Найти дифференциал функции примеры решения. Дифференциал функции

Дифференциал… Для одних это прекрасное далёкое, а для других – непонятное слово, связанное с математикой. Но если это ваше суровое настоящее, наша статья поможет узнать, как правильно “приготовить” дифференциал и с чем его “подавать”.

Под дифференциалом в математике понимают линейную часть приращения функции. Понятие дифференциала неразрывно связано с записью производной согласно Лейбница f′(x 0) = df/dx·x 0 . Исходя из этого, дифференциал первого порядка для функции f, заданной на множестве X, имеет такой вид: d x0 f = f′(x 0)·d x0 x. Как видите, для получения дифференциала нужно уметь свободно находить производные. Поэтому нелишним будет повторить правила вычисления производных, дабы понимать, что будет происходить в дальнейшем. Итак, рассмотрим дифференцирование поближе на примерах. Нужно найти дифференциал функции, заданной в таком виде: y = x 3 -x 4 . Сначала найдём производную от функции: y′= (x 3 -x 4)′ = (x 3)′-(x 4)′ = 3x 2 -4x 3 . Ну, а теперь получить дифференциал проще простого: df = (3x 3 -4x 3)·dx. Сейчас мы получили дифференциал в виде формулы, на практике зачастую также интересует цифровое значение дифференциала при заданных конкретных параметрах х и ∆х. Бывают случаи, когда функция выражена неявно через х. Например, y = x²-y x . Производная функции имеет такой вид: 2x-(y x)′. Но как получить (y x)′? Такая функция называется сложной и дифференцируется согласно соответствующего правила: df/dx = df/dy·dy/dx. В данном случае: df/dy = x·y x-1 , а dy/dx = y′. Теперь собираем всё воедино: y′ = 2x-(x·y x-1 ·y′). Группируем все игреки в одной стороне: (1+x·y x-1)·y′ = 2x, и в итоге получаем: y′ = 2x/(1+x·y x-1) = dy/dx. Исходя из этого, dy = 2x·dx/(1+x·y x-1). Конечно, хорошо, что такие задания встречаются нечасто. Но теперь вы готовы и к ним. Кроме рассмотренных дифференциалов первого порядка, ещё существуют дифференциалы высшего порядка. Попробуем найти дифференциал для функции d/d (x 3 (x 3 2 x 6 x 9 ), который и будет дифференциалом второго порядка для f(x) . Исходя из формулы f′(u) = d/du·f(u), где u = f(x), примем u = x 3 . Получаем: d/d(u)·(u-2u 2 -u 3) = (u-2u 2 -u 3)′ = 1-4u-3u 2 . Возвращаем замену и получаем ответ – 1 x 3 x 6 , x≠0. Помощником в нахождении дифференциала также может стать онлайн-сервис . Естественно, что на контрольной или экзамене им не воспользуешься. Но при самостоятельной проверке правильности решения его роль сложно переоценить. Кроме самого результата, он также показывает промежуточные решения, графики и неопределённый интеграл дифференциальной функции, а также корни дифференциального уравнения. Единственный недостаток – это запись в одну строку функции при вводе, но со временем можно привыкнуть и к этому. Ну, и естественно, такой сервис не справляется со сложными функциями, но всё, что попроще, ему по зубам. Практическое применение дифференциал находит в первую очередь в физике и экономике. Так, в физике зачастую дифференцированием решаются задачи, связанные с определением скорости и её производной – ускорения. А в экономике дифференциал является неотъемлемой частью расчёта эффективности деятельности предприятия и фискальной политики государства, например, эффекта финансового рычага.

В этой статье рассмотрены типовые задачи дифференцирования. Курс высшей математики учащихся ВУЗов зачастую содержит ещё задания на использование дифференциала в приближенных вычислениях, а также поиск решений дифференциальных уравнений. Но главное – при чётком понимании азов вы с лёгкостью расправитесь со всеми новыми задачами.

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y " из уравнения y=f(x) , то можно:

Примеры.


ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Показательно-степенной функцией называется функция вида y = u v , где u=u(x), v=v(x) .

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

Примеры.


ТАБЛИЦА ПРОИЗВОДНЫХ

Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x) , v=v(x) , С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

Примеры.



ПОНЯТИЕ ДИФФЕРЕНЦИАЛА ФУНКЦИИ. СВЯЗЬ МЕЖДУ ДИФФЕРЕНЦИАЛОМ И ПРОИЗВОДНОЙ

Пусть функция y=f(x) дифференцируема на отрезке [a ; b ]. Производная этой функции в некоторой точке х 0 Î [a ; b ] определяется равенством

.

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx , получим:

Δy = f " (x 0)·Δx + a·Δx.

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f " (х 0) ≠ 0) главная часть приращения , линейная относительно Δx , а второе – бесконечно малая величина более высокого порядка, чем Δx . Главную часть приращения функции, т.е. f " (х 0)·Δx называют дифференциалом функции в точке х 0 и обозначают через dy .

Таким образом, если функция y=f(x) имеет производную f " (x ) в точке x , то произведение производной f " (x ) на приращение Δx аргумента называют дифференциалом функции и обозначают:


Найдем дифференциал функции y= x . В этом случае y " = (x )" = 1 и, следовательно, dy =dx x . Таким образом, дифференциал dx независимой переменной x совпадает с ее приращением Δx . Поэтому формулу (1) мы можем записать так:

dy = f "(x )dx

Но из этого соотношения следует, что . Следовательно, производную f "(x ) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции Δy = f (x x ) – f(x) можно представить в виде Δy = A ·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x , то эта функция имеет производную в точке x и f "(x )=А .

Действительно, имеем , и так как при Δx →0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:


ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА

Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox . Дадим независимой переменной x приращение Δx , тогда функция получит приращение Δy = NM 1 . Значениям x x и y y на кривой y = f(x) будет соответствовать точка

M 1 (x x ; y y ).

Из ΔMNT находим NT =MN ·tg α. Т.к. tg α = f "(x ), а MN = Δx , то NT = f "(x )·Δx . Но по определению дифференциала dy =f "(x )·Δx , поэтому dy = NT .

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.


ТЕОРЕМА ОБ ИНВАРИАНТНОСТИ ДИФФЕРЕНЦИАЛА

Ранее мы видели, что если u является независимой переменной, то дифференциал функции y =f "(u ) имеет вид dy = f "(u )du .

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)) . Тогда по правилу дифференцирования сложной функции:

.

Следовательно, по определению

Но g "(x )dx = du , поэтому dy= f"(u)du .

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u) , для которой u=g(x) , имеет тот же вид dy=f"(u)du , какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала .

Пример. . Найти dy .

Учитывая свойство инвариантности дифференциала, находим

.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y 0 =f(x 0 ) и ее производной y 0 " = f "(x 0 ) в точке x 0 . Покажем, как найти значение функции в некоторой близкой точке x .

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy =dy +α·Δx , т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy dy или Δy »f "(x 0 )·Δx .

Т.к., по определению, Δy = f (x ) – f (x 0 ), то f(x) – f(x 0) f "(x 0 )·Δx .

Примеры.

ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Пусть функция y=f(x) дифференцируема на некотором отрезке [a ; b ]. Значение производной f "(x ), вообще говоря, зависит от x , т.е. производная f "(x ) представляет собой тоже функцию переменной x . Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y ""или f ""(x ). Итак, y "" = (y ")".

Например, если у = х 5 , то y "= 5x 4 , а y ""= 20x 4 .

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y"""или f"""(x ).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y (n) или f (n) (x ): y (n) = (y (n-1))".

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

24.1. Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ"(х)+α, где α→0 при ∆х→0, или ∆у=ƒ"(х) ∆х+α ∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ"(х) ∆х и а ∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ"(х)· ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ"(х) ∆х. (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у"=х"=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ"(х)dх, (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ"(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

<< Пример 24.1

Найти дифференциал функции ƒ(х)=3x 2 -sin(l+2x).

Решение: По формуле dy=ƒ"(х) dx находим

dy=(3х 2 -sin(l+2x))"dx=(6х-2cos(l+2х))dx.

<< Пример 24.2

Найти дифференциал функции

Вычислить dy при х=0, dx=0,1.

Решение:

Подставив х=0 и dx=0.1, получим

24.2. Геометрический смысл дифференциала функции

Выясним геометрический смысл дифференциала.

Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM 1 |=∆у. Из прямоугольного треугольника МАВ имеем:

Но, согласно геометрическому смыслу производной, tga=ƒ"(х). Поэтому АВ=ƒ"(х) ∆х.

Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.

В этом и состоит геометрический смысл дифференциала.

24.3 Основные теоремы о дифференциалах

Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f"(x)dx) и соответствующие теоремы о производных.

Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с"dx=0 dx=0.

Теорема 24.1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:

Докажем, например, вторую формулу. По определению дифференциала имеем:

d(uv)=(uv)" dx=(uv" +vu" )dx=vu" dx+uv" dx=udv+vdu

Теорема 24.2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать

у" х =у" u u" x .

Умножив обе части этого равенства на dx, поучаем у" х dx=у" u u" х dx. Но у" х dx=dy и u" х dx=du. Следовательно, последнее равенство можно переписать так:

dy=у" u du.

Сравнивая формулы dy=у" х dx и dy=у" u du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.

Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.

Формула dy=у" х dx по внешнему виду совпадает с формулой dy=у" u du, но между ними есть принципиальное отличие: в первой формуле х - независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.

С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.

Например: d(cosu)=(cosu)" u du=-sinudu

24.4. Таблица дифференциалов

24.5. Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ"(х) ∆х+α ∆х, где α→0 при ∆х→0, или ∆у=dy+α ∆х. Отбрасывая бесконечно малую α ∆х более высокого порядка, чем ∆х, получаем приближенное равенство

∆у≈dy, (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

<< Пример 24.3

Найти приближенное значение приращения функции у=х 3 -2х+1 при х=2 и ∆х=0,001.

Решение: Применяем формулу (24.3): ∆у≈dy=(х 3 -2х+1)" ∆х=(3х 2 -2) ∆х.

Итак, ∆у» 0,01.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х) 3 -2(х+∆х)+1)-(х 3 -2х+1)=х 3 +3х 2 ∆х+3х (∆х) 2 +(∆х) 3 -2х-2 ∆х+1-х 3 +2х-1=∆х(3х 2 +3х ∆х+(∆х) 2 -2);

Абсолютная погрешность приближения равна

|∆у-dy|=|0,010006-0,011=0,000006.

Подставляя в равенство (24.3) значения ∆у и dy, получим

ƒ(х+∆х)-ƒ(х)≈ƒ"(х)∆х

ƒ(х+∆х)≈ƒ(х)+ƒ"(х) ∆х. (24.4)

Формула (24.4) используется для вычислений приближенных значений функций.

<< Пример 24.4

Вычислить приближенно arctg(1,05).

Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

arctg(x+∆х)≈arctgx+(arctgx)" ∆х,

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М (∆х) 2 , где М - наибольшее значение |ƒ"(х)| на сегменте [х;х+∆х].

<< Пример 24.5

Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

H=g л t 2 /2, g л =1,6 м/с 2 .

Решение: Требуется найти H(10,04). Воспользуемся приближенной формулой (ΔH≈dH)

H(t+∆t)≈H(t)+H"(t) ∆t. При t=10 с и ∆t=dt=0,04 с, H"(t)=g л t, находим

Задача (для самостоятельного решения). Тело массой m=20 кг движется со скоростью ν=10,02 м/с. Вычислить приближенно кинетическую энергию тела

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х - независимая переменная. Тогда ее первый дифференциал dy=ƒ"(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d 2 y или d 2 ƒ(х).

Итак, по определению d 2 y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d 2 y=d(dy)=d(f"(x)dx)=(ƒ"(х)dx)" dx=f"(x)dx dx=f"(x)(dx) 2 т. е.

d 2 y=ƒ"(х)dх 2 . (24.5)

Здесь dx 2 обозначает (dx) 2 .

Аналогично определяется и находится дифференциал третьего порядка

d 3 y=d(d 2 y)=d(ƒ"(х)dx 2)≈f"(x)(dx) 3 .

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: d n y=d(d n-l y)=f (n) (x)(dx) n .

Отсюда находим, что, В частности, при n=1,2,3

соответственно получаем:

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

Отметим, что все приведенные выше формулы справедливы только, если х - независимая переменная. Если же функцию у=ƒ(х), где х - функция от кαкой-mo другой независимой переменной , то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d 2 y=d(f"(x)dx)=d(ƒ"(х))dx+ƒ"(х) d(dx)=ƒ"(х)dx dx+ƒ"(х) d 2 x, т. е.

d 2 y=ƒ"(х)dx 2 +ƒ"(х) d 2 x. (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ"(х) d 2 х.

Ясно, что если х - независимая переменная, то

d 2 x=d(dx)=d(l dx)=dx d(l)=dx 0=0

и формула (24.6) переходит в формулу (24.5).

<< Пример 24.6

Найти d 2 y, если у=е 3х и х - независимая переменная.

Решение: Так как у"=3е 3х, у"=9e 3х, то по формуле (24.5) имеем d 2 y=9e 3x dx 2 .

<< Пример 24.7

Найти d 2 y, если у=х 2 и х=t 3 +1и t- независимая переменная.

Решение: Используем формулу (24.6): так как

у"=2х, у"=2, dx=3t 2 dt, d 2 x=6tdt 2 ,

то d 2 y=2dx 2 +2x 6tdt 2 =2(3t 2 dt) 2 +2(t 3 +1)6tdt 2 =18t 4 dt 2 +12t 4 dt 2 +12tdt 2 =(30t 4 +12t)dt 2

Другое решение: у=х 2 , х=t 3 +1. Следовательно, у=(t 3 +1) 2 . Тогда по формуле (24.5)

d 2 у=у ¢¢ dt 2 ,

d 2 y=(30t 4 +12t)dt 2 .