Уравнение шредингера и физический смысл его решений. Уравнение Шредингера

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Введение

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Уравнение Шредингера и физический смысл его решений

Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

где Н -- оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

то переход к классическому уравнению Гамильтона--Якоби для функции действия S

можно получить из (1.3) формальным преобразованием

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора, получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

где является плотностью вероятности, а вектор

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию всегда можно представить в виде

где и -- действительные функции времени и координат. Таким образом, плотность вероятности

а плотность тока вероятности

Из (1.9) следует, что j = 0 для всех функций, у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций.

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и, удовлетворяющими двум связанным уравнениям. Например, если оператор Н -- вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

при этом плотность вероятности и плотность тока вероятности примут вид

Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии. Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

Если соотношение (2.1) использовать в качестве определения и применить к нему операцию, то с учетом определения 3-мерной -функции,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

тогда для Фурье-образа потенциала будем иметь

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной, а затем эту новую переменную вновь обозначим посредством. Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как, где.

Необходимо отметить, что из условия нормировки

следует равенство

Это можно показать, подставив в (2.7) выражение (2.1) для функции:

Если здесь сначала выполнить интегрирование по, то мы без труда получим соотношение (2.8).

В развитие идеи де-Бройля о волновых свойствах вещества Э. Шрёдингер получил в 1926 г. свое знаменитое уравнение. Шрёдингер сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (). Мы будем называть ее пси-функцией.

Пси-функция характеризует состояние микрочастицы. Вид функции получается из решения уравнения Шрёдингера, которое выглядит следующим образом:

Здесь - масса частицы, i - мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию представляет собой сумму вторых частных производных по координатам:

Буквой U в уравнении (21.1) обозначена функция координат и времени, градиент которой, взятый с обратным знаком, определяет силу, действующую на частицу. В случае, когда функция U не зависит явно от времени, она имеет смысл потенциальной энергии частицы.

Из уравнения (21.1) следует, что вид пси-функции определяется функцией U, т. е. в конечном счете характером сил, действующих на частицу.

Уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других соотношений. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Шрёдингер установил свое уравнение, исходя из оптико-механической аналогии. Эта аналогия заключается в сходстве уравнений, описывающих ход световых лучей, с уравнениями, определяющими траектории частиц в аналитической механике. В оптике ход лучей удовлетворяет принципу Ферма (см. § 115 2-го тома), в механике вид траектории удовлетворяет так называемому принципу наименьшего действия.

Если силовое поле, в котором движется частица, стационарно, то функция V не зависит явно от времени и имеет, как уже отмечалось, смысл потенциальной энергии. В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой - только от времени:

Здесь Е - полная энергия частицы, которая в случае стационарного поля остается постоянной. Чтобы убедиться в справедливости выражения (21.3), подставим его в уравнение (21.1). В результате получим соотношение

Сократив на общий множитель придем к дифференциальному уравнению, определяющему функцию

Уравнение (21.4) называется уравнением Шрёдингера для стационарных состояний. В дальнейшем мы будем иметь дело только с этим уравнением и для краткости будем называть его просто уравнением Шрёдингера. Уравнение, (21.4) часто пишут в виде

Поясним, как можно прийти к уравнению Шрёдингера. Для простоты ограничимся одномерным случаем. Рассмотрим свободно движущуюся частицу.

Согласно идее де-Бройля ей нужно сопоставить плоскую волну

(в квантовой механике принято показатель экспоненты брать со знаком минус). Заменив в соответствии с (18.1) и (18.2) через Е и , придем к выражению

Продифференцировав это выражение один раз по t, а второй раз дважды по х, получим

В нерелятивистской классической механике энергия Е и импульс свободной частицы связаны соотношением

Подставив в это соотношение выражения (21.7) для Е и и сократив затем на , получим уравнение

которое совпадает с уравнением (21.1), если в последнем положить

В случае частицы, движущейся в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс связаны соотношением

Распространив и на этот случай выражения (21.7) для Е и получим

Умножив это соотношение на , перенеся член влево, придем к уравнению

совпадающему с уравнением (21.1).

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шрёдингера. Их цель - пояснить, каким образом можно было прийти к установлению этого уравнения.

В квантовой механике большую роль играет понятие Под оператором подразумевают правило, посредством которого одной функции (обозначим ее ) сопоставляется другая функция (обозначим ее ). Символически это записывается следующим образом:

Здесь - символическое обозначение оператора (с таким же успехом можно было взять любую другую букву с «шляпкой» над ней, например и т. д.). В формуле (21.2) роль Q играет роль - функция F, а роль f - правая часть формулы.

Сделаем рисунок

В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

или, если учесть формулу (1.1)

К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

Согласно первому граничному условию имеем:

Таким образом, получим решение нашей задачи:

Как известно, . Поэтому найденное решение можно переписать в виде:

Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

Наименьший возможный импульс движущегося электрона равен

Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно — неизвестно. Поскольку наименьшее значение p равно , то получаем:

Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически — в этом все объяснение.

Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

где n = 1, 2,…, и называется квантовым числом.

Таким образом, мы получили энергетические уровни.

Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

Обще уравнение Шредингера. Уравнение Шредингера для стационарных состояний

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гейзенберга (см. 5 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ (х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами x и x+dx, y иy+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера,как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h=h/(2π), m-масса частицы, ∆ -оператор Лапласа (),

i - мнимая единица, U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ (х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные

должны быть непрерывны; 3) функция |Ψ| 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

Или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что ω = E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Ψ| 2 , то это (см. (217.2)) несущественно. Тогда

,

; (217.3)

Используя взаимосвязь между энергией Е и импульсом p (E = p 2 /(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U= 0 (ми рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения используя взаимосвязь между Еи р (для данного случая р 2 /(2m)=E -U), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящем от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состоянии - состоянии с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U(х, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель е – i (E/ h) t и соответствующих преобразований придем к уравнению, определяющему функцию ψ:

(217.5)

Уравнение (217.5) называетсяуравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобственными. Решения же, которые соответствуютсобственным значениям энергии, называютсясобственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.