Досмотровый комплекс. Безопасность и здравоохранение

Классические подходы оценки стоимости бизнеса к российским предприятиям (в российских условиях) сопровождаются определенными трудностями в силу объективных причин. К ним относятся:

  • неразвитость российского фондового рынка, вследствие чего информация по рыночной котировке ценных бумаг большинства предприятий отсутствует;
  • информационная закрытость российского фондового рынка – в ряде случаев невозможно получить публичную финансовую отчетность даже открытых акционерных обществ, что затрудняет сбор информации по компаниям-аналогам. Таким образом, применение сравнительного (рыночного) подхода к оценке предприятия в нашей стране ограничено в силу невозможности получить достоверную информацию для сравнения в достаточном объеме;
  • сложность применения метода чистых активов в связи с большими размерами самих предприятий; измеряемая сотнями и тысячами наименований номенклатура продукции, выпускаемой российскими промышленными предприятиями, осложняет поиск аналогов оцениваемого предприятия не только в нашей стране, но и за рубежом;
  • большинство оцениваемых предприятий показывают прибыль, близкую к нулевой, что служит следствием уклонения от уплаты налога на прибыль или они вообще убыточны, что является следствием общего состояния экономики в стране или неэффективного менеджмента. Таким образом, становится невозможным использование метода дисконтирования денежного потока;
  • в условиях инфляционной экономики для оценки предприятия в наибольшей степени подходит метод дисконтирования денежных потоков, так как процент инфляции учитывается в дисконтной ставке. Это возможно, если темпы инфляции предсказуемы, а экономика нормально функционирует. Однако спрогнозировать поток чистого дохода от деятельности предприятия на несколько лет вперед в условиях нестабильной экономики весьма проблематично.

Отличительной чертой экономики РФ и в настоящее время продолжает оставаться ее нестабильность. Риски, с которыми сталкиваются предприниматели в России, превышают средние величины, характерные для стран с развитыми рыночными отношениями. Положение усугубляется достаточно высокими (но меркам развитых рыночных стран) темпами инфляции, которые приводят к тому, что та незначительная информация, которую можно получить (или которая имеется) для оценки стоимости предприятия, отражает бизнес в "кривых зеркалах". Инфляционные процессы сказываются на положении предприятия: занижается стоимость имущества предприятия; накопление денег для капитальных вложений становится невозможным; доминируют краткосрочные интересы менеджмента и собственников.

При оценке российских предприятий особое значение приобретает дата оценки. Привязка оценки ко времени особенно важна, когда, с одной стороны, рынок перенасыщен собственностью, находящейся в предбанкротном состоянии, а с другой – испытывает недостаток инвестиционных ресурсов. Для российской экономики характерно превышение предложения всех активов, в том числе недвижимости, над платежеспособным спросом. Этот дисбаланс в сторону предложения непосредственно влияет на ожидаемую стоимость предлагаемого в продажу имущества. Следует иметь в виду, что цепа имущества в условиях сбалансированного рынка не совпадает с ценой в условиях рыночной депрессии. Владельцев имущества и инвесторов интересует именно та цена, которая будет предлагаться на конкретном рынке, в конкретный момент и в конкретных условиях. Покупатели стремятся уменьшить вероятность потери своих денег и требуют предоставления определенных гарантий. Поэтому в оценке стоимости предприятия необходим учет всех факторов риска, в том числе риска инфляции и банкротства.

Ценообразование и оценка взаимосвязаны и взаимообусловлены. Механизм ценообразования и система цен, формирующаяся на его основе, носит общий характер, и поэтому ценообразование, формирующее цепу, и оценку, имеющую своим результатом стоимость, нельзя противопоставлять друг другу, а необходимо рассматривать как смежные профессии, изучающие в условиях действующих товарно-денежных отношений соприкасающиеся категории. Однако особенности оценки как профессии следует рассмотреть более детально.

УДК 62+339.543.5 ББК 32.965

С.А. ОГОРОДНИКОВ, С.В. СИМОЧКО,

Ю.В. МАЛЫШЕНКО

Инспекционно-досмотровый комплекс СТ-6035

Рассматриваются устройство и порядок применения российского инспекционно-досмотрового комплекса СТ-6035, предназначенного для осмотра автотранспортных средств с перевозимыми грузами. Обсуждаются технические характеристики и функциональные возможности комплекса для целей таможенного контроля.

Ключевые слова: инспекционно-досмотровый комплекс, генератор излучения, детекторная линейка, рабочая станция, анализ изображения, радиационная безопасность.

S.A.Ogorodnikov, S.V. Simochko, Y.V. Malyshencko

Inspection and examination complex ST-6035

The article describes the structure and operation order of the Russian inspection and examination complex ST-6035 designed for inspection of cargo-carrying vehicles. The technical characteristics and functional capabilities of the complex for the purpose of customs control are discussed.

Key words: inspection and examination complex, radiation generator, linear array, working station, image analyses, radiation security.

В Приморском крае на МАПП «Пограничный» по согласованной программе заводских приемо-сдаточных испытаний и с участием государственного заказчика 12 декабря 2013 г. успешно завершены заводские испытания инспекционно-досмотрового комплекса (ИДК) СТ-6035. В ходе испытаний было продемонстрировано технологическое оборудование комплекса, протестированы его основные технические характеристики в зимних условиях эксплуатации (при температуре наружного воздуха -25 °С).

ИДК - очень сложные и дорогостоящие технические устройства. Всего несколько стран в мире, в том числе Россия, наладили их проектирование

ОГОРОДНИКОВ Сергей Анатольевич - кандидат технических наук, директор по науке и технологиям ООО «Скантроник Системе», г. Владивосток.

СИМОЧКО Сергей Владимирович - заместитель председателя Совета директоров ООО «Скантроник си-стемс», г. Владивосток.

МАЛЫШЕНКО Юрий Вениаминович - профессор, доктор технических наук, профессор кафедры организации таможенного контроля и технических средств таможенного контроля Владивостокского филиала Российской таможенной академии, г. Владивосток.

и производство. Фактически СТ-6035 - это первый отечественный легко возводимый ИДК, доведенный до стадии внедрения в промышленную эксплуатацию. Он установлен на территории вновь строящегося таможенного перехода в непосредственной близости от границы с КНР. Предполагается, что он будет применяться для осмотра автотранспортных средств, перемещающих товары и пассажиров из КНР в Россию.

В создании комплекса участвовали: «Скантроник Системс» - разработчик комплекса программного обеспечения ; НИИЯФ МГУ им. Д.В. Скобельцына - разработчик и производитель клистронного ускорителя электронов; ФГУП НПП «Торий», ФГУП НПП «Пульсар», ОАО НИИСВТ, входящие в ОАО «Росэлектроника», - производители компонентов и узлов.

Комплекс находится в закрытом строении (ангаре) с системой отопления и освещения, осуществлять его эксплуатацию можно в любое время года (рис. 1). Он позволяет производить рентгеновское просвечивание 40-футового контейнера вместе с перемещающим его транспортным средством.

Рис. 1. Внешний вид ангара ИДК

Внутри ангара находится досмотровый туннель для объекта контроля и помещения для персонала и водителя осматриваемого автотранспортного средства.

Туннель с двух сторон имеет ворота, управляемые автоматикой. Автотранспортное средство въезжает в одни ворота, а выезжает через другие. Внутри туннеля находятся рельсы, по которым перемещается передвижная рама (рис. 2). Ширина просвета между рельсами - 9,29 метра. Дорожка для передвижения автотранспортного средства расположена между рельсами и ограничена бортиком из труб, окрашенных в желтый цвет.

Основные характеристики комплекса, которые были подтверждены в ходе испытаний:

Максимальные габариты объекта контроля: 20 х 3 х 4,5 м;

Энергия излучения: 6 и 3,5 МэВ;

Частота повторения импульсов излучений: 2 х 200 Гц;

Проникающая способность по стали: 400 мм;

Чувствительность по проволоке: без преграды - 0,5 мм, за 100 мм стали - 1,0 мм, за 250 мм стали - 6,0 мм;

Контрастная чувствительность: за 40 мм стали - <1%, за 200 мм стали -0,5%, за 300 мм стали - 1%.

Рис. 2. Передвижная рама с генератором и детекторной линейкой

В досмотровом туннеле находится передвижная рама, которая представляет собой портал с опорными точками на двух рельсах. На одной базовой точке располагается платформа с бунгало с излучателем, модулятором, чил-лером (системой охлаждения), фильтром, коллиматором и электрическим шкафом (рис. 2, справа). На другой базовой точке размещается дугообразная линейка детекторов с чувствительными элементами и платами электроники, а также свинцовый поглотитель пучка по всей высоте дуги, предотвращающий выход пучка в окружающее пространство (рис. 2, слева). Компоненты этой передвижной рамы обеспечивают генерацию рентгеновского излучения в направлении просвечиваемого объекта и регистрацию излучения, прошедшего через автотранспортное средство. Высота рамы должна быть выше объекта контроля, так как в процессе сканирования она передвигается по рельсам, оставляя под собой сканируемое автотранспортное средство (рис. 3).

Возможно несколько скоростей перемещения передвижной рамы: 9, 18 и 36 м/мин.

ТЕОРИЯ И ПРАКТИКА ТАМОЖЕННОГО ДЕЛА

Процесс осмотра с помощью данного комплекса можно представить в виде следующих операций:

1. Ворота открываются. Автотранспортное средство заезжает в досмотровый туннель.

2. Ворота закрываются. Водитель в сопровождении одного из операторов комплекса покидает машину и выходит через специальную дверь из досмотрового туннеля.

Рис. 3. Движение рамы в процессе сканирования

3. Старший смены по системе видеонаблюдения проверяет отсутствие людей в досмотровом туннеле. Если по данным системы мониторинга нет блокировок, он со специального пульта дает команду на включение генератора и сканирование. Передвижная рама двигается по рельсам и генератор периодически с частотой 2 х 200 Гц излучает кванты рентгеновского излучения.

4. Детекторная линейка периодически фиксирует интенсивность прошедшего через объект излучения. Данные с детекторной линейки передаются в компьютерную систему, которая формирует рентгеновский снимок (изображение) объекта.

5. Одновременно через станцию ввода документов сканируются документы перевозчика и заносятся в базу данных комплекса.

6. После сканирования полученное рентгеновское изображение, вместе со сканированными документами, передается для анализа оператору изображений. По результатам анализа принимается решение: есть или нет подозрения в отношении осмотренного объекта.

7. По завершению сканирования и выключения генератора открывается дверь в досмотровый туннель, водитель проходит к машине, открываются ворота ангара и машина выводится из досмотрового туннеля.

ТАМОЖЕННАЯ ПОЛИТИКА РОССИИ НА ДАЛЬНЕМ ВОСТОКЕ № 1(66)/2014

8. Выехав из ангара, водитель ожидает решения по результатам осмотра.

Основными и наиболее наукоемкими компонентами ИДК являются источник излучения и детекторная линейка, параметры которых во многом определяют радиационно-физические параметры ИДК и качество получаемого рентгеновского изображения.

Источник излучения представляет собой клистронный линейный ускоритель электронов УЭЛР-6-1-Д-4-01 производства совместного предприятия компании «Скантроник Системс» и МГУ им. М.В. Ломоносова (рис. 4).

Рис. 4. Вид спереди бунгало с генератором - (а); то же, но со снятой передней панелью (б)

Генератор комплекса работает в импульсном режиме, последовательно выдавая короткие пары импульсов излучения с частотой 200 Гц с энергиями 6 и 3,5 МэВ. Нечетные импульсы каждой пары имеют высокую энергию, четные - низкую. Использование импульсов с разными энергиями позволяет оценивать эффективный атомный номер материала (Z) в точке прохождения рентгеновского луча . При этом стало возможным классифицировать материалы по четырем группам:

- «органические» материалы с малым атомным номером (1 < Z < 10);

Материалы со средним атомным номером (10 < Z < 20);

- «неорганические» материалы (20 < Z < 50);

Тяжелые металлы с высоким атомным номером (Z > 50).

Специальной коллимационной системой рентгеновское излучение формируется в узкий веерообразный луч шириной 3 мм. На рис. 3 хорошо видна щель коллиматора.

Прошедшие через объект контроля рентгеновские лучи попадают на детекторную линейку (рис. 5а). Система детектирования предназначена

ТЕОРИЯ И ПРАКТИКА ТАМОЖЕННОГО ДЕЛА

для измерения интенсивности тормозного излучения, прошедшего через объект контроля. Конструктивно она представляет собой дугообразную линейку детекторов с чувствительными элементами-детекторами, расположенными вдоль дуги окружности с центром в фокусном пятне ускорителя. Дугообразная форма позволяет устранить искажения, возникающие из-за разного расстояния от фокуса источника излучения до детекторов, если бы детекторная линейка была бы прямолинейной.

Используются сцинтилляционные детекторы. Такой детектор представляет собой пару «люминофор, светящийся при попадании на него квантов рентгеновского излучения + фотодиод». Фотодиод преобразует свечение в аналоговый сигнал в виде электрического тока, величина которого зависит от величины энергии квантов, попавших на люминофор.

Детекторная линейка собирается из печатных модулей (рис. 5б), на каждом из которых установлено по 8 детекторов, каждый детектор имеет ширину 3 мм. Всего детекторная линейка может содержать до 2 112 штук детекторов.

Рис. 5. Детекторная линейка (а) и модуль с детекторами (б)

Аналоговые сигналы с детекторов преобразовываются в цифровую форму и передаются на компьютерную систему комплекса, в которой, с помощью

ТАМОЖЕННАЯ ПОЛИТИКА РОССИИ НА ДАЛЬНЕМ ВОСТОКЕ № 1(66)/2014

специализированного программного обеспечения, производится окончательная обработка данных, включая коррекцию и фильтрацию, формирование и визуализацию черно-белого или цветного изображения сканируемого объекта на мониторе компьютера.

Для снижения влияния окружающей среды детекторы и электронные компоненты детекторной линейки размещаются в дугообразном стальном корпусе с изоляцией от электромагнитных помех и сопряженном с приточновытяжной энергосберегающей установкой «Климат СК-012» (рис. 5а), обеспечивающей замкнутую циркуляцию воздуха с осушением и поддерживающей требуемую температуру внутри корпуса. Для работы с данными и управления комплексом имеется несколько персональных компьютеров, организованных в вычислительную сеть. Компьютер с прикладным программным обеспечением называют станцией. Станции имеют названия, отражающие основное назначение ее прикладного программного обеспечения. Структура компьютерной системы комплекса показана на рис. 6.

Операторы ИДК работают со следующими рабочими станциями:

Ввод документации (к ней подключен сканер);

Управление комплексом;

Сбор данных;

Начальник смены;

Анализ изображений.

Шкаф адрвдрный

Рис. 6. Структура компьютерной системы ИДК СТ-6035

ТЕОРИЯ И ПРАКТИКА ТАМОЖЕННОГО ДЕЛА

Рис. 7. Место расположения рабочей станции ввода документации

станции отображаются положения в ходе сканирования (рис. 10).

Рабочая станция ввода товаросопроводительной документации находится в небольшом помещении прямо на выходе из перехода, по которому водитель выходит из досмотрового туннеля (рис. 7). Один из операторов комплекса сканирует и вводит в базу данных ИДК данные и документы, представленные водителем (рис. 8).

Остальные станции находятся в отдельном большом помещении (рис. 9).

Рабочая станция оператора сканирования обеспечивает управление и мониторинг технологического оборудования комплекса. По сетевому интерфейсу TCP/IP она имеет связь с системой детектирования комплекса и другими рабочими станциями компьютерной системы комплекса, а также с логическим контроллером. В частности, на мониторе ворот, перемещение передвижной рамы

Рис. 8. Экран отображения данных и документов

ТАМОЖЕННАЯ ПОЛИТИКА РОССИИ НА ДАЛЬНЕМ ВОСТОКЕ № 1(66)/2014

Рис. 9. Помещение операторов комплекса

Рис. 10. Отображение процесса сканирования

На рабочей станции анализа изображений осуществляется анализ рентгеновского изображения сканированного объекта и соответствующей товаросопроводительной документации.

Всего станций три, т. е. одновременно могут анализироваться три изображения (рис. 9). Изображение для анализа выбирается из каталога

ТЕОРИЯ И ПРАКТИКА ТАМОЖЕННОГО ДЕЛА

готовых к обработке изображений. Анализ выполняется с помощью специальной программы, имеющей панель управления со множеством кнопок, которыми можно выбирать различные режимы анализа (изменение яркости и контрастности, фильтры, выделение и увеличение фрагментов, оценка размеров, использование разных цветовых палитр для выделения мест с различной плотностью, и др.).

Рис. 11. Мониторы оператора анализа изображений

Оператор обычно использует два монитора (рис. 11). На один выводится анализируемое изображение, на второй - товаросопроводительная документация и административные данные по объекту. Подозрительные места выделяются оператором на изображении, и в дальнейшем эта информация используется при проведении ручного досмотра. Экран станции с изображением показан на рис. 12.

Рабочая станция сбора данных осуществляет сбор данных с детекторной линейки, их первичную обработку и запись результатов в базу данных комплекса; через нее можно делать разные настройки детекторной линейки, осуществлять проверку ее работоспособности; управлять ею можно с рабочего места оператора сканирования.

Большое внимание при разработке комплекса уделялось радиационной безопасности. Система радиационной безопасности комплекса фактически обеспечивает защиту на уровне требований для населения, т. е. допускается дополнительная годовая доза не более 1 мЗв.

Меры защиты от ионизирующего излучения обеспечиваются следующими техническими решениями:

Досмотровый туннель имеет защитные ворота для въезда и выезда объектов контроля, оборудованные световой сигнализацией, датчиками

ТАМОЖЕННАЯ ПОЛИТИКА РОССИИ НА ДАЛЬНЕМ ВОСТОКЕ № 1(66)/2014

и блокировками, исключающими возможность включения генератора излучения при незакрытых воротах;

Генерация рентгеновского излучения короткими импульсами и только в период нахождения объекта контроля в зоне рентгеновского луча. При выключении питания генератор выключается и полностью безопасен;

Сам генератор находится в защищенном кожухе, с помощью коллиматора луч концентрируется в определенном направлении, за детекторной линейкой установлена свинцовая защита;

Рис. 12. Изображение на мониторе станции анализа изображений

Операторы комплекса находятся вне досмотрового туннеля за железобетонными стенами;

Система мониторинга (в том числе состояния системы безопасности) дает разрешение на включение генератора только при соблюдении мер безопасности и отсутствии блокировок;

Невозможно включение генерации излучения при открытой двери входа в досмотровый туннель;

Внутри досмотрового туннеля имеются кнопки аварийного останова, выдергиваемые тросы с аварийным остановом для выключения генерации излучения в случае случайного попадания туда людей и в других аварийных ситуациях;

В помещении операторов комплекса установлен дозиметр гамма-и рентгеновского излучения ДКС-АТ1123 (рис. 13а), который дает звуковое предупреждение и отключает генерацию излучения в случае превышения порогового значения;

ТЕОРИЯ И ПРАКТИКА ТАМОЖЕННОГО ДЕЛА

Осуществляется постоянный видеоконтроль за обстановкой с помощью системы видеонаблюдения на базе компьютера (рис. 13б), состоящей из пяти камер наблюдения (две - внутри туннеля, две - снаружи ангара, одна -в лабиринте входа в досмотровый туннель);

Рис. 13. Дозиметр ДКС-АТ1123 (а), монитор с изображениями от видеокамер (б)

Кнопки аварийного выключения на пульте управления оператора, а также в непосредственной близости от источника излучения и детекторов;

Подсистема радиосвязи (стационарная рация у системного оператора, три переносных рации для других операторов);

Подсистема оповещения с микрофоном у системного оператора и громкоговорителями, размещенными внутри досмотрового туннеля;

Светофоры на въезде и выезде ангара, звуковая сирена.

В заключение отметим, что ИДК СТ-6035 полностью разработан и изготовлен в России, хотя и были использованы некоторые комплектующие зарубежного производства.

ФТС России сегодня использует около шестидесяти зарубежных ИДК различного назначения, в том числе легко возводимые . В данном ИДК использован ряд оригинальных технических решений, что позволило обеспечить более высокие параметры некоторых характеристик ИДК, по сравнению с зарубежными аналогами, а также обеспечить некоторые дополнительные функции.

Так, перед каждым сканированием несколько секунд осуществляется калибровка измерительной системы, для обеспечения равномерности движения рамы используется лазерная система контроля движения, датчики детекторной системы имеют уменьшенные размеры и повышенную чувствительность, и др. Это позволило обеспечить более высокие проникающую (на уровне стационарных ИДК с генератором 9 МэВ) и разрешающую способности.

ТАМОЖЕННАЯ ПОЛИТИКА РОССИИ НА ДАЛЬНЕМ ВОСТОКЕ № 1(66)/2014

Оригинальные алгоритмы, реализованные в станциях сбора данных и анализа изображений, позволяют с высокой достоверностью разделять материалы на группы по эффективному атомному весу, оценивать вес материалов в выбранном фрагменте изображения.

Такие сложные комплексы, как ИДК, требуют больших расходов на эксплуатацию, со временем возникает нужда в ремонте и модернизации. При этом программное обеспечение, схемотехника и конструкции наиболее важных узлов является ноу-хау фирм-производителей. В связи с этим для ремонта и модернизации ИДК приходится привлекать зарубежные фирмы, что в разы увеличивает соответствующие расходы. Поэтому создание и использование отечественных ИДК, несомненно, будет способствовать развитию в России нового наукоемкого производства и снизит расходы на оснащение таможенных органов.

Список литературы

1. Малышенко Ю. В. Начальная подготовка персонала инспекционнодосмотровых комплексов: учебник / Ю. В. Малышенко, С. С. Ярошенко, С. В. Симочко; под ред. Ю. В. Малышенко. Владивосток: РИО Владивостокского филиала Российской таможенной академии, 2010. 460 с.

2. Система досмотра транспортных средств [Электронный ресурс]. URL: www.scantronicsystems.com

3. Ogorodnikov S. A. Physical Review Special Topics / S. A. Ogorodnikov, V. I. Petrunin. Processing of interlaced images in 4-10 MeV dual energy customs system for material recognition // Accelerators and Beams. 2002. № 5 (104701) [Электронный ресурс]. URL: http://prst-ab.aps.org/abstract/PRSTAB/v5/i10/ e104701

4. Ogorodnikov S. A. Material discrimination technology for cargo inspection with pulse-to-pulse linear electron accelerator / S. Ogorodnikov, M. Arlychev, I. Shevelev, R. Apevalov, A. Rodionov, I. Polevchenko // Proceedings of IPAC2013. Shanghai, 2013, p. 3699 [Электронный ресурс]. URL: http://accelconf.web.cern.ch/ accelconf/IPAC2013/papers/thpwa033.pdf

Инспекционно-досмотровые комплексы

Инспекционно-досмотровые комплексы (ИДК) - Один из видов технических средств таможенного контроля (ТСТК), применяемых таможенными органами. Представляют собой комплексы специальной электронной аппаратуры, предназначенные для таможенного контроля крупногабаритных объектов.

Ведущими производителями ИДК являются компании двух стран: Китая и Германии, при соотношении контролируемых долей мирового рынка примерно 2:1 в пользу Китая. Фирмы, лидирующие в данном сегменте рынка это Nuctech Company Limited (Китай) и Smiths Heimann (Германия).

В настоящее время основные фирмы - производители ИДК в качестве источника излучения применяют линейный ускоритель (источник рентгеновских лучей).

Существует три основных типа ИДК:

  • стационарный;
  • перебазируемый;
  • мобильный.

Стационарные ИДК

с энергетикой 9 МэВ (проникающая способность по эквиваленту стали -380 мм) являются инспекционными системами, которые дают точное рентгеновское изображение полностью загруженных морских контейнеров и грузовых автомобилей и, как правило используются в морских пунктах пропуска. На мировом рынке известны следующие марки такого оборудования:

  • (Nuctech, Китай)
  • HCV-Stationary (SmithsHeimann, Германия)

Пропускная способность - до 30 контейнеров в час. Указанные комплексы требуют значительной радиационной защиты и размещаются в стационарных рентгенозащитных сооружениях.

Легковозводимые (перебазируемые)

ИДК с энергетикой 6 МэВ (проникающая способность по эквиваленту стали - 300 мм) позволяют по полученному рентгеновскому изображению принимать решение о соответствии перевозимого груза заявленному в товаросопроводительных документах. Точность определения - до 85% относительно стационарных ИДК.

Данные комплексы используются на автомобильных пунктах пропуска и обеспечивают пропускную способность более 20 грузовых автомобилей в час.

Технологическое оборудование комплекса размещается в быстровозводимом сооружении либо сооружении из сборных бетонных модулей с упрощенной радиационной защитой.

Производители в этом сегменте представляют модели:

  • (Nuctech, Китай)
  • HCV –Relocatable (Smiths Heimann, Германия)

Мобильные ИДК

с энергетикой до 3 МэВ (проникающая способность по эквиваленту стали - до 220 мм) смонтированы на шасси автомобиля и требуют при работе наличия санитарной зоны. Они позволяют по полученному рентгеновскому изображению принимать решение о наличии либо отсутствии грузов в контейнере и соответствии товаросопроводительным документам товаров с малыми объемными плотностями. Мобильные ИДК в основном используются в интересах оперативных подразделений таможенных и других правоохранительных органов (например, Госавтоинспекции МВД).

Здесь производители предлагают установки:

  • (Nuctech, Китай)
  • HCV-Mobile (SmithsHeimann, Германия)

Досмотровая рентгеновская техника (ДРТ) – это первый и основной класс технических средств таможенного контроля, представляющий собой комплекс рентгеновской аппаратуры, предназначенный для визуального контроля ручной клади и багажа пассажиров, предметов отдельно следующего багажа, среднегабаритных грузов и международных почтовых отправлений без их вскрытия с целью выявления в них предметов, материалов и веществ, запрещённых к ввозу (вывозу) или не соответствующих декларированному содержанию.

Инспекционно-досмотровые комплексы (ИДК) предназначены для интроскопии крупногабаритных объектов таможенного контроля, отличающихся значительными размерами, весом, составом конструкционных материалов, повышенной плотностью загрузки различными видами перевозимых в них товаров.

Классификацию инспекционно-досмотровых комплексов можно проводить по двум различным признакам:

1. по объекту контроля:

ИДК для контроля грузовых машин и контейнеров

ИДК для контроля железнодорожных вагонов

2. по мобильности:

ИДК стационарные

ИДК легковозводимые (перебазируемые)

ИДК мобильные

ИДК позволяет за минимальное время (3-5 минут) без вскрытия и разгрузки грузового транспортного средства получить его изображение и изображение перевозимых в нем товаров с характеристиками, позволяющими идентифицировать перевозимые товары, конструкционные узлы транспортного средства, обнаруживать в них предметы, запрещенные к перевозке, а также проводить ориентировочную оценку количества перевозимых товаров.

Ведущими странами, производящими ИДК, являются Германия (SMITHS HEIMANN) и Китай (NUCTECH COMPANY LIMITED).Рядом российских предприятий в рамках научно-исследовательских и опытно-конструкторских работ созданы отдельные составные части и узлы ИДК.

ИДК выпускаются в стационарном, перебазируемом и мобильном варианте для досмотра морских контейнеров и большегрузных автомобилей.

1. Стационарные инспекционно-досмотровые комплексы

Строительство стационарных ИДК целесообразно на территории крупных морских портов, аэропортов, автомобильных и железнодорожных пунктов пропуска.



Стационарные ИДК представляют собой специально построенное здание в котором находится досмотровый тоннель, а также все необходимые для работы персонала помещения. Досмотровый тоннель стационарного ИДК окружен бетонными стенами, служащими защитой от выхода наружу рентгеновского излучения.

После сканирования текста таможенной декларации и отображения ее на экране монитора проводится сопоставление заявленных сведений о товаре с информацией, содержащейся на рентгеновском изображении. Оценка полученной информации требует около 15 минут в зависимости от вида груза и опыта работы оператора. Досмотровый тоннель стационарного ИДК может иметь один или два линейных ускорителя, которые излучают веерообразные пучки рентгеновских лучей, направленные на детекторные линейки, расположенные сбоку и снизу от досматриваемого объекта. В местах расположения источников излучения и линеек детекторов стены тоннеля выполнены из толстого (до 1,5 м) армированного железобетона.

Аппаратура обработки изображения позволяет:

Выбирать любой фрагмент вертикальной или горизонтальной проекции теневого изображения объекта и увеличивать его в 2 или 4 раза;

Применять к изображению операцию выделения поддиапозона яркостного сигнала;

Оконтуривать полученные изображения;

Представлять изображения в виде негатива;



Представлять изображения в режиме «псевдоцвета»;

Оценивать координаты и линейные размеры предметов, вызывающих оперативный интерес, для облегчения их поиска при последующем физическом досмотре объекта;

Сохранять изображение в памяти, записывать его на носители, а также получать его распечатку.

Процессом просвечивания объектов управляет главный оператор со своего рабочего места. Он открывает и закрывает ворота, включает и выключает линейные ускорители, управляет перемещением объекта.

Транспортные средства, в изображениях которых выявлены признаки нарушений таможенного законодательства, направляются в бокс углубленного досмотра для выгрузки и ручного досмотра. Результаты досмотра и оценки рентгеновского изображения выводятся на печать. Распечатки со специальными маркерами, указывающими на точное местоположение подозрительных предметов, с привязкой к реальным координатам могут использоваться для облегчения поиска данных предметовпри ручном досмотре.

Пример стационарного ИДК – установка «HCVG 3022» – рентгеновский сканер для досмотра груженых грузовых автомобилей и контейнеров. Используется в портах, аэропортах и на пограничных пунктах.

2. Перемещаемые инспекционно-досмотровые комплексы

Перемещаемые ИДК с энергетикой 6 МэВ (проникающая способность по эквиваленту стали – 300 мм) позволяют по полученному рентгеновскому изображению принимать решение о соответствии перевозимого груза заявленному в товаросопроводительных документах до 85% товаров относительно стационарных ИДК.

Данные комплексы используются на автомобильных пунктах пропуска и обеспечивают пропускную способность до 20-ти грузовых автомобилей в час.

Технологическое оборудование комплекса размещается в быстровозводимом сооружении либо сооружении из сборных бетонных модулей (перебазируемый вариант) с упрощенной радиационной защитой. Все компоненты перемещаемого ИДК расположены в модулях, которые могут быть перемещены обычными средствами, например, подъемным краном и грузовиками. Время монтажа данного ИДК при перемещении его на новое место эксплуатации составляет от 3 до 14 дней.

Установка рентгеновского излучения и система обнаружения смонтированы на раме, которая может автоматически перемещаться по рельсам направлении. Во время сканирования досматриваемые транспортные средства неподвижны.

Пример: перемещаемый ИДК «SilhouetteScan Mobile CAB 2000» (рис. 1.5). Это рентгеновская система для инспекции грузов. Состоит из рабочего модуля на базе двадцатифутового контейнера, перевозимого грузовиком для стандартного контейнера (ISO 668), который может перевозить перемещаемые платформы класса С 745 (EN 284).

3. Мобильные инспекционно-досмотровые комплексы

Мобильные ИДК с энергетикой до 3 МэВ (проникающая способность по эквиваленту стали – до 220 мм), смонтированы на шасси автомобиля и требуют при работе наличия санитарной зоны.

Мобильные ИДК используется в тех местах (зонах таможенного контроля), где необходимо проведение проверки транспортных средств и крупногабаритных грузов, но нет возможности установить стационарную систему. При проведении рентгеновского контроля крупногабаритных объектов, сам объект остаётся неподвижным, а сканирование осуществляется за счет перемещения мобильного ИДК.

Такие системы полностью размещается на шасси автомобиля. Развертывание комплекса в рабочее положение занимает несколько десятков минут.

Среди данного вида ИДК существует разделение на:

Низкоэнергетические;

Среднеэнергетические;

Высокоэнергетические.

Низкоэнергетические (до 300 кэВ) МИДК имеют наименьшую проникающую способность излучения (не более 50 мм по стали), обладают повышенной производительностью (до 30 досматриваемых объектов в час), более радиационно безопасны и позволяют определить внутреннее содержимое объекта таможенного контроля без его детального анализа.

Среднеэнергетические (2,5 МэВ) и высокоэнергетические (более 4 МэВ) МИДК способны обеспечить рентгеновский досмотр полностью загруженных грузовиков, трейлеров и контейнеров.

HCV-Mobile (рис. 1.6) – система высокоэнергетического рентгеновского просвечивания для проверки груженых автомобилей и контейнеров.

Система представляет собой автомобиль, который может работать на любой территории и не требует внешней инфраструктуры. При энергии излучения от 3 до 4 МэВ глубина просвечивания составляет до 270 мм по стали, время подготовки к работе – менее 30 мин, рабочий процесс проверки грузов несложен, количество обслуживающего персонала минимально (3 чел.). Производительность комплекса – 25 грузовиков в час, стандартные размеры проверяемого автомобиля – 4,5 м (В) × 2,8 м (Ш) × 28 м (Д). Система демонстрирует высокое качество изображения и проверки.

Для проведения таможенного осмотра с использованием ИДК применяется случайная выборка товаров и транспортных средств. Параметрами случайной выборки являются соотношение количества таможенных осмотров с использованием ИДК, проводимых на основании указания, формируемого специальным программным средством случайной выборки, к общему количеству товаров и транспортных средств, регистрируемых при прибытии на таможенную территорию Российской Федерации в таможенном органе. Профили рисков, устанавливающие параметры применения случайной выборки для проведения таможенного осмотра с использованием ИДК, утверждает руководитель ФТС России.

Проведение таможенного осмотра товаров и транспортных средств с использованием ИДК является обязательным при наличии указания, сформированного специальным программным средством по результатам применения случайной выборки, за исключением следующих случаев:

1. габариты транспортного средства не соответствуют техническим возможностям ИДК;

2. перевозимые товары не подлежит таможенному осмотру с использованием ИДК (см. Табл.1.2);

3. мобильный ИДК не эксплуатируется в регионе деятельности таможенного поста (ОТОиТК таможни) на момент формирования с применением случайной выборки указания о проведении таможенного осмотра с использованием ИДК, при этом мобильный ИДК не может быть перемещен на таможенный пост в разумно короткие сроки;

4. наличие неисправности ИДК, не позволяющей его использовать для проведения осмотра товаров и транспортных средств, если такая неисправность не может быть устранена до окончания таможенного оформления в таможенном органе товаров, в отношении которых по результатам применения случайной выборки сформировано указание о проведении таможенного осмотра с использованием ИДК.

Таможенный контроль в форме таможенного осмотра с использованием ИДК проводится рабочей сменой ИДК (группа должностных лиц подразделения применения ИДК либо таможенного поста, сформированная начальником подразделения.

По результатам анализа информации, полученной с использованием ИДК, должностные лица подразделений таможенных органов в случаях выявления нарушений законодательства либо рисков принимают меры по недопущению (устранению последствий) возможных нарушений законодательства, информируют заинтересованные таможенные органы о выявленных признаках нарушений, проводят мероприятия по разработке срочных, зональных, региональных профилей рисков и ориентировок и их проектов.

1

Конструкции большинства современных инспекционно-досмотровых комплексов не позволяют получать многоракурсные теневые изображения. Лишь в некоторых стационарных инспекционно-досмотровых комплексах предусмотрено двухпроекционное просвечивание объекта, что позволяет за одно перемещение объекта получить два его взаимно перпендикулярных изображения. Очевидно, что при этом вероятность проведения оператором правильного анализа изображения существенно повышается. В работе проведен анализ алгоритмов работы современных российских инспекционно-досмотровых комплексов. Предложенные варианты построения комплексов несколько увеличивают время для получения соответствующих рентгеновских изображений и принятия по ним решения оператора. Однако по приведённым выше алгоритмам нет необходимости получать и анализировать изображения всех объектов контроля. Целесообразно так детально анализировать изображения только тех объектов, которые попали под профили рисков, или в иных специфических случаях. Таким образом, в статье рассмотрены варианты построения российских инспекционно-досмотровых комплексов, позволяющие в значительной степени повысить информативность рентгеновских изображений.

инспекционно-досмотровый комплекс

организация таможенного контроля

1. Вербов В.Ф., Гамидуллаев С.Н. Мобильный инспекционно-досмотровый комплекс. Патент Российской Федерации на полезную модель № 152952, 2015. МПК: G01N.

2. Вербов В.Ф., Гамидуллаев С.Н. Стационарный инспекционно-досмотровый комплекс. Патент Российской Федерации на полезную модель № 154042, 2015. МПК: G01N.

3. Вербов В.Ф., Гамидуллаев С.Н., Мартыненко С.В. Досмотровый рентгеновский комплекс. Патент Российской Федерации на изобретение № 2497104, 2013, МПК: G01N.

4. Вербов В.Ф., Гамидуллаев С.Н., Сукиязов А.Г. Способ получения объёмного изображения в рентгеновских досмотровых комплексах. Патент Российской Федерации на изобретение № 2426101, 2011, МПК: G01N.

5. Гамидуллаев С.Н., Вербов В.Ф., Башлы П.Н. и др. Таможенное дело: инспекционно-досмотровые комплексы России и зарубежных государств: Учебное наглядное пособие. – Ростов н/Д, Ростовский филиал РТА, 2015. – 147 с.

6. Гамидулллаев С.Н., Вербов В.Ф., Башлы П.Н. и др. Таможенное дело: теория и практика применения мобильных инспекционно-досмотровых комплексов: Учебник. – Ростов н/Д, Ростовский филиал РТА, 2015. – 296 с.

7. Приказ ФТС России от 20.01.2016 № 75 «Об утверждении аналитической программы ФТС России «Организация эксплуатации инспекционно-досмотровых комплексов в таможенных органах Российской Федерации» на 2016–2018 годы». по состоянию на 27.02.2017. Режим доступа: СПС «Консультант Плюс»: World Wide Web. URL: http://www.consultant.ru/cons/cgi/online.cgi.

8. Распоряжение Правительства Российской Федерации от 28.12.2012 № 2575-р «Стратегия развития таможенной службы Российской Федерации до 2020 года». по состоянию на 27.02.2017. Режим доступа: СПС «Консультант Плюс»: World Wide Web. URL: http://www.consultant.ru/cons/cgi/online.cgi.

9. Щерба М.Ю. Безуглов Д.А. Шевчук П.С. Особенности применения технических средств таможенного контроля при проведении отдельных форм таможенного контроля. Ростов н/Д: Российская таможенная академия, Ростовский филиал. 2016. – 142 с.

В Стратегии развития таможенной службы Российской Федерации до 2020 года указано, что «одним из направлений развития ФТС России является совершенствование информационно-технического обеспечения, которое включает дальнейшую разработку и внедрение в таможенные органы инспекционно-досмотровых комплексов (ИДК). Для повышения эффективности и качества таможенного контроля предполагается создание перспективных рентгенографических досмотровых установок, соответствующих мировым стандартам».

Анализ оператором полученных с применением ИДК изображений позволяет идентифицировать перевозимые товары и обнаруживать в них предметы, запрещённые к перевозке. Качество анализа изображения оператором и, как следствие, выпуск или не выпуск крупногабаритного объекта за пределы зоны таможенного контроля зависит от того, насколько полно теневое изображение несёт информацию об объекте контроля (ОК).

Цель работы : рассмотрение и анализ алгоритмов работы современных перспективных российских ИДК.

В настоящее время в ФТС России эксплуатируется: более 15 стационарных ИДК типа HCV-Gantry, HCVG-6040, HCV-Stationary и THSCAN MB1215HL; более 70 мобильных ИДК типа HCV-Mobile . Причём все - зарубежного производства.

К сожалению, перечисленные типы и виды ИДК позволяют за одно сканирование получать только одно плоское (двухмерное) рентгеновское изображение контролируемого объекта, которое, безусловно, несёт в себе недостаточное количество информации о нём.

На сегодняшний день известны некоторые направления повышения информативности теневых изображений ОК, в частности: получение псевдоцветных изображений, повышение разрешающей способности и контрастной чувствительности рентгеновского оборудования ИДК. Однако рассмотренные выше направления себя практически исчерпали .

К перспективным и до конца не реализованным направлениям повышения информативности рентгеновских изображений можно отнести разработку способов получения многоракурсных двухмерных теневых изображений и разработку компьютерных программ для получения трёхмерных (объёмных) рентгеновских изображений.

Конструкции большинства современных ИДК не позволяют получать многоракурсные теневые изображения. Лишь в некоторых стационарных ИДК предусмотрено двухпроекционное просвечивание объекта, что позволяет за одно перемещение объекта получить два его взаимно перпендикулярных изображения. Очевидно, что при этом вероятность проведения оператором правильного анализа изображения существенно повышается.

Как указывалось выше, в таможенных органах России эксплуатируются ИДК только с одним источником излучения. В первую очередь это связано с высокой стоимостью источника рентгеновского излучения (ИРИ). Многие зарубежные страны также не могут позволить себе приобретать ИДК с несколькими источниками излучения по той же причине .

Ниже предлагается несколько российских инновационных технических решений построения ИДК, позволяющих получать многоракурсные изображения с помощью одного ИРИ.

Для этого необходимо осуществлять соответствующим образом многократное перемещение ИРИ на определённый угол относительно контролируемого объекта с последующим его сканированием. Кроме того, в этом случае по имеющимся двухмерным теневым изображениям появляется возможность получать качественные объёмные рентгеновские изображения объекта в целом или его отдельных частей.

На рис. 1 представлен внешний вид российского стационарного ИДК, позволяющего получать множество теневых изображений контролируемых объектов с помощью всего одного ИРИ .

Рис. 1. Внешний вид стационарного ИДК

На рисунке цифрами и буквами обозначено: 1 - источник рентгеновского излучения; 2 - шаговый электропривод; 3 - направляющая дуга; 4 - L-образная детекторная линейка; 5 - перемещающаяся платформа; 6 - крупногабаритный объект контроля; 7 - монитор; 8 - оператор; БУ - блок управления; ПУ - пульт управления (клавиатура оператора); АЦП - аналого-цифровой преобразователь; БПОИ - блок программной обработки информации; V - постоянная скорость перемещения платформы с объектом контроля.

Источник рентгеновского излучения 1 с помощью электрического привода 2 может перемещаться с различным шагом по направляющей дуге 3. Значение одного шага электрического привода задаёт оператор ИДК с ПУ через БУ. Это означает, что объект контроля 6, расположенный на движущейся с постоянной скоростью платформе 5, может быть просвечен рентгеновскими лучами под разными углами (ракурсами) при соответствующем очередном сканированием. Шаг перемещения излучателя может быть различным: от 1 ° до 90 °. Блок БПОИ предназначен для формирования цельного изображения объекта контроля и его отображения на мониторе.

Анализ алгоритмов использования предложенного ИДК показал его большие возможности, позволяющие выявлять скрытые вложения любыми удобными для оператора приёмами.

Однако в предложенной конструкции имеет место недостаток, заключающийся в том, что на отдельных фрагментах полученных рентгеновских снимков в ряде случаев могут появляться некоторые искажения изображений (ложные затемнения), что может привести к неправильному анализу оператором рентгеновского изображения ОК.

Это связано с тем, что углы падения рентгеновских лучей β на приёмные детекторы L-образной линейки в различных положениях ИРИ на направляющей дуге будут случайными и, в ряде случаев, будут существенно меньше 90 °.

Для исключения отмеченного недостатка необходимо добиться того, чтобы углы падения луча при любых положениях ИРИ на направляющей дуге были равны и близки к 90 °, или необходимо перемещать ИРИ по направляющей на заведомо известные углы.

Очевидно, что стационарный ИДК, в котором все углы падения рентгеновских лучей близки к 90 °, должен иметь детекторную линейку также в виде некоторой части окружности того же радиуса, что и радиус окружности направляющей дуги. На рис. 2 представлен внешний вид стационарного ИДК с детекторной линейкой в форме части окружности .

Рис. 2. Внешний вид стационарного ИДК с детекторной линейкой в виде части окружности

Внешний вид стационарного ИДК, в котором шаг перемещения ИРИ по направляющей фиксированный, представлен на рис. 3 .

Рис. 3. Внешний вид стационарного ИДК с фиксированным углом перемещения ИРИ

Расчёты показали, что для качественного анализа рентгеновского изображения оператору достаточно иметь всего 3-4 изображения ОК, сделанные под разными ракурсами. Из этого следует, что целесообразно выбрать следующие четыре фиксированных положения ИРИ на направляющей дуге: 0 °, 30 °, 60 ° и 90 °.

Важным достоинством предложенных конструкций и схем трёх досмотровых комплексов является то, что с помощью всего одного источника рентгеновского излучения появляется возможность получать многоракурсные плоские изображения и на их основе - качественное 3D-изображение контролируемого объекта. Такие комплексы, в случае их внедрения, будут высокоэффективными, информативными и экономически выгодными.

Для построения мобильных ИДК (МИДК) также можно предложить некоторые новые варианты конструкции, позволяющие получать многоракурсные рентгеновские изображения контролируемых объектов. Очевидно, что для этого также необходимо соответствующим образом изменять угол падения рентгеновского луча на ОК, т.е. с помощью некоторого поворотного механизма изменять угол между плоскостью П-образных «ворот» и осью симметрии ОК.

Чтобы угол падения луча на объект контроля был существенным, необходимо увеличивать створ «ворот». Данная проблема может быть успешно разрешена путём применения телескопической (выдвижной) горизонтальной части стрелы (рис. 4) .

Рис. 4. Конструкция МИДК с телескопической стрелой

На рисунке цифрами 31 и 32 обозначены соответственно не выдвижная и выдвижная горизонтальные части «ворот». Если оператору необходимо увеличить угол падения луча на ОК, то он сначала с пульта управления должен подать команду на выдвижение части стрелы 32 на определённую длину, после чего произвести поворот «ворот».

Выводы

Безусловно, все предложенные варианты построения комплексов несколько увеличивают время для получения соответствующих рентгеновских изображений и принятия по ним решения оператора. Однако по приведённым выше алгоритмам нет необходимости получать и анализировать изображения всех объектов контроля. Целесообразно так детально анализировать изображения только тех объектов, которые попали под профили рисков, или в иных специфических случаях.

Таким образом, в статье рассмотрены некоторые варианты построения российских ИДК, позволяющие в значительной степени повысить информативность рентгеновских изображений.

Библиографическая ссылка

Башлы П.Н., Безуглов Д.А., Вербов В.Ф., Гамидуллаев С.Н. ОБ ИМПОРТОЗАМЕЩЕНИИ ИНСПЕКЦИОННО-ДОСМОТРОВЫХ КОМПЛЕКСОВ ТАМОЖЕННЫХ ОРГАНОВ // Фундаментальные исследования. – 2017. – № 3. – С. 15-19;
URL: http://fundamental-research.ru/ru/article/view?id=41387 (дата обращения: 24.03.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»