при потягивании кольца с левой стороны, но он не работает при нажатии на педаль. Кажется, такое же средство, для кролика это разные вещи, а здесь ровно противоположная ситуация: это левая сторона, это правая сторона. Это нейрон, который активируется вот это акт нажатия на педаль, и это акты нажатия на педаль, а это акты, в которых он для получения пищи тянул за кольцо.
Этот нейрон правой педали, но не правого кольца никакого, ни левого кольца. Ну, и так далее. Вот этот нейрон связан с захватом пищи, например.
Мы начинаем видеть субъективные опыты, субъективный мир животного, заглядывая в то, как работает его мозг, и начинает понимать правило построения этого опыта, если будем смотреть, как формируются такие нейроны, на самом деле, системы из нейронов в мозге во время обучения. Этот субъективный мир читаем так же, как читаем субъективный мир и восприятия, и опыт человека, если бы у нас была возможность регистрировать активность отдельных клеток мозга и у человека. Это очень редкая возможность, однако, она существует. При некоторых неврологических заболеваниях пациентам в мозг для терапии или определения участках в последующей терапии, вживляют тонкие микроэлектроды. И они ходят с ними в течение некоторого времени, потом их снимают, и там проводят нейрохирургическую операцию.
И есть несколько центров в мире, в которых во время такой терапии ведутся также научные исследования того, как ведут себя отдельные нервные клетки в нашем с вами мозге, когда мы занимаемся решением каких-то задач или общаемся с внешним миром. Например, вот в этой группе Ицека Фрайда в Калифорнии пациентам показывают, регистрируя активность отдельного нейрона, вот здесь голубыми показаны такие же растры, как… активности нейронов при повторных предъявлений, как у кролика, только ему предъявляют здесь не задачу, а фотографии вот на короткое время, вот интервал между маленькими пунктирами показаны, между вот этим пиком активации, человек видит на экране ноутбука какую-то фотографию. И таких фотографий ему показывают сотни. И смотрят, вот нейрон, который попал под этот микроэлектрод, он как себя ведет при показе разных фотографий?
Оказывается, что они ведут себя очень интересно. Например, вот этот нейрон активируется из сотен фотографий, которые были показаны только тогда, когда человек видит различные фотографии Дженифер Энистон, американской киноактрисы. Если ему показываются фотографии других персонажей, других знаменитых людей, ну, Джулии Робертс, кто-то из знаменитых баскетболистов, и так далее и так далее, животных, змея, паук, олень, архитектурных конструкций, мосты, Эйфелева башня, Пизанская башня, и так далее, видите – нейрон не активен нигде.
А эти фотографии, хотя они все очень разные, посмотрите. Актриса находится в разных проекциях, на разном фоне, здесь нет ничего физически общего как возбуждения сетчатки, есть концепт этой актрисы. Нейрон активируется каждый раз. За исключением тех фотографий, где есть Дженифер Энистон, здесь, здесь, здесь… Но, где она находится вместе со своим бывшим мужем Бредом Питтом.
Для этого испытуемого так же, как для нашего кролика с педалью и кольцом на левой и правой стороне, есть категории мира, которые делятся на… для этого нейрона на Дженифер Энистон, но не все остальное, но, грубо говоря, Дженифер Энистон с правой стороны, но не с левой стороны, Дженифер Энистон одну, но не с Бредом Питтом. Это явно элемент какого-то индивидуального опыта и субъективного опыта этого испытуемого, какие у него чувства по отношению к этой актрисе и какие чувства по отношению к паре актрисы с мужем, мы может пытаться только реконструировать, зная историю, но то, что они различны, мы видим по активности этих нервных клеток.
Значит, здесь я покажу короткий фильм, который я объясню, что…
Сейчас, секундочку, я объясню вначале, что происходит. Значит, испытуемому показывают разные видеосюжеты в данный момент, самые разные, и регистрируют активность одной из клеток в головном мозге, в гиппокампе. Здесь показано, движется курсор, который показывает, в каком месте активность, а здесь показана суммарная активность за весь эксперимент. Вы видите, низкая активность, и вы видите, тут есть два пика активности, мы увидим с вами, с чем они связаны. Вы также увидите, что … или услышите, что нейрон тарахтит, вот, когда он разряжается и дает отдельные импульсы, вы услышите такие характерный треск, и здесь их будет мало, а здесь их будет много, и вы увидите, в связи с чем… это связано.
Эксперимент состоит из двух частей. Вначале испытуемому показывают разные объекты, смотрят, на что активируется этот нейрон. А дальше, это очень важно, его просят извлечь из памяти уже после окончания эксперимента, что он видел? И тогда внешних стимулов вообще нет, есть только субъективный опыт, который он извлекает, припоминая, что было то-то, было то-то и опять смотрит тот же самый нейрон. Посмотрите, что происходит.
(видеосюжет)
Это во время воспоминаний.
(видеосюжет)
К чему это ведет? Наша возможность объективной регистрации субъективного опыта через активность отдельных клеток? Я не знаю, заметили вы или нет, но я думаю, многие заметили, что, когда этот человек вспоминал про «Симпсонов», у него вначале активировался нейрон, а потом сказал «Симпсоны», заметили, была небольшая задержка. Ну, не могу показывать это, но покажу это в другом виде. Не могу просто длинный фильм показывать. Посмотрите, вот это момент нажатия на педаль кролика. Это действие, которое он совершает. Посмотрите на активность нейрона, она начинается задолго до того, как он совершит это действие. Он только собирается сделать это и намеревается это сделать, как активность нейрона он показывает, что он будет делать. Иначе говоря, вы можете узнать, что задумал кролик по активности этого нейрона еще до того, как он это сделает. Вы не просто видите субъективный мир и его разворачивание, вы видите его с опережением часто по отношению к поведению.
Теперь представьте себе, что вы сделаете простую вещь, вы возьмете активность такой клетки. Вот здесь показано, как ее активность нарастает, вот эта гистограмма, к моменту нажатия на педаль. А вот здесь – момент нажатия на педаль, вот он, «пресс». Но представьте себе, как это было сделано в экспериментах, что вы снимите сигнал с этого нейрона, когда крыса нажимает на этот рычаг, и получает пододвигающуюся к ней кормушку с подкреплением, и сигнал с этого нейрона запустите на кормушку еще до того, как животное нажмет на рычаг? У вас получится парадоксальная ситуация, когда животное собирается нажать на рычаг, чтобы получить подкрепление в кормушке, еще не нажав, получает подкрепление. То есть, то, что она хотела, опережает через внешний контур управления, созданный экспериментатором, то, что она должна сделать для этого.
Крысы начинают вести себя в этой ситуации удивительным образом. Они некоторое время механически продолжают нажимать на рычаг, хотя кормушка уже поступила. Но через некоторое время и очень быстрое время они соображают о ходе соотношений во вновь установившейся ситуации и начинают запускать следующее передвижение кормушки с подкреплением просто активностью своего мозга, уже перестав подбегать к педали. Животные начинают мысленно управлять внешним устройством через электронный интерфейс. Это принцип, который был положен в основу так называемых мозго-машинных или мозго-компьютерных интерфейсов. Он не был бы возможен в таком воплощении, если бы мы не поняли глубокие механизмы организации работы сетей нейронов головного мозга в момент мышления, поведений и действий, опережающие активность.
Точно такие же вещи были продемонстрированы и на обезьянах, и на человеке, потому что принцип декодирования достаточно универсален и заключается лишь в том, чтобы снять активность популяции клеток в тот момент, когда мозг собирается выполнить какое-то действие, распознать по активности, что это действие совершается и передать его на внешнее механическое устройство. Например, как вы видите на этом фильме из статьи, иллюстрирующей результаты статьи группы Эндрю Шварца в Соединенных Штатах Америки.
Здесь обезьянка находится вот за этой шторкой черной, и она сидит в кресле так, что ее лапки примотаны к ручкам кресла, и она не может достать лакомый кусочек, который ей протягивает экспериментатор. Вместо этого она через активность, которая снимается с отдельных нервных клеток ее мозга, может это сделать, запустив движение искусственной руки, протеза. И обратите внимание сейчас в этом фильме, что экспериментатор очень изощрен. Он дает яблоко то в одном месте, и она должна совершить одно сложное действие своими клетками. Протез имеет несколько степеней свободы. Его надо сгибать в плече, локте и еще ладонью, то в другом, внизу. Она каждый раз должна спланировать для себя разные действия и через этот интерфейс. Она, конечно, старается вытягивать как можно дальше голову и язык…смотрите, сложно, уронила. Разочарована. Еще. Вниз, в другую сторону.
По сути дела, мы видим, как нейрофизиологические исследования позволяют мысли о движении приводить в движение не только свои собственные органы и мышцы, но и внешние устройства. Это, прежде всего, является продуктом того, что мы начинаем распознавать мыслительные процессы и декодировать их содержание, то есть, глубоко и объективно проникать в мозг человека или животных.
Здесь показан пациент, который потерял способность двигаться из-за травмы спинного мозга. Здесь стрелкой показан такой нейроинтерфейс, вживленный ему, и с помощью этого нейроинтерфейса он здесь играет в компьютерную игру, управляя мысленно компьютером и экраном. Поэтому такие интерфейсы сейчас называются мозго-компьютерные интерфейсы.
Кроме способов вживления электродов в мозг человека существуют и другие попытки установить такой контакт между мыслями и сигналами, генерируемыми мозгом во время мышления и внешними устройствами. Например, не инвазивные, не требующие вживления электродов интерфейса, тоже используемые для, например, как в этом случае, помощи больным, теряющим способность к движению. У него регистрируется электроэнцефалограмма, и как вы видите, с помощью этих мыслей он способен сокращать механический протез.
(видеосюжет)
Но, это… эти технологии будет использоваться гораздо шире, чем в медицине. Например, уже сегодня вы можете купить вот такое устройство, которое представляет собой миниатюрный электроэнцефалограф, который вы можете надеть на мозг и с помощью радиопередатчика установить контакт с компьютером.
(видеосюжет)
Например, как делает девушка с одним из таких интерфейсов на выставке компьютерных игр. Смотрите, она пытается мысленно поднять этот шарик, сосредоточившись и…
(видеосюжет)
Так что некоторые вещи из научной фантастики вполне распознаваемы в наших исследованиях, которые мы видели сегодня.
(видеосюжет)
Какие из кадров этого начала фильма «Суррогаты» — это результаты научных исследований и разработок, а какие – фантастика? Грани между фантастикой и наукой в изучении мозга и разума сегодня начинаются стираться. И поэтому мои слова в начале рассказа о том, что наука о мозге и разуме в 21-ом веке, по мнению очень многих ученых, изменит наше общество, изменит нашу жизнь, они уже сегодня начинают находить вполне материальное воплощение.
Спасибо.
ВОПРОС: Для меня лекция оказалась не только интересной, но и я сделал для себя объяснение, даже открытие сегодня. Меня очень давно интересует проблема бессознательного, и сегодня я ответил себе на вопрос, когда узнал про реконсолидацию памяти, я понял, что Фрейд отчасти был прав, что терапия вызова… травмирующего события из памяти и переживания его заново, видеозапись получается, то есть, это, действительно, терапевтический эффект. Но вопрос вот в чем, психоаналитики с большим трудом достают это из нашего бессознательного эти травмирующие факты. Возможно ли в будущем как-то с помощью вот такого замечательного направления в науке помогать психологами, психоаналитикам доставать этот травмирующий фактор? Спасибо.
ОТВЕТ: Фрейд в конце прошлого века писал своему другу Флису в одном из писем: «Как ты знаешь, я сейчас работаю над новой теорией памяти, согласно которой, память – это ни что-то раз данное и навеки закрепленное, а меняющееся при каждом извлечении. Процесс, который я называю ретранскрипцией памяти». Я нашел эту цитату уже после того, как мы обозначили этот процесс реконсолидацией. Но вы видите, насколько они близки. И, когда мы в середине 90-х годов обнаружили этот феномен, то первая вещь, которая, естественно, пришла в голову, что это очень похоже на то, что происходит во время психотерапевтических сеансов, только здесь мы упрощаем процесс, потому что во время сеанса психотерапии стоят две сложные задачи.
Первая – это извлечь то воспоминание, которое является иглой, травмирующей весь индивидуальный опыт. А второе – это переорганизовать и переуложить опыт и память пациента таким образом, чтобы оно потеряло конфликтные точки со всеми остальными элементами индивидуального опыта.
Второе, может быть, кстати, гораздо более сложно, чем первое. И поэтому нас сразу пришла в голову мысль, что мы можем упростить эту процедуру, помочь ей, потому что, если речь идет о каких-то травматических воспоминаниях с известным происхождением, то мы можем заменить эту сложную двухэтапную процедуру простым приемом – мы можем извлекать травмирующую память, напоминая о ней разными мультимедийными свойствами, мультимедийными средствами, виртуальной реальностью и так далее, на фоне препаратов, которые мешают запомниться памяти.
А такие препараты, кстати, у человека известны, и они достаточно безобидны. Это, — часто там, блокаторы адренарецепторов, которые используются для регуляции артериального давления, или препараты, действующие на гормональные процессы, они ослабляют процессы запоминания. Просто никогда не было понятно, как их, зачем их можно использовать, хотя эти свойства были изучены давно на животных. Мы предложили такую процедуру еще в 95-96-ом году. У нас никто ею в стране не занимался.
Но с конца 90-х годов такими исследованиями стали заниматься активно очень американские психологи. Очень интересно, там, значит, был синтез нейробиологов и нейрофизиологов в памяти и психоаналитиков, психотерапевтов, и они, например, имитировали ситуации «Бури в пустыни» с разными аудиовизуальными свойствами для ветеранов, имеющих постстрессорные травматические симптомы, и пробовали нарушать вот эту сформировавшуюся устойчивую патологическую память, просто напоминая на фоне этих препаратов. Это действует. И сейчас большое количество исследований ведется в мире и в Европе, и в США, и я думаю, что и у нас скоро будут, которые используют этот прием. Он перспективен.

Константи́н Влади́мирович Ано́хин (род. 3 октября ) - российский учёный, нейробиолог , профессор, член-корреспондент РАН и РАМН . Руководитель отдела нейронаук .

Окончил лечебный факультет в 1980 г. В 1984 закончил аспирантуру при НИИ нормальной физиологии им. П. К. Анохина РАМН, защитив кандидатскую диссертацию «Роль холецистокинина в механизмах пищевого насыщения». В 1992 состоялась защита докторской диссертации на тему «Ранние гены в механизмах обучения и памяти». Получил звание профессора. В 2002 был избран членом-корреспондентом РАМН по специальности «нейробиология», а в 2008 - членом-корреспондентом РАН по специальности «нанобиотехнология».

Лекции

  • (недоступная ссылка с 02-08-2015 (1463 дня)) - об исследованиях по расшифровке механизмов мышления, включая регистрацию мыслительных процессов в мозге человека и животных и создание устройств, способных декодировать мысли и передавать их как сигналы;
  • : видеолекция. (Видеолекция о том, что такое память человека и как хранится информация.)

Напишите отзыв о статье "Анохин, Константин Владимирович"

Примечания

Отрывок, характеризующий Анохин, Константин Владимирович

Пьер не остался обедать, а тотчас же вышел из комнаты и уехал. Он поехал отыскивать по городу Анатоля Курагина, при мысли о котором теперь вся кровь у него приливала к сердцу и он испытывал затруднение переводить дыхание. На горах, у цыган, у Comoneno – его не было. Пьер поехал в клуб.
В клубе всё шло своим обыкновенным порядком: гости, съехавшиеся обедать, сидели группами и здоровались с Пьером и говорили о городских новостях. Лакей, поздоровавшись с ним, доложил ему, зная его знакомство и привычки, что место ему оставлено в маленькой столовой, что князь Михаил Захарыч в библиотеке, а Павел Тимофеич не приезжали еще. Один из знакомых Пьера между разговором о погоде спросил у него, слышал ли он о похищении Курагиным Ростовой, про которое говорят в городе, правда ли это? Пьер, засмеявшись, сказал, что это вздор, потому что он сейчас только от Ростовых. Он спрашивал у всех про Анатоля; ему сказал один, что не приезжал еще, другой, что он будет обедать нынче. Пьеру странно было смотреть на эту спокойную, равнодушную толпу людей, не знавшую того, что делалось у него в душе. Он прошелся по зале, дождался пока все съехались, и не дождавшись Анатоля, не стал обедать и поехал домой.
Анатоль, которого он искал, в этот день обедал у Долохова и совещался с ним о том, как поправить испорченное дело. Ему казалось необходимо увидаться с Ростовой. Вечером он поехал к сестре, чтобы переговорить с ней о средствах устроить это свидание. Когда Пьер, тщетно объездив всю Москву, вернулся домой, камердинер доложил ему, что князь Анатоль Васильич у графини. Гостиная графини была полна гостей.
Пьер не здороваясь с женою, которую он не видал после приезда (она больше чем когда нибудь ненавистна была ему в эту минуту), вошел в гостиную и увидав Анатоля подошел к нему.
– Ah, Pierre, – сказала графиня, подходя к мужу. – Ты не знаешь в каком положении наш Анатоль… – Она остановилась, увидав в опущенной низко голове мужа, в его блестящих глазах, в его решительной походке то страшное выражение бешенства и силы, которое она знала и испытала на себе после дуэли с Долоховым.
– Где вы – там разврат, зло, – сказал Пьер жене. – Анатоль, пойдемте, мне надо поговорить с вами, – сказал он по французски.
Анатоль оглянулся на сестру и покорно встал, готовый следовать за Пьером.
Пьер, взяв его за руку, дернул к себе и пошел из комнаты.
– Si vous vous permettez dans mon salon, [Если вы позволите себе в моей гостиной,] – шопотом проговорила Элен; но Пьер, не отвечая ей вышел из комнаты.
Анатоль шел за ним обычной, молодцоватой походкой. Но на лице его было заметно беспокойство.
Войдя в свой кабинет, Пьер затворил дверь и обратился к Анатолю, не глядя на него.
– Вы обещали графине Ростовой жениться на ней и хотели увезти ее?

Константин Анохин - профессор, член-корреспондент Российской академии медицинских наук, заведующий отделом системогенеза Института нормальной физиологии им. П.К. Анохина и руководитель российско-британской лаборатории нейробиологии памяти.

Анохин: На симпозиуме в Массачусетском технологическом институте, который назывался «Будущее мозга», выражая общее мнение многих. И есть все основания думать, что в 21-ом веке, в науке 21-го века наука о мозге и разуме будет занимать такое же место, как в 20-ом веке занимала наука о генах и наследственности. И за этим стоит очень конкретная мысль.

Точно так же, как наука о генах, молекулярная биология создала единый язык, объединив огромное количество биологических дисциплин единой концептуальной базой: собственно биологию, ее различные отрасли, биологию развитиия, эволюционную биологию, микробиологию, вирусологию, затем далее - молекулярную медицину, в том числе и молекулярную биологию мозга среди всех отраслей, точно так же ожидается, что развивающиеся в 21-ом веке науки о мозге и разуме будут цементирующим фактором, объединяющим и дающим объективные основания для всех видов человеческой интеллектуальной деятельности, всего, что связано с этим. Начиная от развития человека и нашей личности, образования, обучения, языка, культуры, и двигаясь в области, которые пока еще не почерпнули конкретные сведения о том, как это делает мозг, в области поведения человека в экономических ситуациях, которая получает сейчас название нейроэкономики. В области и поведения человека вообще в социальных системах. И в этом смысле социология, история, юриспруденция, искусство, потому что все искусство - это, с одной стороны, то, что генерирует человеческий мозг, а, с другой стороны, то, как наш человеческий мозг воспринимает что-то, как произведение искусства. Все они будут зависеть от этого нового синтеза, науке о мозге и разуме.

Но этот синтез многим из вас может казаться естественным. Я хочу противопоставить его тому, что было раньше, чтобы было понятно, где мы находимся и в какую фазу мы переходим?

Платон писал в одном из своих «Диалогов» о важности умения разделять природу по суставам, то есть, разделять ее на естественные составные части так, чтобы после этого анализа мы могли вернуться естественным образом к синтезу. Кстати, эту способность в устах Сократа Платон назвал диалектикой, противопоставляя это неумению некоторых поваров разрубать тело на разные части, несмотря на суставы, это ведет к бессмысленному набору частей, которые очень трудно потом синтезировать.

Вот у нас есть основание сегодня думать, что Платон в разделении природы по суставам, делал крупную ошибку. Великие умы делают великие ошибки. Он разделил мозг и разум, он разделил тело и душу. Вслед за этим такое разделение, разделение мозга и разума, укоренилось после трудов другого великого философа Рене Декарта. По Декарту, весь мир можно разделить на две фундаментальные части.

Первая - это протяженная материальная субстанция, ресэкстенция - это наши тела, это наш мозг, это тела животных, то, чем обладают животные. А вторая - это бессмертная душа, не протяженная духовная субстанция, которой обладает только человек. Значит, животные - это автоматы, они способны вести себя без участия души и разума, человек же обладает душой, она определяет его действия. И эти два мира трудно совместимы, потому что это мир пространственных и непространственных явлений.

Вот, по сути, мы находимся в, как минимум, 400-летней традиции и инерции восприятия мира, разделенного на эти две части - мозг и разум. И то, что происходит сегодня в науках о мозге, почему это важный момент - стирает эту грань и показывает, что работа мозга - это и работа разума, что мозг работает как огромная популяция из миллионов, десятков миллионов, может быть, иногда сотен миллионов синхронно активирующихся, включающихся вместе с какую-то деятельность нервных клеток. Эти группы клеток, функциональная системы хранятся как структура нашего индивидуального опыта. А наш разум - есть манипуляция этими группами.

Таким образом, что одна группа способна вызывать к действию другую группу, и свойствами этих огромных групп являются не просто физиологические свойства, а те субъективные состояния - мысли, эмоции, переживания, которые мы и испытываем. В этом отношении наш мозг и разум едины.

Кстати, идеи такие же древние, как и идеи Платона о раздельности, потому, что Аристотель придерживался как раз концепции единства мозга и разума, или души и тела.

Собственно, вот биологическую программу объединения мозга и разума, возвращения разума в природу, сформировал другой великий мыслитель 19-го века Чарльз Дарвин. И это очень важно. Он соединил назад разум животных и разум человека, введя эволюционную идею, он записал в своей записной книжке, которая называлась «М» - метафизическая, он начал ее под влиянием разговором с отцом, и записывал там свои мысли о поведении и разуме.

Кстати, после расшифровки этих записных книжек, опубликованных в 80-е годы, начинаем понимать, насколько глубок был Дарвин, и как он глубоко думал о мозге и разуме, и о душе и мышлении, так же глубоко, как о биологии в целом и об эволюции. И, как видите, он записал в 38-ом году, кстати, удивительно, за полтора месяца до его знаменитой записи, когда его осенила идея о естественном отборе, продиктованным чтением Мальтуса. Он записал это в августе 38-го года: «Происхождение человека теперь доказано, эти мысли бродили в нем.

И после этого метафизика должна процветать, потому что тот, кто понимает бабуина, сделает больше для метафизики, чем Локк». Это программа биологических исследований. Это программа, показывающая, что наш мозг и разум составляют единое целое. Разум является функцией мозга, возникавшей в эволюции. Она нужна была для адаптации, и мы не отличаемся от животных кардинальными свойствами присутствия души или разума и отсутствия их у животных. Мы должны создать новую теорию того, как мозг генерирует процессы мышления, сознания, психики, опираясь на эти эволюционные принципы.

И собственно говоря, 20-й век стал свидетелем одной из таких радикальных программ. Когда то, что считалось на протяжении многих веков свойством человеческой души, память, и, кстати, еще в начале 20-го века в учебниках психологии вы могли увидеть такое определение: «Память - это свойство души». Так вот то, что считалось свойством нашей души, а это наша личность, наша память, наш субъективный опыт, был переведен в изучение того, как биологические процессы движут, формируют нашу память и как она работает в мозге.

Иначе говоря, в 20-ом веке наука о памяти, возникшая, как писал историк науки Ян Хакинг, чтобы секуляризовать душу, эту неподатливую сердцевину, западной мысли и практике, двигалась под влиянием трудов нескольких из выдающихся ее пионеров Эббингауза в Германии, Рябо во Франции, Корсакова в России, от философии к объективным исследованиям в философии. И потом, что более важно, к исследованиям памяти в работающем мозге. Память в середине 20-го века стала изучаться не как явление, находящееся вовне человеческого мозга и продукт человеческого мозга, но и как процессы, происходящие внутри человеческого мозга, когда он запоминает или извлекает воспоминания.

И объективных нейробиологических исследованиях памяти принято разделять вопрос о механизмах памяти на три вопроса, на три проблемы.

Первая - как память формируется в мозге? Вторая - как память хранится в мозге на протяжении многих лет? И третья - как память избирательно извлекается, когда это необходимо? Один из первых вопросов, который подвергся объективным исследованиям, был вопрос о формировании памяти. И здесь исследования за последние несколько десятков лет перешли от наблюдения за поведением в момент формирования памяти у человека, животных, к тому, как память хранится за счет работы генома нервных клеток?

Первые шаги в этом отношении сделал молодой начавший молодым заниматься памятью немецкий исследователь Эббингауз, он наткнулся на книгу «Объективной психологии» Лунта, который описывал объективно психологические исследования восприятий, и подумал о том, что, может быть, память человека можно исследовать таким же образом? И он насочинял небольшое количество бессмысленных слогов, которые написал на табличках, тасовал эти таблички и показывал их самому себе, потом, проверяя через некоторое время свою способность вспомнить их через разные интервалы времени. И одна из первых вещей, которая была им обнаружена, что память в момент запоминания, проходит две фазы. Первая - это короткая фаза в течение первых минут после получения новой информации, где мы способны хранить почти всю полученную информацию.

Затем происходит резкое уменьшение объема заполненной информацией, но оставшаяся после этого периода информация хранится очень долго. Она способна хранится на неизменном уровне в течение недели или даже месяцев, как обнаружил Эббингауз. Таким образом, Эббингауз сделал фундаментальное открытие - он показал, что процессы запоминания неравномерны и имеют две фазы. Первую кратковременную, где хранится много информации, и вторую, долговременную, где объем информации невелик, но она поддерживается в течение длительного времени.

Очень быстро, вдохновленный работами Эббингауза, два других немецких психолога Мюллер и Плезеке, работавшие в Геттингене в конце 19-го века, задались вопросом, а что происходит на границе этого перехода от одной фазы памяти к другой? Активный ли это процесс? И они показали, что, если в момент запоминания и перехода от кратковременной в долговременную память человеку дается новая задача, которую он должен запомнить, то эта новая задача мешает запоминанию старой информации, интерферирует с ним. Они назвали это ретроградной интерференцией, влиянием новой информации назад, на процесс, который происходит в мозге.

Исходя из этого, они решили, что в мозге, когда происходит запоминание, идет очень активный процесс, и он требует максимального количества ресурсов. Если мозгу дать в это время другую задачу, то вторая задача перекрывает первую, и не дает памяти сформироваться. Очень интересно, что, если эти вторую задачу давать чуть позже, через 15-20 минут, то этого не происходит. Из этого они сделали важный вывод, что память переходит в мозге в этом переходном этапе в устойчивую фазу хранения.

Неврологи очень быстро подтвердили это своими наблюдениями, что в случаях нарушений, связанных, например, с контузиями, с сотрясениями мозга, память теряется на короткое время, предшествовавшее этому сотрясению, что опять говорит о том, что воздействие на активный процесс не дает запомниться недавней информации. Кстати, такие же вещи происходят и при судорожных припадках.

Стало ясно, что, первое - память можно исследовать объективно. Второе - что в формировании памяти существуют некие фазы, связанные с активными процессами в мозге, нервной системе, и, соответственно, эти активные процессы в нервной системе могут быть объектов для изучения, для того, чтобы понять, как формируется память.

Дальше был довольно большой период, когда фундаментальных открытий в этой области не было, потому что исследовать эти процессы на человеке чрезвычайно сложно. Вы же не будете искусственно травмировать или создавать сотрясение человеку для того, чтобы проверить, что он запомнил, что нет? Вы не сможете или, по крайней мере, в те годы нельзя было заглянуть в то, что происходит в мозге человека во время этих процессов. И поэтому следующий радикальный шаг в этой программе редукции психического, редукции души, движением молекул в клетках мозга был сделан, когда американский психолог Карл Дантон показал, что у животных все то же самое. Если хотите, это замечательная иллюстрация дарвиновской программы возвращения разума в природу.

Он показал, что крысы запоминают массу вещей. Это было известно до него во многих исследованиях. Дальше он показал следующую вещь. Что, если крысам после того, как они выучили какую-нибудь новую задачу, нанести интерферирующее воздействие, например, вызвать у них кратковременный приступ судорог электроконвульсивным шоком, то, если эти судороги наносятся сразу после того, как животное училось чем-то, оно не способно запомнить на долгое время эту информацию. У него есть кратковременная память, а долговременная память не формируется. То есть, это вот переход, который был открыт Эббингаузом, он есть у животных, и он точно также подвержен воздействию на нервную активность.

А оказалось, что так же, как в опытах Мюллера и Плезейкера, если этот электроконвульсивный шок отодвинуть, например, на 15 минут после сеанса обучения, то он никак не влияет на формирующуюся память. Значит, эти процессы универсальны. И действительно, последующие 20-30 лет оказалось, что их можно наблюдать у всех животных, способных к обучению, начиная от приматов, и кончая беспозвоночными, например, виноградными улитками. Вы можете вызывать у виноградной улитки судорожную активность, введя специальные препараты, вызывающие судороги, и она запомнит то, чему она училась, если это судороги, которые наносятся сразу после обучения. Значит, это универсальная биология процесса.

Но дальше возник вопрос, если мы теперь обладаем инструментарием для моделирования памяти и ее консолидации в мозге животных, мы можем задать и следующий вопрос - каковы механизмы, что происходит в клетках мозга? Это была эпоха расцвета молекулярной биологии. И сразу несколько групп ученых подумал, что, то, что хранится в течение длительного времени как информация в клетках организма, должно быть связано с генетической информацией, потому что белки разрушаются очень быстро, значит, должны произойти какие-то изменения в активности геномов, которые связаны с ДНК нервных клеток и изменениями ее свойств.

И возникла гипотеза, что, может быть, формирование долговременной памяти, смотрите какой скачок от души, - это изменение в свойствах активности генома нервных клеток, изменение в свойствах работы и их ДНК.

Чтобы проверить это, шведский ученый Холгер Хеден (?) делал разнообразные и очень красивые эксперименты. Например, он учил крыс добираться до кормушки с едой по… балансируя по тонкой натянутой наклонной струне. И животные учились новому навыку, вестибулярному навыку, и моторному навыку ходить по этой струне. Или, например, доставать пищу лапой, которые животные не предпочитают доставать ее из цилиндра, а среди крыс есть так же, как среди нас, левши и правши, он смотрел какое это животное, а потом давал ему возможность достать только противоположной лапой. Опять животные учились.

Оказалось, что, когда животные учатся этим и другим задачам, в их мозге происходит всплеск экспрессии генов, происходит увеличение синтеза РНК и увеличение синтеза белка. И это происходит как раз в эту фазу сразу после приобретения новой информации и перехода ее в долговременную форму, которую открыл Эббингауз. То есть, здесь опять все совпадает.

Но в биологических исследованиях, как правило, вслед за чисто коррелятивными исследованиями, особенно, если это касается животных, где можно манипулировать биологическими процессами, следуют и причинные вопросы. Мало того, что одновременно с обучением увеличивается синтез РНК и белка, то есть, экспрессируются гены, важно задать - а нужны ли они для того, чтобы запомнилась новая информация? Это может быть случайно сопутствие одного процесса другому. И чтобы проверить это, очень быстро несколько групп исследователей, например, группа Флекснера в США, начали вводить животным, когда они учатся новой задаче, ингибитора синтеза белка или РНК, то есть, препятствовать этой волне, всплеску, экспрессии генов, сопровождающих процесс научения.

Оказалось, что животные при этом нормально учатся, у них не нарушаются никакие старые формы поведения уже выработанные, более того, они способны в течение короткого времени помнит то, чему научились. Но, как только дело доходит до длинной фазы перехода в долговременную память и хранения этой памяти в течение недели, месяцев, эта память у животных отсутствует. То есть, вмешательство в работу генома и препятствие синтезу молекул РНК и белков в моменты обучения не дает сформироваться долговременной памяти. Значит, долговременная память, действительно, зависит от работы генома нервных клеток. И очень важно понять тогда вопросы, что за гены включаются в нервных клетках, что запускает их в момент обучения, и каковы их функции? Каким образом это переходит в то, что мы способны ощущать сами как субъективный … наш субъективный опыт?

В середине 80-х (70-х) годов две группы исследователей, одна в Советском Союзе, а вторая в Германии и в Польше, одновременно обнаружили такие гены. В группе, работавшей у нас в стране, мы направлено искали эти гены вместе с сотрудниками в Институте молекулярной биологии и молекулярной генетики. И нам помогла их найти гипотеза, что процессы, происходящие в мозге в момент формирования нового опыта, может быть, вовлекают те же клеточные принципы и механизмы, которые вовлекаются в процессы развития нервной системы, установление связей и дифференцировкой клеток?

И, обнаружив работу одного из генов-регуляторов развития кодирующего белок, управляющий работой многих, многих других генов, так называемый «транскрипционный фактор», мы решили посмотреть,здесь эта экспрессия показана красным, видите, да, красным цветом в коре головного мозга у 19-дневного эмбриона крысы. Мы решили посмотреть, а что происходит во взрослом мозге с работой этого гена?

Оказалось, что животные, которые находятся в условиях знакомой им обстановке и не учатся ничему новому, практически не экспрессируют этот ген, нервные клетки не содержат продуктов работы этого гена. Но, как только животное попадает в ситуацию, которая для него нова и она ее запоминает, в мозге происходит взрыв экспрессии этого гена.

Причем, как вы видите, по полям этой экспрессии, эта экспрессия касается огромного количества нервных клеток. Расположен в самых разных структурах мозга. Как потом оказалось, места экспрессии очень сильно зависят оттого, какой субъективный индивидуальный опыт приобретается в данный момент мозгом. Для одних форм памяти - это одни зоны экспрессии, для других - другие. Мы вернемся еще к этому, когда будем говорить о картирование памяти.

А пока посмотрим на упрощенную схему того, что происходит в клетках нервной системы, когда возникает обучение? Стимулы, транслируясь в те или иные химически молекулы, действующие на мембрану нейрона, нервной клетки, передают сигналы через цитоплазму клетки к ядру. И здесь и активируются гены, которые я показал, один из них на предыдущем слайде, это транскрипционный фактор цефос (?).

Транскрипционные факторы отличаются тем, что синтезируемые ими белки - это появление белков в цитоплазме - не остаются в цитоплазме, а возвращаются назад в ядро. И в случае с генами семейств цефос и цеджун, второй ген, который, оказалось, тоже активируется в ряде ситуации обучения, они образуют сложные комплексы белков друг с другом, способные влиять на огромное количество участков в геноме нервной клетки. Эти участки - это регуляторные участки других генов. Иначе говоря, сигнал, приходящий к нервной клетке при обучении, через многие, многие входы, переходит в узкое место активации нескольких транскрипционных факторов, а дальше их эффект разветвляется и изменяет программу работу целой клетки, потому что некоторые из этих генов - мишеней, регулируемых транскрипционными факторами, увеличивают свою активность, а некоторые - подавляются. Если хотите, клетка перестраивает программу своей работы под влиянием ситуации обучения.

Чем эта схема оказалась интересной? Во-первых, оказалось, что формирование памяти проходит как бы две фазы синтеза белка и экспрессии генов. Первая - это сразу после обучения, тогда, когда это видел Эббингауз, и тогда активируются так называемые ранние гены. Но, вслед за этим существует вторая волна активации после действия продуктов ранних генов на геном. Так называемые поздние гены.

Второе - поскольку структура ранних генов, их регуляторные участки, а также их способность действовать на определенные регуляторные участки других генов были хорошо изучены в клеточной биологии, появилась возможность расшифровать и другие два вопроса. Значит, мы, первое - узнали какие это гены? Второе - двигаясь назад от таких генов, вот здесь показан, например, один из ранних генов. Вы видите, что на регуляторном участке этого гена, представленном вот этой последовательностью, группируется масса транскрипционных факторов, среди которых есть фос и джуна, о которых я говорил, есть гены, имеющие другие название, есть транскрипционный фактор, имеющие другие названия, например, креп.

И оказалось, что, двигаясь назад по этой цепочке, задавая вопрос при обучении, активировались ранние гены, что их вызвало, какие сигналы сели на их регуляторные участки, какие сигналы вызвали связывание регуляторов с их регуляторными участками, какие из вторичных посредников клетки передали эти сигналы, и, наконец, какие рецепторы были активированы?

Удалось расшифровать последовательность сигналов от ядра, от мембраны к геному нервной клетки, работающих при обучении. И один из пионеров в этих исследованиях, американский нейробиолог Эрик Кендел из Колумбийского университета получил Нобелевскую премию за расшифровку этого каскада.

В этих исследованиях есть масса интересных следствий. Они оказались неожиданными. Например, оказалось, что дефекты в некоторых из этих элементов каскада не только вызывают нарушение обучения у взрослых животных, но и являются причиной заболеваний, связанных с нарушениями умственного развития у детей. Это удивительная вещь. Потому что такие заболевания, например, синдром Рубинштейна-Тейби считались в течение долгого времени врожденными заболеваниями. Теперь мы поняли, что в действительности это нарушения, которые ведут к недостаткам возможности раннего обучения, формирование памяти у ребенка в первые недели, месяцы их жизни. И именно из-за этого нарушается умственное развитие.

И следствия для этого тоже разные. Одно дело, когда по медицинским причинам этот ребенок может получать те или иные препараты, улучшающие эти способности обучения; другое дело, было считать, что это врожденное заболевание, которое не подвергается терапии после рождения.

Другая неожиданная вещь, которая постепенно стала выясняться в расшифровке этих каскадов, что они жутко, действительно, напоминают по своим составным частям те клеточные процессы, которые происходят во время дифференцировки нервных клеток в развивающемся мозге. Они используют часто одни и те же молекулы сигнальные, причем, некоторые из этих молекул вначале были открыты при развитии, а потом, оказалось, как, например, различные нейротрофины, что они являются сигнальными молекулами и в моменты обучения.

А другие молекулы, например, глютамат и энметилдуеспартатные рецепторы, которые принимают его, вначале исследовались в связи с обучением, а потом оказалось, что они играют критическую роль и во время, зависимое от активности стадии установления нервных связей в развитии. Точно также касалось и различных вторичных мессенджеров протеинкиназ, и, наконец, транскрипционных факторов и генов-мишеней.

В результате мы получаем картину, что, когда мы смотрим на развитие и обучение, мы видим очень сходные молекулярные каскады. Это означает, что каждый эпизод развития очень напоминает эпизод обучения, или, что во взрослом мозге процессы развития никогда не заканчиваются. Каждый акт познания для нас - это маленький эпизод морфогенеза и следующего развития. Но обратите внимание -какой? - под когнитивным контролем, в отличие оттого, что происходит во время эмбрионального развития. Иначе говоря, наши знания, наша психика, наш разум, определяя процессы приобретения новых знаний, являются также триггерами и для дифференцировки клеток, хранящих эти знания.

И, наконец, еще одно важное следствие. То, что память имеет молекулярные механизмы и многие из них связаны с процессами, происходящими не между клетками, а внутри клетки, когда сигнал передается от мембраны геному, означает, что кроме психотропных препаратов, которые появились в психиатрии в 50-х годах и способны действовать на передачу сигналов между нервными клетками, которые способны регулировать наше восприятие, эмоции, боль, поведение и так далее.

А в перспективе у нас появится, и начинают появляться мнемотропные препараты, которые обладают совершенно другим эффектом. Поскольку они действуют и должны будут действовать на процессы, происходящие уже после переработки информации в нервных сетях, связанных только с их хранением, мы не заметим их эффектов на наше поведение, они не будут иметь побочных эффектов возбуждения, торможения, изменения процессов нашего восприятия или внимания. Но они способны будут модулировать процессы запоминания информации на долгое время. И такие препараты сейчас ищутся.

Таким образом, вопросы молекулярной биологии памяти, возникшие из исследований биологических основ хранении информации в мозге, привели к следующим решениям: что формирование долговременной памяти основано на активации универсального каскада ранних и поздних генов, ведущей к перестройке обучающегося нейрона, его молекулярного, белкового фенотипа.

Мы также знаем из исследований последних лет, то, о чем я не говорил пока, что хранение памяти на протяжении жизни осуществляется за счет эпигенетических перестроек, то есть, изменяется состояние хроматина нервных клеток. Изменяется состояние эпигенетической памяти у нейрона, состояние дифференцировки клетки, хранящееся в результате обучения возможно также долго, как состояние дифференцировки клетки, сохраняющее ее свойства нервной клетки определенного типа в момент развития.

Вопрос: Насколько конечная наша память?

Ответ: Никакие из экспериментальных попыток определить объем и пределы памяти не приводили к лимитам. Например, в одном из экспериментов, проведенным канадским психологом Стенлингом, исследовалось, сколько лиц способны запомнить испытуемые студенты. И им показывали разные фотографии с интервалом коротким, а потом, через некоторые время, показывая две фотографии, просили узнать, какая из них показывалась, а какая является новой? Оказалось, что первое, что точность воспроизведения высока и не зависит от объема, то есть, все было ограничено только утомляемостью студентов. До 12 тысяч фотографий, например, воспроизводилось с точностью до 80 процентов.

Обратите внимание, здесь, конечно, важно, что делалось, здесь была память на узнавание, а не активное воспроизведение. Но, тем не менее, это другая форма памяти.

Вопрос: Добрый день! Студентка РГГУ, если вы позволите, я хотела бы задать следующий вопрос. Вот в вводной части лекции вы говорили о такой новой проблеме, как науке о мозге и наука о разуме. Это, безусловно, связано и с той проблематикой, которой вы занимаетесь, это искусственный интеллект. Вот со временем, мне кажется, интеллектуальные формы жизни должна стать адаптивными революционными развивающимися, что, в общем-то, может привести, выйти из-под контроля. Вот насколько сейчас данная проблематика изучается и когда она может стать актуальной? И второе, что, создавая вот такие новые формы интеллектуальной жизни, как вам кажется, мы будем готовы к развитию таких событий, когда эти новые интеллектуальные формы жизни станут, ну, возможно, таким же существами, как сейчас являемся мы, ведь когда-то это тоже не за горами и возможен такой вариант событий. Спасибо.

Ответ: Я боюсь ошибиться в прогнозе. Вообще, опыт последних лет показывает, что успехи, которые делаются в этой области, в области исследования мозга и разума, кстати, не в такой же степени в области искусственного интеллекта, там прогресс медленнее, но, тем не менее, настолько удивительны и непредсказуемы, что любые прогнозы могут оказаться ошибкой уже через несколько лет. Но мой прогноз будет следующим.

Мы пока не имеем существ, способных в качестве искусственного интеллекта к - первое: решению тех же задач, которые решает человек, даже приблизительно, особенно в условиях меняющихся адаптивных ситуаций.

Специалисты из ДАРПА, оборонного агентства США, пару лет назад начали новую программу искусственного интеллекта, сказав, что они перестают финансировать все исследования по классическим схемам искусственного интеллекта, потому что они посчитали, что в условиях решения адаптивных задач биологический мозг превосходит по эффективности лучший из существующих форм искусственного интеллекта, построенных на текущие архитектуры, в разы от миллиона до миллиарда раз. Представляете разница?! Это не вопрос скорости операций. Это вопрос способности к генерации новых решений в динамически меняющейся среде.

Когда будет преодолен этот барьер в миллионы и миллиард раз? Ну, может быть, это обозримое будущее, по крайней мере, несколько групп университетов и компания IBM начали исследование новой архитектуры, где элементы ее одновременно и учатся и способны вычислять, то есть, похоже на то, что делает реально нервная система, где нет отдельного хранилища памяти, а отдельно - информационных элементов.

Я думаю, что у искусственного интеллекта есть еще другая сложная проблема. Что до сих пор все системы, которые мы создаем, начальное условие их поведения вкладываются в них творцом человека, то есть, она не способна сама генерировать эти начальные условия. У нее не было эволюции. Но и это преодолевается в моделях искусственной жизни, эволюционной работике, где начинают с очень простых нервных сетей. Затем дают им развиваться в окружающей среде, решая постепенно адаптивные задачи. И даже сами адаптивные задачи возникают для этого интеллекта новые, которых не было заложено создателями.

Так что, может быть, в ближайшие 10-15 лет мы увидим существенный прогресс в этих областях. Достигнут ли они субъективного опыта и психики человека - это очень сложный вопрос, думаю, что нет.

Вопрос: Марина гимназия 1529. Если на сегодняшний день нам известны механизмы обучения человека, то как вы расцениваете возможность моментального изучения языков, моментального приобретения навыков человеком?

Ответ: Из того, что мы знаем про обучение у человека и животных, это процесс, который состоит из отдельных, повторяющихся актов. В каждом из них приобретается некая единица нового знания. Для того, чтобы освоить язык, мы не можем это сделать одним скачком. Для этого нужны тысячи, или десятки тысяч повторений у ребенка, который генерирует новые гипотезы относительно окружающего мира и звуков, которые он воспринимает, пробует их, отбрасывает их, утверждается, строит схему.

Перенести результаты такого обучения, которое, кстати, исторично в том смысле, что у каждого ребенка оно проходит по-своему, механически в голову другого человека или даже в искусственный интеллект, это невозможная сегодня задача. Одномоментного обучения новому языку невозможно так же, как одномоментное приобретение опыта пяти лет жизни ребенка.

Вопрос: Новиков Дмитрий, гимназия 1529, я хотел спросить, я слышал, есть такие препараты, способствующие улучшению развитию памяти, есть результаты, и какие процессы в мозге они купируют?

Ответ: Такие препараты существуют. Они известны давно. Некоторые из них - это средства, известные веками, это, как правило, растительные препараты. Другие из них, это химические препараты. Например, препараты из группы амфетаминового ряда, регулирующего процессы передачи сигналов в нервных клетках, использовались для стимуляции способностей к запоминанию, вниманию, обучению еще во время Второй мировой войны, причем, обеими сторонами, и немецкой и английской, и американкой.

В 50-е годы был бум их попыток использования их, например, и студентами для улучшения способностей запоминать большие объемы информации во время подготовки к экзаменам. И сейчас более мягкие версии этих препаратов, таких как риталин, например, ходят по…, по крайней мере, по американским университетам, и часть студентов пользуются ими. Но стало ясно, что они имеют побочные эффекты.

Что, во-первых, они не влияют специально на память, они являются психотропными, а не мнемотропными, они влияют на процессы, связанные с восприятием, вниманием, концентрацией, так далее.

Второе. К ним может вырабатываться зависимость, это очень неприятно. Чем в более раннем возрасте это происходит, тем более опасным это может оказаться. Сейчас создаются препараты, которые способны действовать на сигналы, передающиеся уже внутри нервной клетки. Часть из этих каскадов, которые были открыты, они запатентованы. Ищутся препараты, способные избирательно модулировать эти свойства памяти, без влияния на психотропную составляющую, то есть, на психогенную составляющую.

Рынок таких веществ пока очень мал, они создаются в основном для лечения все-таки нарушения памяти у пожилых людей, особенно при нейродегенеративных заболеваниях, но некоторые из них, может быть, будут использоваться в будущем и как когнитивные стимуляторы. По крайней мере, в последние годы ведется активная дискуссия об использовании таких когнитропных или мнемотропных препаратов здоровыми людьми. Об ответственности использования есть специальные этические комиссии, которые обсуждают, допустимо ли это или нет? Но тенденция тут явная. Такие витамины памяти.

На прощание мне хотелось сказать следующее, что вот, видите, вопросы, которые были заданы, они касались тех или иных технологий, то есть, возможности управления памятью, возможности получить сразу большой объем информации, возможности перенести и освоить язык за короткое время, возможности получить безопасные и эффективные таблетки улучшении памяти. Это все так. Но, поскольку мы находимся на канале «Культура», мне хочется сказать о другой стороне, что познания нашей памяти - это познание нами самих себя. Потому что, как сказал Габриэль Гарсия Маркес: «Жизнь - это не те дни, которые прожиты, а те, которые запомнены». И изучение механизмов работы мозга и памяти - это в значительной степени для ученых, исследующих этот вопрос, не проблема создания новых технологий, хотя это важно, а проблема следования древнему оракулу, инструктировавшему - познай самого себя!

Видео лекции Константина Анохина на телеканале «Культура»