Относительная пропускная способность Относительная пропускная способность – относительное среднее число заявок. Одноканальная СМО с отказами

Одноканальная система массового обслуживания с отказами.

Предположим, что СМО состоит из одного канала обслуживания и на ее вход поступает пуассоновский поток заявок с интенсивностью X, т. е. непрерывная случайная величина Т - время между соседними заявками распределено по экспоненциальному закону, время обслуживания каждой заявки имеет такое же распределение с параметром р. Параметры X и р называются соответственно интенсивностью потока заявок и интенсивностью потока обслуживании.

Система массового обслуживания может находиться в одном из двух состояний: s 0 - канал свободен (простаивает) или s, - канал занят. Из состояния s 0 в состояние s, систему переводит поток входящих заявок, а из состояния s, в состояние s 0 - поток обслуживании. Плотности вероятностей переходов из состояния s 0 в состояние s { и обратно равны соответственно X и р.

Граф состояний СМО показан на рис. 1.5.

Рис.

в состоянии s 0 или s t соответственно. Очевидно, что справедливо нормировочное условие p 0 (t) + Pi (t) = 1.

Учитывая, что случайный процесс, протекающий в СМО, является марковским, вероятности p 0 (t) и pj(t) можно определить из системы уравнений Колмогорова:

Подстановка нормировочного условия в эту систему приводит к обыкновенному дифференциальному уравнению относительно p 0 (t):

Принимая условие, что в начальный момент времени при t = О канал свободен, т. е. р 0 (0) = 1 и pj(0) = 0, можно получить решение уравнения (1.20) в следующем виде:

С использованием нормировочного условия можно также установить выражение для определения pj(t):

В предельном стационарном режиме (при t -» °°) система алгебраических уравнений для вероятностей состояний имеет вид:

Учитывая нормировочное условие, определим предельные вероятности состояний

Рассмотрим основные показатели эффективности работы одноканальной СМО с отказами.

Так как вероятность обслуживания поступивших заявок в такой системе равна р 0 , а относительная пропускная способность Q равна отношению среднего числа обслуженных заявок к среднему числу поступивших заявок за единицу времени, то Q = р 0 , т. е. для одноканальной СМО с отказами

Абсолютная пропускная способность СМО - это среднее число заявок, обслуживаемых в единицу времени, или интенсивность выходящего потока:

Вероятность отказа в СМО возникает, когда канал занят, это вероятность Р!

Среднее время обслуживания заявки есть величина, обратная р:

Аналогично можно определить среднее время простоя канала:

Среднее время пребывания заявки в системе вычисляется по формуле:

Пример 1.4. На телефонную линию оператора сотовой связи приходит простейший поток вызовов с интенсивностью X = 1,5 заявки в минуту. Производительность линии р = 0,4 вызова в минуту. Вызов, пришедший на линию во время ее занятости, не обслуживается. Определить абсолютную пропускную способность линии, среднее время обслуживания одного вызова, вероятность отказов обслуживаний, а также среднее время пребывания заявки в системе.

Решение. 1. По формулам (1.27)-(1.31), проведя необходимые расчеты, получаем: А = 0,32 выз./мин; р отк = 0,79; t o6cjI = 2,5 мин;

  • 1 сист = °> 52 МИН -
  • 2. Расчетные данные свидетельствуют о том, что при наличии одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная СМО с отказами.

На вход системы, имеющей п каналов, поступает простейший поток заявок с интенсивностью X, поток обслуживаний каждым каналом также является простейшим с интенсивностью р.

Пронумеруем состояния системы по числу занятых каналов (каждый канал в системе либо свободен, либо обслуживает только одну заявку).

Система имеет следующие состояния: где s k -

состояние системы, когда в ней находится к заявок, т. е. занято к каналов.

Граф состояний такой системы соответствует процессу гибели и размножения и показан на рис. 1.6.

Рис. 1.6.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое состояние с одной и той же интенсивностью к. Интенсивность же потока обслуживания, переводящая систему из любого правого состояния в левое состояние, постоянно меняется в зависимости от состояния. Рассмотрим в качестве примера СМО, находящуюся в состоянии s 2 , когда заняты два канала. Система может перейти в состояние s t когда закончится обслуживание второго либо первого канала, соответственно суммарная интенсивность обслуживании будет равна 2р.

Воспользовавшись формулой (1.18) для процесса гибели и размножения, получим следующее выражение для предельной вероятности состояния р 0

Введем обозначение которое называется приведенной интенсивностью потока заявок (интенсивностью нагрузки каналов). Эта величина представляет собой среднее число заявок, приходящее за среднее время обслуживания одной заявки. Тогда мы можем получить следующую формулу:

Используя выражение (1.19), имеем:

Приведенные формулы (1.34) в технической литературе получили название формул Эрланга (датский инженер, математик - один из основателей теории массового обслуживания).

Запишем аналитические выражения для оценки основных показателей эффективности работы рассматриваемой СМО. Исходя из принципа работы такой СМО отказ в обслуживании заявки наступает, когда все каналы заняты, а система находится в состоянии s n , т. е. вероятность отказа СМО

Поскольку событие обслуживания заявки и событие отказа в ее обслуживании являются противоположными, вероятность обслуживания заявки (вероятность того, что свободен хотя бы один канал) будет

Относительная пропускная способность СМО определяется как вероятность ее обслуживания

Абсолютная пропускная способность СМО (она же интенсивность потока обслуженных заявок):

Для многоканальных СМО важным показателем эффективности их работы является среднее число занятых каналов к (математическое ожидание числа занятых каналов)

Учитывая, что абсолютная пропускная способность системы А есть не что иное, как интенсивность потока обслуженных системой заявок в единицу времени, а каждый занятый канал обслуживает в среднем р заявок в единицу времени, среднее число занятых каналов можно определить по формуле:

Пример 1.5. Вычислительный центр электросетевой компании оборудован тремя ЭВМ, на которые поступают заказы по выполнению вычислительных работ. Если работают одновременно все три ЭВМ, то вновь поступающий заказ не принимается. Среднее время работы с одним заказом 2,5 ч. Интенсивность потока заявок 0,2 ч -1 . Определить и проанализировать предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. 1. Определим параметры СМО: п = 2; X = 0,2 ч -1 ;

интенсивность потока обслуживания

; интенсивность нагрузки ЭВМ р = 0,2/0,4 = 0,5.

2. Найдем вероятности состояний: вероятность того, что в системе отсутствуют заявки:

вероятности других состояний:

вероятность того, что пришедшая заявка получит отказ:

Таким образом, в стационарном режиме работы вычислительного центра в среднем в течение 61 % времени нет ни одной заявки, в 30 % времени имеется одна заявка (занята одна ЭВМ), в 8 % - две заявки (заняты две ЭВМ) и в 1 % - три заявки (заняты три ЭВМ). Вероятность отказа, когда все три ЭВМ заняты - р отк = 0,01.

3. Определим показатели эффективности вычислительного центра: относительная пропускная способность:

т. е. из каждой сотни заявок вычислительный центр обслуживает 99;

абсолютная пропускная способность вычислительного центра:

т. е. в один час в среднем обслуживается 0,2 заявки; среднее число занятых ЭВМ:

Технико-экономический анализ полученных данных должен базироваться на сопоставлении доходов от выполнения заявок с потерями от простоя дорогостоящих ЭВМ. Как видим, в данном случае наблюдается высокая пропускная способность вычислительного центра, но значительный простой каналов обслуживания. Необходим поиск компромиссного решения.

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Простейшая одноканальная модель. Такой моделью с вероятност­ными входным потоком и процедурой обслуживания является мо­дель, характеризуемая показательным распределением как длитель­ностей интервалов между поступлениями требований, так и дли­тельностей обслуживания. При этом плотность распределения дли­тельностей интервалов между поступлениями требований имеет вид

(1)

где - интенсивность поступления заявок в систему.

Плотность распределения длительностей обслуживания:

, (2)

где - интенсивность обслуживания.

Потоки заявок и обслуживаний простейшие.

Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.

Представим данную систему массового обслуживания в виде графа (рис.1), у которого имеются два состояния:

S 0 - канал свободен (ожидание);

S 1 - канал занят (идет обслуживание заявки).

Рис. 1. Граф состояний одноканальной СМО с отказами

Обозначим вероятности состояний:

P 0 (t) - вероятность состояния «канал свободен»;

Р 1 (t) - вероятность состояния «канал занят».

По размеченному графу состояний (рис. 1) составим систему дифференциальных уравнений Колмогорова для вероятностей со­стояний:

(3)

Система линейных дифференциальных уравнений (3) имеет решение с учетом нормировочного условия = 1. Реше­ние данной системы называется неустановившимся, поскольку оно непосредственно зависит от t и выглядит следующим образом:

(4)

(5)

Нетрудно убедиться, что для одноканальной СМО с отказами вероятность Р 0 (t) есть не что иное, как относительная пропускная способность системы q.

Действительно, Р 0 - вероятность того, что в момент t канал сво­боден и заявка, пришедшая к моменту t, будет обслужена, а следо­вательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно , т. е.

q = . (6)

По истечении большого интервала времени () дости­гается стационарный (установившийся) режим:

Зная относительную пропускную способность, легко найти абсолютную. Абсолютная пропускная способность (А) - среднее число, которое может обслужить система массового обслуживания в единицу времени:

Вероятность отказа в обслуживании заявки будет равна вероят­ности состояния «канал занят»:

Данная величина может быть интерпретирована как сред­няя доля не обслуженных заявок среди поданных.

Пример 1. Пусть одноканальная СМО с отказами представ­ляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность по­тока автомобилей = 1,0 (автомобиль в час). Средняя продолжи­тельность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.

Требуется определить в установившемся режиме предельные значения:

относительной пропускной способности q;

абсолютной пропускной способности А;

вероятности отказа .

Сравните фактическую пропускную способность СМО с номи­нальной, которая была бы, если бы каждый автомобиль обслужи­вался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Решение

1. Определим интенсивность потока обслуживания:

2. Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система бу­дет обслуживать примерно 35% прибывающих на пост ЕО автомо­билей.

3. Абсолютную пропускную способность определим по формуле:

1 0,356 = 0,356.

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслуживания автомобилей в час.

3. Вероятность отказа:

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

4. Определим номинальную пропускную способность системы:

(автомобилей в час).

Оказывается, что в 1,5 раза больше, чем фак­тическая пропускная способность, вычисленная с учетом случай­ного характера потока заявок и времени обслуживания.

Одноканальная СМО с ожиданием. Система массового обслужи­вания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью . Интенсивность потока обслуживания равна (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок). Длительность обслужива­ния - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2.

Рис. 2. Граф состояний одноканальной СМО с ожиданием

(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 - канал свободен;

S 1 - канал занят (очереди нет);

S 2 - канал занят (одна заявка стоит в очереди);

……………………

S n - канал занят (n - 1 заявок стоит в очереди);

…………………...

S N - канал занят (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид

(11)

Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допу­скаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входно­го потока, т. е. не отношением

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N- 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

А = q 𝝀; (15)

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

L q = (1 - P N)W q . (19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики пред­ставляет собой одноканальную СМО. Число стоянок для автомо­билей, ожидающих проведения диагностики, ограничено и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 𝝀 = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживании автомобилей:

.

2. Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей 𝝀 и µ, т. е.

3. Вычислим финальные вероятности системы:

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

А = 𝝀 q = 0,85 0,842 = 0,716 (автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

L q = (1 - P N)W q = 0,85 (1 - 0,158) 1,423 = 1,02.

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев отк = 0,158).

Одноканальная СМО с ожиданием без ограничения на вмести­мость блока ожидания (т. е. ). Остальные условия функцио­нирования СМО остаются без изменений.

Стационарный режим функционирования данной СМО суще­ствует при для любого n = 0, 1, 2,... и когда 𝝀< µ. Система алгебраических уравнений, описывающих работу СМО при для любого п =0,1,2,…, имеет вид

Решение данной системы уравнений имеет вид

Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на об­служивание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

средняя продолжительность пребывания клиента в очереди:

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

Вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди);

Среднюю продолжительность пребывания автомобиля в сис­теме (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8 . Абсолютная пропускная способность:

A = q = 0,85 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего, интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота т возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

т = λP N .

В нашем примере при N=3 + 1= 4 и ρ = 0,893,

т = λ Р 0 ρ 4 = 0,85 0,248 0,8934 = 0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 0,134 = 1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.


Похожая информация.


На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза «На станцию» говорит об единственном устройстве обслуживания, т.е. для решения используем формулы для одноканальной СМО.
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.

Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:

  1. Интенсивность потока обслуживания:
  1. Интенсивность нагрузки .

ρ = λ t обс = 0.5 2 = 1

Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

  1. Доля заявок, получивших отказ .

Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

  1. Относительная пропускная способность .

Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1

Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

Абсолютная пропускная способность – среднее число заявок, которое может быть обслужено в единицу времени. p 0 - вероятность того, что канал свободен, Q - относительная пропускная способность

Интенсивность нагрузки ρ=3 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
2. Время обслуживания .
мин.

Следовательно, 3% в течение часа канал будет не занят, время простоя равно t пр = 1.7 мин.

занят 1 канал:
p 1 = ρ 1 /1! p 0 = 3 1 /1! 0.0282 = 0.0845
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 3 2 /2! 0.0282 = 0.13
заняты 3 канала:
p 3 = ρ 3 /3! p 0 = 3 3 /3! 0.0282 = 0.13
.

Значит, 13% из числа поступивших заявок не принимаются к обслуживанию.
.

p отк + p обс = 1

p обс = 1 - p отк = 1 - 0.13 = 0.87
Следовательно, 87% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
.
n з = ρ p обс = 3 0.87 = 2.6 каналов
.
n пр = n - n з = 3 - 2.6 = 0.4 каналов
.

Следовательно, система на 90% занята обслуживанием.
8. Абсолютная пропускная способность для многоканальной СМО .

A = p обс λ = 0.87 6 = 5.2 заявок/мин.
9. Среднее время простоя СМО .
t пр = p отк ∙ t обс = 0.13∙ 0.5 = 0.06 мин.
.

ед.
мин.
.
L обс = ρ Q = 3 0.87 = 2.62 ед.
.
L CMO = L оч + L обс = 1.9 + 2.62 = 4.52 ед.
.
мин.
Число заявок, получивших отказ в течение часа: λ p 1 = 0.78 заявок в мин.
Номинальная производительность СМО: 3 / 0.5 = 6 заявок в мин.
Фактическая производительность СМО: 5.2 / 6 = 87% от номинальной производительности.

Пример №2 . Универсам получает ранние овощи и зелень из теплиц пригородного совхоза. Машины с товаром прибывают в универсам в неопределенное время. В среднем прибывает λ автомашин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обработать и хранить товар объемом не более m автомашин одновременно. В универсаме работают n фасовщиков, каждый из которых в среднем может обработать товар с одной машины в течение t обсл дня. Определить вероятность обслуживания приходящей автомашины P обс. Какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. Pобс.> P*обс.
λ = 3; t обс = 0,5; n = 2; m = 2, P* обс = 0,92.
Решение .

Исчисляем показатели обслуживания многоканальной СМО:
Переводим интенсивность потока заявок в часы: λ = 3/24 = 0.13
Интенсивность потока обслуживания:
μ = 1/12 = 0.0833
1. Интенсивность нагрузки .
ρ = λ t обс = 0.13 12 = 1.56
Интенсивность нагрузки ρ=1.56 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
Поскольку 1.56<2, то процесс обслуживания будет стабилен.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 18% в течение часа канал будет не занят, время простоя равно t пр = 11 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p 1 = ρ 1 /1! p 0 = 1.56 1 /1! 0.18 = 0.29
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 1.56 2 /2! 0.18 = 0.22
4. Доля заявок, получивших отказ .

Значит, 14% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок .
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
p отк + p обс = 1
Относительная пропускная способность: Q = p обс.
p обс = 1 - p отк = 1 - 0.14 = 0.86
Следовательно, 86% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число каналов, занятых обслуживанием .
n з = ρ p обс = 1.56 0.86 = 1.35 канала.
Среднее число простаивающих каналов .
n пр = n - n з = 2 - 1.35 = 0.7 канала.
7. Коэффициент занятости каналов обслуживанием .
K 3 = n 3 /n = 1.35/2 = 0.7
Следовательно, система на 70% занята обслуживанием.
8. Находим абсолютную пропускную способность .
A = p обс λ = 0.86 0.13 = 0.11 заявок/час.
9. Среднее время простоя СМО .
t пр = p отк t обс = 0.14 12 = 1.62 час.
Вероятность образования очереди .


10. Среднее число заявок, находящихся в очереди .

ед.
11. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
T оч = L оч /A = 0.44/0.11 = 3.96 час.
12. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1.56 0.86 = 1.35 ед.
13. Среднее число заявок в системе .
L CMO = L оч + L обс = 0.44 + 1.35 = 1.79 ед.
13. Среднее время пребывания заявки в СМО .
T CMO = L CMO /A = 1.79/0.11 = 16.01 час.

Теперь ответим на вопрос: какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. P обс. > 0.92. Расчет производим исходя из условия:

где
Для наших данных:

Далее необходимо подобрать такое k (см. п.3 "доля времени простоя каналов"), при котором p отк 0.92.
например, при k = m 1 = 4, p отк = 0.07 или p обс = 0.93.