От чего зависит величина абсолютного показателя преломления. Преломления показатель

Показатель преломления среды относительно вакуума, т. е. для случая перехода световых лучей из вакуума в среду, называется абсолютным и определяется формулой (27.10): n=c/v.

При расчетах абсолютные показатели преломления берут из таблиц, поскольку их величина определена достаточно точно с помощью опытов. Так как с больше v, то абсолютный показатель преломления всегда больше единицы.

Если световое излучение переходит из вакуума в среду, то формулу второго закона преломления записывают в виде:

sin i/sin β = n. (29.6)

Формулой (29.6) на практике часто пользуются и при переходе лучей из воздуха в среду, так как скорость распространения света в воздухе очень мало отличается от с. Это видно из того, что абсолютный показатель преломления воздуха равен 1,0029.

Когда луч идет из среды в вакуум (в воздух), то формула второго закона преломления принимает, вид:

sin i/sin β = 1 /n. (29.7)

В этом случае лучи при выходе из среды обязательно удаляются от перпендикуляра к поверхности раздела среды и вакуума.

Выясним, как можно найти относительный показатель преломления n21 по абсолютным показателям преломления. Пусть свет переходит из среды с абсолютным показателем n1 в среду с абсолютным показателем n2. Тогда n1 = c/V1 и n2 = с/ v2, откуда:

n2/n1=v1/v2=n21. (29.8)

Формулу второго закона преломления для такого случая часто записывают следующим образом:

sin i/sin β = n2/n1. (29.9)

Вспомним, что по теории Максвелла абсолютный показатель преломления можно найти из соотношения: n = √(με). Так как у веществ, прозрачных для светового излучения, μ практически равно единице, то можно считать, что:

n = √ε. (29.10)

Поскольку частота колебаний в световом излучении имеет порядок 10 14 Гц, ни диполи, ни ионы в диэлектрике, имеющие сравнительно большую массу, не успевают изменять своего положения с такой частотой, и диэлектрические свойства вещества в этих условиях определяются только электронной поляризацией его атомов. Именно этим объясняется различие между значением ε= n 2 из (29,10) и ε ст в электростатике. Так, у воды ε = n 2 =1,77, а ε ст = 81; у ионного твердого диэлектрика NaCl ε=2,25, а ε ст =5,6. Когда вещество состоит из однородных атомов или неполярных молекул, т. е. в нем нет ни ионов, ни природных диполей, то его поляризация может быть только электронной. Для подобных веществ ε из (29.10) и ε ст совпадают. Примером такого вещества является алмаз, состоящий только из атомов углерода.

Заметим, что величина абсолютного показателя преломления, кроме рода вещества, зависит еще от частоты колебаний, или от длины волны излучения. С уменьшением длины волны, как правило, показатель преломления увеличивается.

Обратимся к более подробному рассмотрению показателя преломления, введенного нами в §81 при формулировке закона преломления.

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

Рис. 184. Относительный показатель преломления двух сред:

Пусть абсолютный показатель преломления первой среды есть а второй среды - . Рассматривая преломление на границе первой и второй сред, убедимся, что показатель преломления при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

(рис. 184). Наоборот, при переходе из второй среды в первую имеем относительный показатель преломления

Установленная связь между относительным показателем преломления двух сред и их абсолютными показателями преломления могла бы быть выведена и теоретическим путем, без новых опытов, подобно тому, как это можно сделать для закона обратимости (§82),

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой

Таблица 6. Показатель преломления различных веществ относительно воздуха

Жидкости

Твердые вещества

Вещество

Вещество

Спирт этиловый

Сероуглерод

Глицерин

Стекло (легкий крон)

Жидкий водород

Стекло (тяжелый флинт)

Жидкий гелий

Показатель преломления зависит от длины волны света, т. е. от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике. Мы неоднократно будем иметь дело с этим явлением в последующих главах. Данные, приведенные в табл. 6, относятся к желтому свету.

Интересно отметить, что закон отражения может быть формально записан в том же виде, что и закон преломления. Вспомним, что мы условились всегда измерять углы от перпендикуляра к соответствующему лучу. Следовательно, мы должны считать угол падения и угол отражения имеющими противоположные знаки, т.е. закон отражения можно записать в виде

Сравнивая (83.4) с законом преломления, мы видим, что закон отражения можно рассматривать как частный случай закона преломления при . Это формальное сходство законов отражения и преломления приносит большую пользу при решении практических задач.

В предыдущем изложении показатель преломления имел смысл константы среды, не зависящей от интенсивности проходящего через нее света. Такое истолкование показателя преломления вполне естественно, однако в случае больших интенсивностей излучения, достижимых при использовании современных лазеров, оно не оправдывается. Свойства среды, через которую проходит сильное световое излучение, в этом случае зависят от его интенсивности. Как говорят, среда становится нелинейной. Нелинейность среды проявляется, в частности, в том, что световая волна большой интенсивности изменяет показатель преломления. Зависимость показателя преломления от интенсивности излучения имеет вид

Здесь - обычный показатель преломления, а - нелинейный показатель преломления, - множитель пропорциональности. Добавочный член в этой формуле может быть как положительным, так и отрицательным.

Относительные изменения показателя преломления сравнительно невелики. При нелинейный показатель преломления . Однако даже такие небольшие изменения показателя преломления ощутимы: они проявляются в своеобразном явлении самофокусировки света.

Рассмотрим среду с положительным нелинейным показателем преломления. В этом случае области повышенной интенсивности света являются одновременной областями увеличенного показателя преломления. Обычно в реальном лазерном излучении распределение интенсивности по сечению пучка лучей неоднородно: интенсивность максимальна по оси и плавно спадает к краям пучка, как это показано на рис. 185 сплошными кривыми. Подобное распределение описывает также изменение показателя преломления по сечению кюветы с нелинейной средой, вдоль оси которой распространяется лазерный луч. Показатель преломления, наибольший по оси кюветы, плавно спадает к ее стенкам (штриховые кривые на рис. 185).

Пучок лучей, выходящий из лазера параллельно оси, попадая в среду с переменным показателем преломления , отклоняется в ту сторону, где больше. Поэтому повышенная интенсивность вблизи осп кюветы приводит к концентрации световых лучей в этой области, показанной схематически в сечениях и на рис. 185, а это приводит к дальнейшему возрастанию . В конечном итоге эффективное сечение светового пучка, проходящего через нелинейную среду, существенно уменьшается. Свет проходит как бы по узкому каналу с повышенным показателем преломления. Таким образом, лазерный пучок лучей сужается, нелинейная среда под действием интенсивного излучения действует как собирающая линза. Это явление носит название самофокусировки. Его можно наблюдать, например, в жидком нитробензоле.

Рис. 185. Распределение интенсивности излучения и показателя преломления по сечению лазерного пучка лучей на входе в кювету (а), вблизи входного торца (), в середине (), вблизи выходного торца кюветы ()

Преломления называют некое отвлеченное число, которое характеризует преломляющую способность какой-либо прозрачной среды. Обозначать ее принято n. Различают абсолютный показатель преломления и коэффициент относительный.

Первый рассчитывается по одной из двух формул:

n = sin α / sin β = const (где sin α - синус угла падения, а sin β - синус луча света, входящего в рассматриваемую среду из пустоты)

n = c / υ λ (где с - скорость света в пустоте, υ λ - скорость света в исследуемой среде).

Здесь расчет показывает, во сколько раз свет изменяет скорость своего распространения в момент перехода из вакуума в прозрачную среду. Таким образом определяется показатель преломления (абсолютный). Для того чтобы узнать относительный, используют формулу:

То есть при этом рассматриваются абсолютные показатели преломления веществ разной плотности, например воздуха и стекла.

Если говорить в общем, то абсолютные коэффициенты любых тел, будь то газообразных, жидких или твердых, всегда больше 1. В основном их значения колеблются от 1 до 2. Выше 2 эта величина может быть только в исключительных случаях. Значение данного параметра для некоторых сред:


Эта величина в применении к самому твердому природному веществу на планете, алмазу, составляет 2,42. Очень часто при проведении научных изысканий и т. д. требуется знать показатель преломления воды. Этот параметр составляет 1,334.

Поскольку длина волны - показатель, разумеется, непостоянный, к букве n приписывается индекс. Его значение и помогает понять, к какой волне спектра данный коэффициент относится. При рассмотрении одного и того же вещества, но с увеличением длины световой волны, показатель преломления будет уменьшаться. Этим обстоятельством и вызвано разложение света на спектр при прохождении через линзу, призму и т. д.

По величине коэффициента преломления можно определить, к примеру, сколько одного вещества растворено в другом. Это бывает полезным, допустим, в пивоварении или когда необходимо узнать концентрацию сахара, фруктов или ягод в соке. Данный показатель важен и при определении качества нефтепродуктов, и в ювелирном деле, когда нужно доказать подлинность камня и т. д.

Без использования какого-либо вещества шкала, видимая в окуляре прибора, будет полностью окрашена в голубой цвет. Если капнуть на призму обычной дистиллированной воды, при правильной калибровке инструмента граница синего и белого цветов будет проходить строго по нулевой отметке. При исследовании другого вещества она сместится по шкале согласно тому, какой показатель преломления ему свойственен.

Свет по своей природе распространяется в различных средах с различными скоростями. Чем плотнее среда, тем ниже скорость распространения в ней света. Была установлена соответствующая мера, имеющая отношение как к плотности материала, так и к скорости распространения света в этом материале. Эту меру назвали показателем преломления. Для любого материала показатель преломления измеряется относительно скорости распространения света в вакууме (вакуум часто называют свободным пространством). Следующая формула описывает это отношение.

Чем выше показатель преломления материала, тем он плотнее. Когда луч света проникает из одного материала в другой (с другим показателем преломления), угол преломления будет отличаться от угла падения. Луч света, проникающий в среду с меньшим показателем преломления, будет выходить с углом, большим угла падения. Луч света, проникающий в среду с большим показателем преломления, будет выходить с углом, меньшим угла падения. Это показано на рис. 3.5.

Рис. 3.5.а. Луч, проходящий из среды с высоким N 1 в среду с низким N 2

Рис. 3.5.б. Луч, проходящий из среды с низким N 1 в среду с высоким N 2

В данном случае θ 1 является углом падения, а θ 2 - углом преломления. Ниже пеоечислены некоторые типичные показатели преломления.

Любопытно отметить, что для рентгеновских лучей показатель преломления стекла всегда меньше, чем для воздуха, поэтому они при прохождении из воздуха в стекло отклоняют в сторону от перпендикуляра, а не к перпендикуляру, как световые лучи.

Оптика является одним из старых разделов физики. Со времен античной Греции, многих философов интересовали законы движения и распространения света в разных прозрачных материалах, таких как вода, стекло, алмаз и воздух. В данной статье рассмотрено явление преломления света, акцентировано внимание на показателе преломления воздуха.

Эффект преломления светового луча

Каждый в своей жизни сталкивался сотни раз с проявлением этого эффекта, когда смотрел на дно водоема или на стакан с водой с помещенным в него каким-нибудь предметом. При этом водоем казался не таким глубоким, каким он являлся на самом деле, а предметы в стакане с водой выглядели деформированными или изломанными.

Явление преломления заключается в изломе его прямолинейной траектории, когда он пересекает поверхность раздела двух прозрачных материалов. Обобщая большое количество данных экспериментов, в начале XVII века голландец Виллеброрд Снелл получил математическое выражение, которое точно описывало это явление. Это выражение принято записывать в следующем виде:

n 1 *sin(θ 1) = n 2 *sin(θ 2) = const.

Здесь n 1 , n 2 - абсолютные показатели преломления света в соответствующем материале, θ 1 и θ 2 - углы между падающим и преломленным лучами и перпендикуляром к плоскости раздела сред, который проведен через точку пересечения луча и этой плоскости.

Эта формула носит название закона Снелла или Снелла-Декарта (именно француз записал ее в представленном виде, голландец же использовал не синусы, а единицы длины).

Помимо этой формулы, явление преломления описывается еще одним законом, который носит геометрический характер. Он заключается в том, что отмеченный перпендикуляр к плоскости и два луча (преломленный и падающий) лежат в одной плоскости.

Абсолютный показатель преломления

Эта величина входит в формулу Снелла, и ее значение играет важную роль. Математически показателю преломления n соответствует формула:

Символ c - это скорость электромагнитных волн в вакууме. Она составляет приблизительно 3*10 8 м/с. Величина v - это скорость движения света в среде. Таким образом, показатель преломления отражает величину замедления света в среде по отношению к безвоздушному пространству.

Из формулы выше следует два важных вывода:

  • величина n всегда больше 1 (для вакуума она равна единице);
  • это безразмерная величина.

Например, показатель преломления воздуха равен 1,00029, а для воды он составляет 1,33.

Показатель преломления не является величиной постоянной для конкретной среды. Он зависит от температуры. Более того, для каждой частоты электромагнитной волны он имеет свое значение. Так, приведенные выше цифры соответствуют температуре 20 o C и желтой части видимого спектра (длина волны - около 580-590 нм).

Зависимость величины n от частоты света проявляется в разложении белого света призмой на ряд цветов, а также в образовании радуги на небе во время проливного дождя.

Показатель преломления света в воздухе

Выше уже было приведено его значение (1,00029). Поскольку показатель преломления воздуха отличается лишь в четвертом знаке после запятой от нуля, то для решения практических задач его можно считать равным единице. Небольшое отличие n для воздуха от единицы говорит о том, что свет практически не замедляется молекулами воздуха, что связано с его относительно невысокой плотностью. Так, среднее значение плотности воздуха 1,225 кг/м 3 , то есть он в более чем 800 раз легче пресной воды.

Воздух - это оптически неплотная среда. Сам процесс замедления скорости света в материале носит квантовый характер и связан с актами поглощения и испускания фотонов атомами вещества.

Изменение состава воздуха (например, повышение содержания в нем водяного пара) и изменение температуры приводят к существенным изменениям показателя преломления. Ярким примером является эффект миража в пустыне, который возникает из-за различия показателей преломления воздушных слоев с разными температурами.

Граница раздела стекло - воздух

Стекло является гораздо более плотной средой, чем воздух. Его абсолютный показатель преломления лежит в пределах от 1,5 до 1,66 в зависимости от сорта стекла. Если взять среднее значение 1,55, тогда преломление луча на границе воздух - стекло можно рассчитать по формуле:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1,55.

Величина n 21 называется относительным показателем преломления воздух - стекло. Если же луч выходит из стекла в воздух, тогда следует пользоваться следующей формулой:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1/1,55 = 0,645.

Если угол преломленного луча в последнем случае будет равен 90 o , тогда ему соответствующий, называется критическим. Для границы стекло - воздух он равен:

θ 1 = arcsin(0,645) = 40,17 o .

Если луч будет падать на границу стекло - воздух с большими углами, чем 40,17 o , то он отразится полностью назад в стекло. Это явление так и называется "полное внутреннее отражение".

Критический угол существует только при движении луча из плотной среды (из стекла в воздух, но не наоборот).