Распространение ошибок. Ошибка измерения

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x - x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159. Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016/3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52400 равна 100, то это число должно быть записано, например, в виде 524·10 2 или 0.524·10 5 . Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 - пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра-сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148935 с точностью измерения 50 имеет округление 148900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 - 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 - 1284 = 4.


Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 - 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число - приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.

Измерением какой-либо величины называется операция, в результате которой мы узнаем, во сколько раз измеряемая величина больше (или меньше) соответствующей величины, принятой за эталон (единицу измерения). Все измерения можно разбить на два типа: прямые и косвенные.

ПРЯМЫЕ – это такие измерения, при которых измеряется непосредственно интересующая нас физическая величина (масса, длина, интервалы времени, изменение температуры и т.д.).

КОСВЕННЫЕ – это такие измерения, при которых интересующая нас величина определяется (вычисляется) из результатов прямых измерений других величин, связанных с ней определенной функциональной зависимостью. Например, определение скорости равномерного движения по измерениям пройденного пути промежутка времени, измерение плотности тела по измерениям массы и объема тела и т.д.

Общая черта измерений – невозможность получения истинного значения измеряемой величины, результат измерения всегда содержит какую-то ошибку (погрешность). Объясняется это как принципиально ограниченной точностью измерения, так и природой самих измеряемых объектов. Поэтому, чтобы указать, насколько полученный результат близок к истинному значению, вместе с полученным результатом указывают ошибку измерения.

Например, мы измерили фокусное расстояние линзы f и написали, что

f = (256 ± 2) мм (1)

Это означает, что фокусное расстояние лежит в пределах от 254 до 258 мм . Но на самом деле это равенство (1) имеет вероятностный смысл. Мы не можем с полной уверенностью сказать, что величина лежит в указанных пределах, имеется лишь некоторая вероятность этого, поэтому равенство (1) нужно дополнить еще указанием вероятности, с которой это соотношение имеет смысл (ниже мы сформулируем это утверждение точнее).

Оценка ошибок необходима, т.к., не зная, каковы они, нельзя сделать определенных выводов из эксперимента.

Обычно рассчитывают абсолютную и относительную ошибку. Абсолютной ошибкой Δx называется разность между истинным значением измеряемой величины μ и результатом измерения x, т.е. Δx = μ - x

Отношение абсолютной ошибки к истинному значению измеряемой величины ε = (μ - x)/μ и называется относительной ошибкой.

Абсолютная ошибка характеризует погрешность метода, который был выбран для измерения.

Относительная ошибка характеризует качество измерений. Точностью измерения называют величину, обратную относительной ошибке, т.е. 1/ε.

§ 2. Классификация ошибок

Все ошибки измерения делятся на три класса: промахи (грубые ошибки), систематические и случайные ошибки.

ПРОМАХ вызван резким нарушением условий измерения при отдельных наблюдениях. Это ошибка, связанная с толчком или поломкой прибора, грубым просчетом экспериментатора, непредвиденным вмешательством и т.д. грубая ошибка появляется обычно не более чем в одном–двух измерениях и резко отличается по величине от прочих ошибок. Наличие промаха может сильно исказить результат, содержащий промах. Проще всего, установив причину промаха, устранить его в процессе измерения. Если в процессе измерения промах не был исключен, то это следует сделать при обработке результатов измерений, использовав специальные критерии, позволяющие объективно выделить в каждой серии наблюдений грубую ошибку, если она имеется.

СИСТЕМАТИЧЕСКОЙ ОШИБКОЙ называют составляющую погрешности измерений, остающуюся постоянной и закономерно изменяющуюся при повторных измерениях одной и той же величины. Систематические ошибки возникают, если не учитывать, например, теплового расширения при измерениях объема жидкости или газа, производимых при медленно меняющейся температуре; если при измерении массы не принять во внимание действие выталкивающей силы воздуха на взвешиваемое тело и на разновесы и т.д.

Систематические ошибки наблюдаются, если шкала линейки нанесена неточно (неравномерно); капилляр термометра в разных участках имеет разное сечение; при отсутствии электрического тока через амперметр стрелка прибора стоит не на нуле и т.д.

Как видно из примеров, систематическая ошибка вызывается определенными причинами, величина ее остается постоянной (смещение нуля шкалы прибора, неравноплечность весов), либо изменяется по определенному (иногда довольно сложному) закону (неравномерность шкалы, неравномерность сечения капилляра термометра и т.д.).

Можно сказать, что систематическая ошибка – это смягченное выражение, заменяющее слова «ошибка экспериментатора».

Такие ошибки возникают из-за того, что:

  1. неточны измерительные приборы;
  2. реальная установка в чем-то отличается от идеальной;
  3. не совсем верна теория явления, т.е. не учтены какие-то эффекты.

Как поступать в первом случае, мы знаем, – нужна калибровка или градуировка. В двух других случаях готового рецепта не существует. Чем лучше вы знаете физику, чем больше у вас опыта, тем больше вероятность, что вы обнаружите подобные эффекты, а значит, и устраните их. Общих правил, рецептов для выявления и устранения систематических ошибок нет, но некоторую классификацию можно провести. Выделим четыре типа систематических ошибок.

  1. Систематические ошибки, природа которых вам известна, а величина может быть найдена, следовательно, и исключена введением поправок. Пример. Взвешивание на неравноплечных весах. Пусть разность длин плеч – 0.001 мм . При длине коромысла 70 мм и массе взвешиваемого тела 200 г систематическая ошибка составит 2.86 мг . Систематическую ошибку этого измерения можно устранить, применяя специальные методы взвешивания (метод Гаусса, метод Менделеева и т.д.).
  2. Систематические ошибки, о которых известно, что величина их не превышает некоторого определенного значения. В этом случае при записи ответа может быть указано их максимальное значение. Пример. В паспорте, прилагаемом к микрометру, написано: «допустимая погрешность составляет ±0.004 мм . Температура +20 ± 4° C. Это означает, что, измеряя данным микрометром размеры какого-нибудь тела при указанных в паспорте температурах, мы будем иметь абсолютную погрешность, не превышающую ± 0.004 мм при любых результатах измерений.

    Часто максимальная абсолютная ошибка, даваемая данным прибором, указывается с помощью класса точности прибора, который изображается на шкале прибора соответствующим числом, чаще всего взятым в кружок.

    Число, обозначающее класс точности, показывает максимальную абсолютную ошибку прибора, выраженную в процентах от наибольшего значения измеряемой величины на верхнем пределе шкалы.

    Пусть в измерениях использован вольтметр, имеющий шкалу от 0 до 250 В , класс точности его – 1. Это значит, что максимальная абсолютная ошибка, которая может быть допущена при измерении этим вольтметром, будет не больше 1% от наибольшего значения напряжения, которое можно измерить на этой шкале прибора, иначе говоря:

    δ = ±0.01·250В = ±2.5В .

    Класс точности электроизмерительных приборов определяет максимальную погрешность, величина которой не меняется при переходе от начала к концу шкалы. Относительная ошибка при этом резко меняется, потому приборы обеспечивают хорошую точность при отклонении стрелки почти на всю шкалу и не дают ее при измерениях в начале шкалы. Отсюда следует рекомендация: выбрать прибор (или шкалу многопредельного прибора) так, чтобы стрелка прибора при измерениях заходила за середину шкалы.

    Если класс точности прибора не указан и нет паспортных данных, то в качестве максимальной ошибки прибора берется половина цены наименьшего деления шкалы прибора.

    Несколько слов о точности линеек. Металлические линейки очень точны: миллиметровые деления наносятся с погрешностью не более ±0.05 мм , а сантиметровые не хуже, чем с точностью 0.1 мм . Погрешность измерений, производимых с точностью таких линеек, практически равна погрешности отсчета на глаз (≤0.5 мм ). Деревянными и пластиковыми линейками лучше не пользоваться, их погрешности могут оказаться неожиданно большими.

    Исправный микрометр обеспечивает точность 0.01 мм , а погрешность измерений штангенциркулем определяется точностью, с которой может быть сделан отсчет, т.е. точностью нониуса (обычно 0.1 мм или 0.05 мм ).

  3. Систематические ошибки, обусловленные свойствами измеряемого объекта. Эти ошибки часто могут быть сведены к случайным. Пример. . Определяется электропроводность некоторого материала. Если для такого измерения взят отрезок проволоки, имеющей какой-то дефект (утолщение, трещину, неоднородность), то в определении электропроводности будет допущена ошибка. Повторение измерений дает такое же значение, т.е. допущена некоторая систематическая ошибка. Измерим сопротивление нескольких отрезков такой проволоки и найдем среднее значение электропроводности данного материала, которая может быть больше или меньше электропроводности отдельных измерений, следовательно, ошибки, допущенные в этих измерениях, можно отнести к так называемым случайным ошибкам.
  4. Систематические ошибки, о существовании которых ничего не известно. Пример. . Определяем плотность какого-либо металла. Вначале находим объем и массу образца. Внутри образца содержится пустота, о которой мы ничего не знаем. В определении плотности будет допущена ошибка, которая повторится при любом числе измерений. Приведенный пример прост, источник погрешности и ее величину можно определить без больших затруднений. Ошибки, такого типа можно выявить с помощью дополнительных исследований, путем проведения измерений совсем другим методом и в других условиях.

СЛУЧАЙНОЙ называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения (рис.14 ).

Если, кроме того, имеется и систематическая ошибка, то результаты измерений будут разбросаны относительно не истинного, а смещенного значения (рис.15 ).

Рис. 14 Рис. 15

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

Следует иметь в виду, что если случайная погрешность, полученная из данных измерений, окажется значительно меньше погрешности, определяемой точностью прибора, то, очевидно, что нет смысла пытаться еще уменьшить величину случайной погрешности – все равно результаты измерений не станут от этого точнее.

Наоборот, если случайная погрешность больше приборной (систематической), то измерение следует провести несколько раз, чтобы уменьшить значение погрешности для данной серии измерений и сделать эту погрешность меньше или одного порядка с погрешностью прибора.

Cтраница 1


Абсолютная ошибка определения не превышает 0 01 мкг фосфора. Этот метод был применен нами для определения фосфора в азотной, уксусной, соляной и серной кислотах и ацетоне с предварительным выпариванием их.  

Абсолютная ошибка определения составляет 0 2 - 0 3 мг.  

Абсолютная ошибка определения цинка в цинк-марганцевых ферритах предложенным методом не превышает 0 2 % отн.  

Абсолютная ошибка определения углеводородов С2 - С4, при содержании их в газе 0 2 - 5 0 %, составляет 0 01 - 0 2 % соответственно.  

Здесь Ау - - абсолютная ошибка определения г /, которая получается в результате ошибки Да в определении а. Например, относительная ошибка квадрата числа в два раза больше ошибки определения самого числа, а относительная ошибка числа, стоящего под кубическим корнем, составляет просто одну треть от ошибки определения числа.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки MV - Ms / Мв, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / re, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки Mv - Ms / Ms, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / rs, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

При одной и той же абсолютной ошибке измерения ау абсолютная ошибка определения количества ах уменьшается с увеличением чувствительности метода.  

Поскольку в основе ошибок лежат не случайные, а систематические погрешности, итоговая абсолютная ошибка определения присосов может достигать 10 % теоретически необходимого количества воздуха. Только при недопустимо неплотных топках (А а0 25) общепринятый метод дает более или менее удовлетворительные результаты. Описанное хорошо известно наладчикам, которые при сведении воздушного баланса плотных топок нередко получают отрицательные значения присосов.  

Анализ погрешности определения величины пэт показал, что она складывается из 4 составляющих: абсолютной ошибки определения массы матрицы, емкости образца, взвешивания, относительной ошибки за счет флуктуации массы образца около равновесного значения.  

При соблюдении всех правил отбора, отсчета объемов и анализа газов при помощи газоанализатора ГХП-3 общая абсолютная ошибка определения содержания С02 и О2 не должна превышать 0 2 - 0 4 % истинной их величины.  

Из табл. 1 - 3 можно сделать заключение, что используемые нами данные для исходных веществ, взятые из разных источников, имеют сравнительно небольшие различия, которые лежат в пределах абсолютных ошибок определения этих величин.  

Случайные ошибки могут быть абсолютными и относительными. Случайную ошибку, имеющую размерность измеряемой величины, называют абсолютной ошибкой определения. Среднее арифметическое значение абсолютных ошибок всех отдельных измерений называют абсолютной ошибкой метода анализа.  

Величина допустимого отклонения, или доверительный интервал, устанавливается не произвольно, а вычисляется из конкретных данных измерений и характеристик используемых приборов. Отклонение результата отдельного измерения от истинного значения величины называется абсолютной ошибкой определения или просто ошибкой. Отношение абсолютной ошибки к измеряемой величине называется относительной ошибкой, которую обычно выражают в процентах. Знание ошибки отдельного измерения не имеет самостоятельного значения, и во всяком серьезно поставленном эксперименте должно проводиться несколько параллельных измерений, по которым и вычисляют ошибку эксперимента. Ошибки измерений в зависимости от причин их возникновения делятся на три вида.  

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.


Как было сказано выше, результат измерения любой величины отличается от истинного значения. Это отличие, равное разности между показанием прибора и истинным значением, называется абсолютной погрешностью измерения, которая выражается в тех же единицах, что и сама измеряемая величина:

где х - абсолютная погрешность.

При проведении комплексного контроля, когда измеряются показатели разной размерности, целесообразнее пользоваться не абсолютной, а относительной погрешностью. Она определяется по следующей формуле:

Целесообразность применения х отн связана со следующими обстоятельствами. Предположим, что мы измеряем время с точностью до 0,1 с (абсолютная погрешность). При этом если речь идет о беге на 10 000 м, то точность вполне приемлема. Но измерять с такой точностью время реакции нельзя, так как величина ошибки почти равна измеряемой величине (время простой реакции равняется 0,12-0,20 с). В связи с этим нужно сопоставить величину ошибки и саму измеряемую величину и определить относительную погрешность.

Рассмотрим пример определения абсолютной и относительной погрешностей измерения. Предположим, что измерение частоты сердечных сокращений после бега с помощью высокоточного прибора дает нам величину, близкую к истинной и равную 150 уд/мин. Одновременное пальпаторное измерение дает величину, равную 162 уд/мин. Подставив эти значения в приведенные выше формулы, получим:

x =150-162=12 уд/мин - абсолютная погрешность;

х= (12: 150)Х100%=8% -относительная погрешность.

Задание №3 Индексы оценки физического развития

Индекс

Оценка

Индекс Брока-Бругша

Были разработаны и добавлены такие варианты:

    при росте до 165 см «идеальный вес» = рост (см) – 100;

    при росте от 166 до 175 см «идеальный вес» = рост (см) – 105;

    при росте выше 176 см «идеальный вес» = рост (см) – 110.

Жизненный индекс

Ж/М (по росту)

Средняя величина показателя для мужчин - 65-70 мл/кг, для женщин - 55-60 мл/кг, для спортсменов - 75-80 мл/кг, для спортсменок - 65-70 мл/кг.

Разностный индекс определяется путем вычитания из величины роста сидя длины ног. Средний показатель для мужчин - 9-10 см, для женщин - 11-12 см. Чем меньше индекс, тем, следовательно, больше длина ног, и наоборот.

Весо – ростовой индекс Kетле

BMI = m / h2 , где m - масса тела человека (в кг), h - рост человека (в м).

Выделяют следующие значения BMI:

меньше 15 - острый дефицит веса;

от 15 до 20 - дефицит веса;

от 20 до 25 - нормальный вес;

от 25 до 30 - избыточный вес;

свыше 30 - ожирение.

Индекс скелии по Мануврие характеризует длину ног.

ИС = (длина ног / рост сидя) х 100

Величина до 84,9 свидетельствует о коротких ногах;

85-89 - о средних;

90 и выше - о длинных.

Масса тела (вес) для взрослых рассчитывается по формуле Бернгарда.

Вес = (рост х объем груди) / 240

Формула дает возможность учитывать особенности телосложения. Если расчет производится по формуле Брока, то после расчетов из результата следует вычесть около 8%: рост - 100 - 8%

Жизненный показатель

ЖЕЛ (мл) / на массу тела (кг)

Чем выше показатель, тем лучше развита дыхательная функция грудной клетки.

W. Stern (1980) предложил метод определения жировой прослойки у спортсменов.

Процент жировой прослойки

Тощая масса тела

[(масса тела - тощая масса тела) / масса тела] х 100

98,42 +

Согласно формуле Лоренца, идеальная масса тела (М) составляет:

М = Р - (100 - [(Р - 150) / 4])

где: Р - рост человека.

Индекс пропорциональности развития грудной клетки (индекс Эрисмана): обхват грудной клетки в паузе (см) - (рост (см) / 2) = +5,8 см для мужчин и +3,3 см для женщин.

Показатель пропорциональности физического развития

(рост стоя - рост сидя / рост сидя) х 100

Величина показателя позволяет судить об относительной длине ног: меньше 87% - малая длина по отношению к длине туловища, 87-92% - пропорциональное физическое развитие, более 92% - относительно большая длина ног.

Индекс Руффье (Ir).

J r = 0,1 (ЧСС 1 + ЧСС 2 + ЧСС 3 – 200) ЧСС 1 – пульс в покое, ЧСС 2 – после нагрузки, ЧСС 3 – после 1 мин. Восстановления

Полученный индекс Руфье-Диксона расценивается как:

    хороший - 0,1 – 5;

    средний - 5,1 – 10;

    удовлетворительный - 10,1 – 15;

    плохой - 15,1 – 20.

Коэффициент выносливости (К).

Используется для оценки степени тренированности сердечнососудистой системы к выполнению физической нагрузки и определяется по формуле:

где ЧСС - частота сердечных сокращений, уд./мин; ПД - пульсовое давление, мм рт. ст. Увеличение KB, связанное с уменьшением ПД, является показателем детренированности сердечнососудистой системы.

Индекс Скибинскии

Этот тест отражает функциональные резервы дыхательной и сердечно-сосудистой систем:

После 5-минутного отдыха в положении стоя определите ЧСС (по пульсу), ЖЕЛ (в мл);

Через 5 мин после этого задержите дыхание после спокойного вдоха (ЗД);

Индекс рассчитайте по формуле:

Если результат более 60 - отлично;

30-60 - хорошо;

10-30-удовлетворительно;

5-10 - неудовлетворительно;

Менее 5 - очень плохо.