Атомная орбиталь. Квантовые числа

Волновую функцию (7), описывающую состояние электрона, называют атомной орбиталью (АО).

Квантовые числа. В квантовой механике каждая АО определяется тремя квантовыми числами.

Главное квантовое число n . Может принимать целочисленные значения от 1 до ∞. Главное квантовое число определяет:

номер энергетического уровня;

интервал энергий электронов, находящихся на данном уровне;

размеры орбиталей;

число подуровней данного энергетического уровня (первый уровень состоит из одного подуровня, второй – из двух, третий – из трех и т.д.);

В Периодической системе элементов максимальному значению главного квантового числа соответствует номер периода.

Орбитальное квантовое число l .Определяет орбитальный момент количества движения (импульс) электрона, точное значение его энергии и форму орбиталей. Может принимать значения 0, 1, 2, 3, …, (n -1).

Атомная орбиталь – геометрический образ одноэлектронной волновой функции ψ, представляющий собой область наиболее вероятного пребывания электрона в атоме. Она ограничивает область пространства, в которой вероятность нахождения электрона имеет определенное значение (90 …99 %). Иногда орбиталью называют граничную поверхность этой области, а на рисунках, как правило, изображают сечение этой области плоскостью, проходящей через начало координат и лежащей в плоскости рисунка. В начало координат помещают центр ядра атома. Понятие «орбиталь», в отличие от «орбита», не подразумевает знания точных координат электрона. Орбитальное квантовое число определяет форму атомной орбитали. При l =0 это сфера, при l =1 – объемная восьмерка (гантель), при l =2 – четырехлепестковая розетка.

Каждому значению главного квантового числа соответствует n значений орбитального квантового числа l (табл. 1). Например, если n =1, то l принимает только одно значение (l =0), n =2 – два значения: 0 и 1 и т.д. Каждому численному значению l соответствует определенная геометрическая форма орбиталей и приписывается буквенное обозначение. Первые четыре буквы обозначения имеют историческое происхождение и связаны с характером спектральных линий. s , p , d , f – первые буквы английских слов, использованных для названия спектральных линий: sharp (резкий), principal (главный), diffuse (диффузный), fundamental (основной). Обозначения других орбиталей приведены в алфавитном порядке: g , h , …

Таблица 1

Значения главного и орбитального квантовых чисел

Орбитальное квантовое число l Главное квантовое число n
Значение Буквенное обозначение s s p s p d s p d f s p d f g

Обозначение любого подуровня определяется двумя квантовыми числами – главным (при записи указывается численное значение) и орбитальным (при записи указывается буквенное обозначениеорбитальным ()ается численное значение двумя квантовыми числами - главным). Например, энергетический подуровень, для которого n =2 и l =1, следует обозначить так: -подуровень. Все орбитали с одинаковым значением l имеют одинаковую геометрическую формулу и в зависимости от значений главного квантового числа различаются размерами. Например, все орбитали, для которых l =0 (s -орбитали) являются сферически симметричными, различаются размерами в зависимости от значения главного квантового числа. Чем выше значение n , тем больше размеры орбиталей.



Магнитное квантовое число m l .Определяет возможные значения проекции орбитального момента количества движения электрона на фиксированное направление в пространстве (например, на ось z ). Оно принимает отрицательные и положительные значения l , включая нуль. Общее число значений равно 2l +1:

От значения магнитного квантового числа зависит взаимодействие магнитного поля, создаваемого электроном, с внешним магнитным полем. Если нет внешнего магнитного поля, то энергия электрона в атоме не зависит от m l . В этом случае электроны с одинаковыми значениями n и l , но с разными значениями m l обладают одинаковой энергией. Если существует внешнее магнитное поле – энергия электронов с разными m l различается.

В общем случае магнитное квантовое число характеризует ориентацию АО в пространстве относительно внешней силы. Магнитное квантовое число определяет ориентацию орбитального углового момента относительно некоторого фиксированного направления.

Общее число возможных значений m l соответствует числу способов расположения орбиталей данного подуровня в пространстве, то есть общему числу орбиталей на данном подуровне (табл. 2).

Таблица 2

Число орбиталей на подуровне

Орбитальному квантовому числу l =0 отвечает единственное значение магнитного квантового числа m l =0. Эти значения l и m l характеризуют все s -орбитали, которые имеют форму сферы. Так как в этом случае магнитное квантовое число принимает только одно значение, то каждый s-подуровень состоит только из одной орбитали. Рассмотрим любой р -подуровень. При l =1 орбитали имеют форму гантелей (объемные восьмерки), магнитное квантовое число принимает следующие значения: m l = -1, 0, +1. Следовательно, р -подуровень состоит из трех АО, которые располагаются вдоль осей координат, их обозначают p x , p y , p z соответственно (рис. 1).

Рис. 1. Пространственная форма s- и р-атомных орбиталей.

Для d -подуровня l =2, m l = -2, -1, 0, +1, +2 (всего 5 значений), и любой d -подуровень состоит из пяти атомных орбиталей, которые определенным образом расположены в пространстве (рис. 2), и обозначаются соответственно.

Рис. 2. Пространственная форма d-атомных орбиталей.

Четыре из пяти d- орбиталей имеют форму четырехлепестковых розеток, каждая из которых образована двумя гантелями, пятая АО представляет собой гантель с тором в экваториальной плоскости (-орбиталь) и расположена вдоль оси z . Лепестки орбитали расположены вдоль осей x и y. Лепестки орбиталей расположены симметрично между соответствующими осями.

Четвертый энергетический уровень состоит из четырех подуровней – s , p , d и f . Первые три из них аналогичны описанным выше, а четвертый f -подуровень состоит из семи АО, пространственная форма которых достаточно сложна и в данном разделе не рассматривается.

С. Гаудсмит и Дж. Уленбек для описания некоторых тонких эффектов в спектре атома водорода в 1925 г. выдвинули гипотезу о наличии собственного момента импульса электрона, который назвали спином . Спин нельзя выразить через координаты и импульсы, у него нет аналога в классической механике. Спиновое число s электрона принимает только одно значение, равное Проекция вектора спина на определенное направление внешнего поля (например, на ось z ) определяется спиновым квантовым числом m S , которое может принимать два значения: m S =

Понятие «спин» введено для характеристики специфического квантового свойства электрона. Спин – это проявление релятивистских эффектов на микроскопическом уровне.

Электрон имеет четыре степени свободы. Спиновое квантовое число принимает только дискретные значения: Таким образом, состояние электрона в атоме определяется набором значений четырех квантовых чисел: n , l , m l , m S .

Обозначение и структура электронных энергетических уровней . Определим некоторые термины, которые используются для разъяснения физического смысла квантовых чисел. Группа орбиталей, имеющих одинаковое значение орбитального квантового числа, образует энергетический подуровень . Совокупность всех орбиталей с одинаковым значением главного квантового числа образует энергетический уровень .

Структуру атомных электронных уровней можно изобразить двояко: в виде электронных формул и электронографических диаграмм. При написании электронных формул используют два квантовых числа n и l: первый уровень – 1s ; второй – 2s , 2p ; третий – 3s , 3p , 3d ; четвертый – 4s , 4p , 4d , 4f и т.д. (табл.3).

Таблица 3

Структура электронных энергетических уровней атома

Более полно строение электронных уровней описывается с использованием трех квантовых чисел: n , l , m l . Каждая АО условно изображается в виде квантовых ячеек, около которой ставится номер уровня и символ подуровня.

Электрон имеет двойственную природу: в разных экспериментах он может проявлять свойства частицы и волны. Свойства электрона как частицы : масса, заряд; волновые свойства ‑ в особенностях движения, интерференция и дифракция.

Движение электрона подчиняется законам квантовой механики .

Основные характеристики, определяющие движение электрона вокруг ядра: энергия и пространственные особенности соответствующей орбитали.

При взаимодействии (перекрывании) атомных орбиталей (АО) , принадлежащих двум или более атомам, образуются молекулярные орбитали (МО) .

Молекулярные орбитали заполняются обобществленными электронами и осуществляют ковалентную связь .

Перед образованием молекулярных орбиталей может происходить гибридизация атомных орбиталей одного атома.

Гибридизация – изменение формы некоторых орбиталей при образовании ковалентной связи для более эффективного их перекрывания. Образуются одинаковые гибридные АО , которые участвуют в образовании МО , перекрываясь атомным орбиталями других атомов. Гибридизация возможна лишь для атомов, образующих химические связи, но не для свободных атомов.


Углеводороды

Основные вопросы:

  1. Углеводороды. Классификация. Номенклатура.
  2. Строение. Свойства.
  3. Применение углеводородов.

Углеводороды – класс органических соединений, которые состоят из двух элементов: углерода и водорода.

Выбрать изомеры и гомологи:

Назвать алканы:

____________________________________________

__________________________________________


Ä реакция нитрования (реакция Коновалова, 1889 ) – реакция замещения водорода на нитрогруппу.

Условия : 13% НNO 3 , t = 130 – 140 0 C, Р= 15 – 10 5 Па. В промышленном масштабе нитрование алканов проводят в газовой фазе при 150 – 170 0 С оксидом азота (ІV) или парами азотной кислоты.

СН 4 + НО – NO 2 → CН 3 – NO 2 + Н 2 О

нитрометан

@ Решить задания:

1. Состав алканов отражает общая формула:

а) С n H 2 n +2 ; б) С n H 2 n -2 ; в) С n H 2 n ; г) С n H 2 n -6 .

2. С какими реагентами могут взаимодействовать алканы:

а) Br 2 (раствор); б) Br 2 , t 0 ; в) Н 2 SO 4 ; г) НNO 3 (разбав.), t 0 ; д ) КМnО 4 ; е ) КОН?

Ответы: 1) реагенты а, б, г, д ; 2) реагенты б, в, е ;

3) реагенты б, г ; 4) реагенты б, г, д, е .

  1. Установить соответствие между типом реакции и схемой (уравнением) реакции:
  1. Укажите вещество, которое образуется при полном хлорировании метана:

а) трихлорметан; б) тетрахлорметан; в) дихлорметан; г) тетрахлорэтан.

  1. Укажите наиболее вероятный продукт монобромирования 2,2,3-триметилбутана:

а) 2-бром-2,3,3-триметилбутан; б) 1-бром-2,2,3-триметилбутан;

в) 1-бром-2,3,3-триметилбутан; г) 2-бром-2,2,3-триметилбутан.

Составьте уравнение реакции.

Реакция Вюрца действие металлического натрия на галогенопроизводные углеводородов. При взаимодействии двух разных галогенопроизводных образуется смесь углеводородов, которая может быть разделена перегонкой.

СН 3 І + 2 Na + СН 3 І → С 2 Н 6 + 2 NaІ

@ Решить задания:

1. Укажите название углеводорода, который образуется при нагревании бромэтана с металлическим натрием:

а) пропан; б) бутан; в) пентан; г) гексан; д) гептан.

Составить уравнение реакции.

  1. Какие углеводороды образуются при действии металлического натрия на смесь:

а) иодметана и 1-бром-2-метилпропана; б) 2-бромпропана и 2-бромбутана?

Циклоалканы

1. Для малых циклов (С 3 – С 4) характерны реакции присоединения водорода, галогенов и галогеноводородов. Реакции сопровождаются размыканием цикла.

2. Для других циклов (С 5 и выше) характерны реакции замещения.


Непредельные углеводороды (ненасыщенные):

Алкены (олефины, ненасыщенные углеводороды с двойной связью, этиленовые углеводороды): Строение: sp 2 -гибридизация, плоскостное размещение орбиталей (плоский квадрат). Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(не характерны),окисления (горение, КМnO 4), разложения (без доступа кислорода).

@ Решить задания:

  1. Какова гибридизация атомов углерода в молекуле алкена:

а) 1 и 4 – sp 2 , 2 и 3 – sp 3 ; б) 1 и 4 – sp 3 , 2 и 3 – sp 2 ;

в) 1 и 4 – sp 3 , 2 и 3 – sp; г) 1 и 4 – не гибридизованы, 2 и 3 – sp 2 .

2. Назвать алкен:



  1. Составить уравнения реакций на примере бутена-1, назвать полученные продукты.

4. В приведенной ниже схеме превращений этилен образуется в реакции:

а) 1 и 2; б) 1 и 3; в) 2 и 3;

г) этилен не образуется ни в одной реакции.

  1. Какая реакция идет против правила Марковникова:

а)СН 3 – СН = СН 2 + НВr →; б) СН 3 – СН = СН 2 + Н 2 O →;;

в) СН 3 – СН = СН – CH 2 + НCI →; г) СCI 3 – СН = СН 2 + НCI →?


þ Диены с сопряженными связями: гидрование 1,3-бутадиена – образуется 2-бутен (1,4-присоединение):

þ гидрирование 1,3-бутадиена в присутствии катализатора Nі ‑ бутан:

þ галогенирование 1,3-бутадиена – 1,4-присоединение (1,4 – дибром-2-бутен):

þ полимеризация диенов:


Полиены (ненасыщенные углеводороды со многими двойными связями) – это углеводороды, в составе молекул которых содержится не меньше трёх двойных связей.

Получение диенов:

Ø действие спиртового раствора щелочи:

Ø способ Лебедева (синтез дивинила):

Ø дегидратация гликолей (алкандиолов):

Алкины (ацетиленовые углеводороды, углеводороды с одной тройной связью): Строение: sp-гибридизация, линейное размещение орбиталей. Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(образование солей),окисления (горение, КМnO 4), разложения (без доступа кислорода). 5-метилгексин-2 1-пентин 3-метилбутин-1

1. Какие углеводороды соответствуют общей формуле С n H 2n-2: а) ацетиленовые, диеновые; б) этиленовые, диеновые; в) циклоалканы, алкены; г) ацетиленовые, ароматические? 2. Тройная связь является сочетанием: а) трехσ-связей; б) одной σ-связи и двух π-связей; в) двух σ-связей и одной π-связи; г) трехπ-связей. 3. Составить формулу 3-метилпентина -3.
І. Реакции присоединения
v Гидрирование происходит через стадию образования алкенов:
v Присоединение галогенов происходит хуже, чем в алкенах: Алкины обесцвечивают бромную воду (качественная реакция ).
v Присоединение галогенводородов:
Продукты присоединения к нессиметричным алкинам определяются правилом Марковникова:
v Присоединение воды (гидратация) – реакция М.Г.Кучерова, 1881.
Для гомологов ацетилена продуктом присоединения воды является кетон:
ІІІ. Образование солей (кислотные свойства) –реакции замещения
ð Взаимодействие с активными металлами : Ацетилениды используют для синтеза гомологов.
ð Взаимодействие алкинов с аммиачными растворами оксида серебра или хлорида меди(І) :
Качественная реакция на конечную тройную связь ‑ образование серовато-белого осадка ацетиленида серебра или красно-коричневого – ацетиленида меди (І): НС ≡ СН + СuCI → СuC ≡ ССu ↓ + 2HCI Реакция не происходит
ІV. Реакции окисления
Ÿ Мягкое окисление – обесцвечивание водного раствора перманганата калия (качественная реакция на кратную связь ): При взаимодействии ацетилена с разбавленным раствором КМnО 4 (комнатная температура) ‑ щавелевая кислота .

Химический элемент определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой.

В табл. 1 перечислены распространенные химические элементы, приведены символы, которыми они обозначаются (в скобках – произношение), порядковые номера, относительные атомные массы, характерные степени окисления.

Нулевая степень окисления элемента в его простом веществе (веществах) в таблице не указана.




Все атомы одного элемента имеют одно и то же число протонов в ядре и число электронов в оболочке. Так, в атоме элемента водород Н находится 1р + в ядре и на периферии 1е - ; в атоме элемента кислород О находится 8р + в ядре и 8е - в оболочке; атом элемента алюминий Аl содержит 13р + в ядре и 13е - в оболочке.

Атомы одного элемента могут различаться числом нейтронов в ядре, такие атомы называются изотопами. Так, у элемента водород Н три изотопа: водород-1 (специальное название и символ протий 1 H) с 1 р + в ядре и 1е - в оболочке; водород-2 (дейтерий 2 Н, или D) с 1р + и 1п 0 в ядре и 1е - в оболочке; водород-3 (тритий 3 Н, или Т) с 1р + и 2п 0 в ядре и 1е - в оболочке. В символах 1 Н, 2 Н и 3 Н верхний индекс указывает массовое число – сумму чисел протонов и нейтронов в ядре. Другие примеры:




Электронную формулу атома любого химического элемента в соответствии с его расположением в Периодической системе элементов Д. И. Менделеева можно определить по табл. 2.




Электронная оболочка любого атома делится на энергетические уровни (1, 2, 3-й и т. д.), уровни делятся на подуровни (обозначаются буквами s, р, d, f ). Подуровни состоят из атомных орбиталей – областей пространства, где вероятно пребывание электронов. Орбитали обозначаются как 1s (орбиталь 1-го уровня s-подуровня), 2s , 2р , 3s , 3р, 3d, 4s … Число орбиталей в подуровнях:



Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

1) принцип минимума энергии

Электроны заполняют орбитали, начиная с подуровня с меньшей энергией.

Последовательность нарастания энергии подуровней:

1s < 2c < 2p < 3s < 3p < 4s ? 3d < 4p < 5s ? 4d < 5p < 6s

2) правило запрета (принцип Паули)

В каждой орбитали может разместиться не более двух электронов.

Один электрон на орбитали называется неспаренным, два электрона - электронной парой:




3) принцип максимальной мультиплетности (правило Хунда)

В пределах подуровня электроны сначала заполняют все орбитали наполовину, а затем – полностью.

Каждый электрон имеет свою собственную характеристику – спин (условно изображается стрелкой вверх или вниз). Спины электронов складываются как вектора, сумма спинов данного числа электронов на подуровне должна быть максимальной (мультиплетность):




Заполнение электронами уровней, подуровней и орбиталей атомов элементов от Н (Z = 1) до Kr (Z = 36) показано на энергетической диаграмме (номера отвечают последовательности заполнения и совпадают с порядковыми номерами элементов):



Из заполненных энергетических диаграмм выводятся электронные формулы атомов элементов. Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы (например, 3d 5 – это 5 электронов на Зd -подуровне); вначале идут электроны 1-го уровня, затем 2-го, 3-го и т. д. Формулы могут быть полными и краткими, последние содержат в скобках символ соответствующего благородного газа, чем передается его формула, и, сверх того, начиная с Zn, заполненный внутренний d-подуровень. Примеры:

3 Li = 1s 2 2s 1 = [ 2 He]2s 1

8 O = 1s 2 2s 2 2p 4 = [ 2 He]2s 2 2p 4

13 Al = 1s 2 2s 2 2p 6 3s 2 3p 1 = [ 10 Ne]3s 2 3p 1

17 Cl = 1s 2 2s 2 2p 6 3s 2 3p 5 = [ 10 Ne]3s 2 3p 5

2O Са = 1s 2 2s 2 2p 6 3s 2 3p4s 2 = [ 18 Ar]4s 2

21 Sc = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 = [ 18 Ar]3d 1 4s 2

25 Mn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 = [ 18 Ar]3d 5 4s 2

26 Fe = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 = [ 18 Ar]3d 6 4s 2

3O Zn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 = [ 18 Ar, 3d 10 ]4s 2

33 As = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 = [ 18 Ar, 3d 10 ]4s 2 4p 3

36 Kr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 = [ 18 Ar, 3d 10 ]4s 2 4p 6

Электроны, вынесенные за скобки, называются валентными. Именно они принимают участие в образовании химических связей.

Исключение составляют:

24 Cr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 = [ 18 Аr]Зd 5 4s 1 (а не 3d 4 4s 2 !),

29 Cu = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 = [ 18 Ar]3d 10 4s 1 (а не 3d 9 4s 2 !).

Примеры заданий части А

1. Название, не относящееся к изотопам водорода, – это

1) дейтерий

2) оксоний


2. Формула валентных подуровней атома металла – это


3. Число неспаренных электронов в основном состоянии атома железа равно


4. В возбужденном состоянии атома алюминия число неспаренных электронов равно


5. Электронная формула 3d 9 4s 0 отвечает катиону


6. Электронная формула аниона Э 2- 3s 2 3p 6 отвечает элементу


7. Суммарное число электронов в катионе Mg 2+ и анионе F - равно

ОРБИТАЛЬ

ОРБИТАЛЬ , в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ - поверхность пространства вокруг атомного ЯДРА, в которой могут двигаться ЭЛЕКТРОНЫ. Есть большая вероятность присутствия электрона на такой орбитали. Она может содержать один или два электрона. Орбиталь имеет форму и энергию, соответствующую КВАНТОВОМУ ЧИСЛУ атома. В молекулах электроны связи двигаются в объединенном электрическом поле всех ядер. В этом случае атомные орбитали становятся молекулярными орбиталями, областями, которые окружают два ядра, имеющих характерную энергию и содержащих два электрона. Эти молекулярные орбитали, образующиеся из атомных орбиталей, составляют ХИМИЧЕСКИЕ СВЯЗИ.

Атомные орбитали описывают поверхность вокруг ядра атома, в которой скорее всего находятся электроны. Их можно также назвать «энергетическими облаками». Их существованием объясняются химические связи. Электроны содержатся внутри атомных или молекулярных структур, выстраивающихся в энергетические уровни. Для первого уровня характерен только один тип электронов: на нем имеется одна s-орбиталь (А), показанная относительно осей атома х, у и z. Максимальное количество электронов,которые могут находиться на этом энергетическом уровне, равно двум. У второго типа элек тронов орбиталь имеет форму двух соединенных сфер, расположенных симметрично относительно ядра. Такая орбиталь называется р-орбиталью (В) V атома три таких орбитали, и расположены они под прямым углом друг к другу (1,2, 3) Орбитали, которые имеют правильные сферические очертания, для большей ясности картины принято условно обозначать в виде грушевидных облаков. Кроме того, существует также пять d-орбиталей (C-G), каждая из которых состоит из четырех грушевидных долей на двух перпендикулярных осях, пересекающихся в ядре G - комбинация двух р-орбиталей.


Научно-технический энциклопедический словарь .

Смотреть что такое "ОРБИТАЛЬ" в других словарях:

    Орбиталь: Атомная орбиталь. Молекулярная орбиталь. Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из … Википедия

    орбиталь - – полный набор волновых функций электрона, находящегося в поле нуклидов и усредненном поле всех остальных электронов, взаимодействующих с теми же нуклидами. Атомная орбиталь – разрешенное состояние электрона в атоме, геометрический образ,… … Химические термины

    Ф ция пространственныхпеременных одного электрона, имеющая смысл волновой ф ции электрона, находящегосяв поле атомного или молекулярного остова. Если такая ф ция учитывает спинэлектрона, то она наз. спин О. Подробнее см. Молекулярная орбиталъ.… … Физическая энциклопедия

    орбиталь - orbitale. физ. Атомные и и молекулярные волновые функции электрона, находящегося в поле одного или нескольких атомных ядер и в усредненном поле всех остальных электронов рассматриваемого атома или молекулы. НЭС 2000 … Исторический словарь галлицизмов русского языка

    - (от лат. orbita путь, колея), волновая ф ция, описывающая состояние одного электрона в атоме, молекуле или др. квантовой системе. В общем случае квантовохим. термин О. используется для любой ф ции, зависящей от переменных х, у, z одного… … Химическая энциклопедия

    орбиталь - orbitalė statusas T sritis chemija apibrėžtis Banginė funkcija, apibūdinanti elektrono judėjimą atome arba molekulėje; erdvė, kurioje elektrono buvimas labiausiai tikėtinas. atitikmenys: angl. orbital rus. орбиталь … Chemijos terminų aiškinamasis žodynas

    орбиталь - orbitalė statusas T sritis fizika atitikmenys: angl. orbital vok. Orbital, n rus. орбиталь, f pranc. orbitale, f … Fizikos terminų žodynas

    орбиталь - орбит аль, и … Русский орфографический словарь

    орбиталь - с. Орбита буенча башкарыла торган. Орбита буенча хәрәкәт итә торган яки шуның өчен билгеләнгән … Татар теленең аңлатмалы сүзлеге

    орбиталь - Функция, пространственных переменных одного электрона, имеющая смысл волновой функции отдельного электрона в поле эффективного атомного или молекулярного остова … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Химия. Строение вещества (10 таблиц) , . Учебный альбом из 10 листов. Строение атома. Электронная орбиталь. Модели атомов некоторых элементов. Кристаллы. Химическая связь. Валентность. Степень окисления. Изометрия. Гомология. Арт.…

Атомную орбиталь, имеющую шаровую симметрию (рис.3), принято обозначать как s -орбиталь (s -АО) , а находящиеся в ней электроны – как s -электроны .

Радиус атомной s-орбитали возрастает при увеличении номера энергетического уровня; 1s-АО расположена внутри 2s-АО, последняя – внутри 3s-АО и т.д. с центром, отвечающим атомному ядру. В целом строение электронной оболочки атома в орбитальной модели представляется слоистым. Каждый энергетический уровень, содержащий электроны, геометрически рассматривается как электронный слой.

Для сокращенного обозначения электрона, занимающего атомную s-орбиталь, используется обозначение самой s-АО с верхним цифровым индексом, указывающим число электронов. Например, 1s− обозначение единственного электрона атома водорода.

Номер энергетического уровня отвечает главному квантовому числу, а вид орбитали − орбитальному квантовому числу .

2s Li=1s2s,Be=1s2s

1s H=1s, He

Электронная формула в сочетании с энергетической диаграммой электронной оболочки атома (рис.3) отражают его электронную конфигурацию.

Атомную орбиталь, имеющую вращательную (осевую) симметрию принято обозначать как p -орбиталь (p -АО) (рис.3); находящиеся в ней электроны – это p -электроны.

Каждая атомная p-орбиталь может принять (при максимальном заполнении) два электрона, подобно любой другой АО. Эти электроны сообща занимают обе половины p -орбитали. На каждом атомном энергетическом уровне (кроме первого) имеется три атомных орбитали, которым отвечает максимальное заселение шестью электронами.

Все три p -АО одного энергетического уровня отличаются друг от друга пространственным расположением; их собственные оси, проходящие через обе половины орбитали и перпендикулярные ее узловой плоскости, образуют систему декартовых координат (обозначения собственных осей x, y, z). Поэтому на каждом энергетическом уровне имеется набор трех атомных p-орбиталей: p x -, p y - и p z -АО. Буквы x, y, z соответствуют магнитному квантовому числу , позволяющему судить о влиянии внешнего магнитного поля на электронную оболочку атома.

Атомные s-орбитали имеются на всех энергетических уровнях, атомные p -орбитали − на всех уровнях, кроме первого. На третьем и последующих энергетических уровнях к одной s-АО и трем p -АО присоединяется пять атомных орбиталей, получивших название d -орбиталей (рис.4), а на четвертом и последующих уровнях − еще семь атомных орбиталей, называемых f -орбиталями .

2.3. Энергетические подуровни

многоэлектронного атома. принципы

построения электронной оболочки

Квантово-механические расчеты показывают, что в многоэлектронных атомах энергия электронов одного уровня не одинакова; электроны заполняют атомные орбитали разных видов и имеют разную энергию.

Энергетический уровень характеризуется главным квантовым числом n . Для всех известных элементов значения n изменяются от 1 до 7. Электроны в многоэлектронном атоме, находящемся в основном (невозбужденном) состоянии, занимают энергетические уровни от первого до седьмого.

Энергетический подуровень характеризуется орбитальным квантовым числом l . Для каждого уровня (n = const) квантовое число l принимает все целочисленные значения от 0 до (n-1), например, при n=3 значениями l будут 0, 1 и 2. Орбитальное квантовое число определяет геометрическую форму (симметрию) орбиталей s -, p -, d -, f -подуровня. Очевидно, что во всех случаях n>l ; при n=3 максимальное значение l равно 2.

Существующие подуровни для первых четырех энергетических уровней, числа атомных орбиталей и электронов в них приведены в таблице 1.

Закономерность заполнения электронных оболочек атомов определяется принципом запрета, установленным в 1925 г. швейцарским физиком Паули.

Принцип Паули : в атоме не могут находится два электрона в тождественных состояниях.

Различие электронов, занимающих разные атомные орбитали одного подуровня (n , l = const ), кроме s-подуровня, характеризуется магнитным квантовым числом m . Это число называется магнитным, поскольку оно характеризует поведение электронов во внешнем магнитном поле. Если значение l определяет геометрическую форму атомных орбиталей подуровня, то значение квантового числа m устанавливает взаимное пространственное расположение этих орбиталей.

Таблица 1

Энергетические уровни, подуровни и орбитали

многоэлектронного атома

Энерге-тический уровень n

Энергетический подуровень

Обозначение орбитали

Число орби-

n

Число электронов

2n

вид орбитали

Магнитное квантовое число m l в пределах данного подуровня (n , l = const ) принимает все целочисленные значения от +l до –l , включая нуль. Для s-подуровня (n = const , l = 0 ) возможно только одно значение m l = 0, откуда следует, что на s-подуровне любого (от первого до седьмого) энергетического уровня содержится одна s-АО.

Для p-подуровня (n > 1, l = 1) m l может принимать три значения +1, 0, -1, следовательно, на p-подуровне любого (от второго до седьмого) энергетического уровня содержится три p-АО.

Для d-подуровня (n > 2, l = 2) m l имеет пять значений +2, +1, 0, -1, -2 и, как следствие, d - подуровень любого (от третьего до седьмого) энергетического уровня обязательно содержит пять d - АО.

Аналогично, для каждого f - подуровня (n > 3, l = 3) m имеет семь значений +3, +2, +1, 0, -1, -2, -3 и поэтому любой f - подуровень содержит семь f - АО.

Таким образом, каждая атомная орбиталь однозначно определяется тремя квантовыми числами - главным n , орбитальным l и магнитным m l .

При n = const строго определены все относящиеся к данному энергетическому уровню значения l , а при l = const все относящиеся к данному энергетическому подуровню значения m l .

Ввиду того, что каждая орбиталь может максимально заполняться двумя электронами, число электронов, которое может разместиться на каждом энергетическом уровне и подуровне, вдвое больше числа орбиталей на данном уровне или подуровне. Поскольку электроны, находящиеся в одной атомной орбитали, имеют одинаковые значения квантовых чисел n , l и m l , то для двух электронов на одной орбитали используется четвертое, спиновое квантовое число s , которое определяется спином электрона.

В соответствии с принципом Паули можно утверждать, что каждый электрон в атоме однозначно характеризуется своим набором четырех квантовых чисел – главного n , орбитального l , магнитного m и спинового s .

Заселение электронами энергетических уровней, подуровней и атомных орбиталей подчиняется следующему правилу (принцип минимума энергии): в невозбужденном состоянии все электроны обладают наименьшей энергией.

Это означает, что каждый из электронов, заполняющих оболочку атома, занимает такую орбиталь, чтобы атом в целом имел минимальную энергию. Последовательное квантовое возрастание энергии подуровней происходит в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s - …..

Заполнение атомных орбиталей внутри одного энергетического подуровня происходит в соответствии с правилом, сформулированным немецким физиком Ф.Хундом (1927 г.).

Правило Хунда : атомные орбитали, принадлежащие к одному подуровню, заполняются каждая вначале одним электроном, а затем происходит их заполнение вторыми электронами.

Правило Хунда также называют принципом максимальной мультиплетности, т.е. максимально возможного параллельного направления спинов электронов одного энергетического подуровня.

На высшем энергетическом уровне свободного атома может находиться не более восьми электронов.

Электроны, находящиеся на высшем энергетическом уровне атома (во внешнем электронном слое), называются внешними ; число внешних электронов у атома любого элемента никогда не бывает больше восьми. Для многих элементов именно число внешних электронов (при заполненных внутренних подуровнях) в значительной степени определяет их химические свойства. Для других электронов, у атомов которых есть незаполненный внутренний подуровень, например 3d - подуровень у атомов таких элементов, как Sc, Ti, Cr, Mn и др., химические свойства зависят от числа как внутренних, так и внешних электронов. Все эти электроны называются валентными ; в сокращенных электронных формулах атомов они записываются после условного обозначения атомного остова, т. е. после выражения в квадратных скобках.