Математическое ожидание (Population mean) - это. Точечные оценки математического ожидания

Пусть имеется случайная величина X, и ее параметры математическое ожидание а и дисперсия неизвестны. Над величиной X произведеноn независимых опытов, давших результаты x 1, x 2, x n .

Не уменьшая общности рассуждений, будем считать эти значения случайной величины различными. Будем рассматривать значения x 1, x 2, x n как независимые, одинаково распределенные случайные величины X 1, X 2, X n .

Простейший метод статистического оценивания - метод подстановки и аналогии - состоит в том, что в качестве оценки той или иной числовой характеристики (среднего, дисперсии и др.) генеральной совокупности берут соответствующую характеристику распределения выборки - выборочную характеристику.

По методу подстановки в качестве оценки математического ожидания а надо взять математическое ожидание распределения выборки - выборочное среднее. Таким образом, получаем

Чтобы проверить несмещенность и состоятельность выборочного среднего как оценки а , рассмотрим эту статистику как функцию выбранного вектора (X 1, X 2, X n). Приняв во внимание, что каждая из величин X 1, X 2, X n имеет тот же закон распределения, что и величина X, заключаем, что и числовые характеристики этих величин и величины X одинаковые: M(X i ) = M(X) = a , D(X i ) = D(X) = , i = 1, 2, n, причем X i - независимые в совокупности случайные величины.

Следовательно,

Отсюда по определению получаем, что - несмещенная оценка а , и так как D()®0 при n®¥, то в силу теоремы предыдущего параграфа является состоятельной оценкой математического ожидания а генеральной совокупности.

Эффективность или неэффективность оценки зависит от вида закона распределения случайной величины X. Можно доказать, что если величина X распределена по нормальному закону, то оценка является эффективной. Для других законов распределения это может быть не так.

Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия

,

Так как , где - генеральная дисперсия. Действительно,

Оценка s -- 2 для генеральной дисперсии является также и состоятельной, но не является эффективной. Однако в случае нормального распределения она является «асимптотически эффективной», то есть при увеличении n отношение ее дисперсии к минимально возможной неограниченно приближается к единице.

Итак, если дана выборка из распределения F(x ) случайной величины X с неизвестным математическим ожиданием а и дисперсией , то для вычисления значений этих параметров мы имеем право пользоваться следующими приближенными формулами:

a ,

.

Здесь x- i - - варианта выборки, n- i - - частота варианты x i , - - объем выборки.
Для вычисления исправленной выборочной дисперсии более удобна формула


.

Для упрощения расчета целесообразно перейти к условным вариантам (в качестве с выгодно брать первоначальную варианту, расположенную в середине интервального вариационного ряда). Тогда

, .

Интервальное оценивание

Выше мы рассмотрели вопрос об оценке неизвестного параметра а одним числом. Такие оценки мы назвали точечными. Они имеют тот недостаток, что при малом объеме выборки могут значительно отличаться от оцениваемых параметров. Поэтому, чтобы получить представление о близости между параметром и его оценкой, в математической статистике вводятся, так называемые, интервальные оценки.

Пусть во выборке для параметра q найдена точечная оценка q * . Обычно исследователи заранее задаются некоторой достаточно большой вероятностью g (например, 0,95; 0,99 или 0,999) такой, что событие с вероятностью g можно считать практически достоверным, и ставят вопрос об отыскании такого значения e > 0, для которого

.

Видоизменив это равенство, получим:

и будем в этом случае говорить, что интервал ]q * - e; q * + e[ покрывает оцениваемый параметр q с вероятностью g.

Интервал ]q * -e; q * +e [ называется доверительным интервалом .

Вероятность g называется надежностью (доверительной вероятностью) интервальной оценки.

Концы доверительного интервала, т.е. точки q * -e и q * +e называются доверительными границами .

Число e называется точностью оценки .

В качестве примера задачи об определении доверительных границ, рассмотрим вопрос об оценке математического ожидания случайной величины Х, имеющей нормальный закон распределения с параметрами а и s, т.е. Х = N(a , s). Математическое ожидание в этом случае равно а . По наблюдениям Х 1 , Х 2 , Х n вычислим среднее и оценку дисперсии s 2 .

Оказывается, что по данным выборки можно построить случайную величину

которая имеет распределение Стьюдента (или t-распределение) с n = n -1 степенями свободы.

Воспользуемся таблицей П.1.3 и найдем для заданных вероятности g и числа n число t g такое, при котором вероятность

P(|t(n)| < t g) = g,

.

Сделав очевидные преобразования получим,

Порядок применения F-критерия следующий:

1. Принимается предположение о нормальности распределения генеральных совокупностей. При заданном уровне значимости a формулируется нулевая гипотеза Н 0: s х 2 = s y 2 о равенстве генеральных дисперсий нормальных совокупностей при конкурирующей гипотезе Н 1: s х 2 > s y 2 .

2. Получают две независимые выборки из совокупностей Х и Y объемом n x и n y соответственно.

3. Рассчитывают значения исправленных выборочных дисперсий s х 2 и s y 2 (методы расчета рассмотрены в §13.4). Большую из дисперсий (s х 2 или s y 2) обозначают s 1 2 , меньшую - s 2 2 .

4. Вычисляется значение F-критерия по формуле F набл = s 1 2 / s 2 2 .

5. По таблице критических точек распределения Фишера - Снедекора, по заданному уровню значимости a и числом степеней свободы n 1 = n 1 - 1, n 2 = n 2 - 1 (n 1 - число степеней свободы большей исправленной дисперсии), находится критическая точка F кр (a, n 1 , n 2).

Отметим, что в таблице П.1.7 приведены критические значения одностороннего F-критерия. Поэтому, если применяется двусторонний критерий (Н 1: s х 2 ¹ s y 2), то правостороннюю критическую точку F кр (a/2, n 1 , n 2) ищут по уровню значимости a/2 (вдвое меньше заданного) и числам степеней свободы n 1 и n 2 (n 1 - число степеней свободы большей дисперсии). Левостороннюю критическую точку можно и не отыскивать.

6. Делается вывод: если вычисленное значение F-критерия больше или равно критическому (F набл ³ F кр), то дисперсии различаются значимо на заданном уровне значимости. В противном случае (F набл < F кр) нет оснований для отклонения нулевой гипотезы о равенстве двух дисперсий.

Задача 15.1 . Расход сырья на единицу продукции по старой технологии составил:

По новой технологии:

Предположив, что соответствующие генеральные совокупности X и Y имеют нормальные распределения, проверить, что по вариативности расход сырья по новой и старой технологиям не отличаются, если принять уровень значимости a = 0,1.

Решение . Действуем в порядке, указанном выше.

1. Будем судить о вариативности расхода сырья по новой и старой технологиям по величинам дисперсий. Таким образом, нулевая гипотеза имеет вид Н 0: s х 2 = s y 2 . В качестве конкурирующей примем гипотезу Н 1: s х 2 ¹ s y 2 , поскольку заранее не уверены в том, что какая-либо из генеральных дисперсий больше другой.

2-3. Найдем выборочные дисперсии. Для упрощения вычислений перейдем к условным вариантам:

u i = x i - 307, v i = y i - 304.

Все вычисления оформим в виде следующих таблиц:

u i m i m i u i m i u i 2 m i (u i +1) 2 v i n i n i v i n i v i 2 n i (v i +1) 2
-3 -3 -1 -2
å -
å -

Контроль: å m i u i 2 + 2å m i u i + m i = Контроль: å n i v i 2 + 2å n i v i + n i = 13 + 2 + 9 = 24 = 34 + 20 + 13 = 67

Найдем исправленные выборочные дисперсии:

4. Сравним дисперсии. Найдем отношение большей исправленной дисперсии к меньшей:

.

5. По условию конкурирующая гипотеза имеет вид s х 2 ¹ s y 2 , поэтому критическая область двусторонняя и при отыскании критической точки следует брать уровни значимости, вдвое меньше заданного.

По таблице П.1.7 по уровню значимости a/2 = 0,1/2 = 0,05 и числам степеней свободы n 1 = n 1 - 1 = 12, n 2 = n 2 - 1 = 8 находим критическую точку F кр (0,05; 12; 8) = 3,28.

6. Так как F набл. < F кр то гипотезу о равенстве дисперсий расхода сырья при старой и новой технологиях принимаем.

Выше при проверке гипотез предполагалось нормальность распределения исследуемых случайных величин. Однако специальные исследования показали, что предложенные алгоритмы весьма устойчивы (особенно при больших объемах выборок) по отношению к отклонению от нормального распределения.

Необходимость оценивания математического ожидания по результатам испытаний появляется в задачах, когда результат эксперимента описывается случайной величиной и показателем качества исследуемого объекта принято математическое ожидание этой случайной величины. Например, в качестве показателя надежности может быть принято математическое ожидание времени безотказной работы какой-либо системы, а при оценивании эффективности производства продукции - математическое ожидание числа годных изделий и т. д.

Задача оценивания математического ожидания формулируется следующим образом. Предположим, что для определения неизвестного значения случайной величины X предполагается произвести п независимых и свободных от систематических ошибок измерений X v Х 2 ,..., Х п. Требуется выбрать наилучшую оценку математического ожидания.

Наилучшей и наиболее распространенной на практике оценкой математического ожидания является среднее арифметическое результатов испытаний

называемое также статистическим или выборочным средним.

Покажем, что оценка т х удовлетворяет всем требованиям, предъявляемым к оценке любого параметра.

1. Из выражения (5.10) следует, что

т. е. оценка т" х - несмещенная оценка.

2. Согласно теореме Чебышева среднее арифметическое результатов испытаний сходится по вероятности к математическому ожиданию, т. е.

Следовательно, оценка (5.10) есть состоятельная оценка математического ожидания.

3. Дисперсия оценки т х, равная

с ростом объема выборки п неограниченно убывает. Доказано, что если случайная величина X подчинена нормальному закону распределения, то при любом п дисперсия (5.11) будет минимально возможной, а оценка т х - эффективной оценкой математического ожидания. Знание дисперсии оценки позволяет вынести суждение относительно точности определения неизвестного значения математического ожидания с помощью этой оценки.

В качестве оценки математического ожидания среднее арифметическое используется в том случае, если результаты измерений равноточные (дисперсии D, i = 1, 2, ..., п одинаковы в каждом измерении). Однако на практике приходится сталкиваться с задачами, в которых результаты измерений неравноточные (например, в процессе испытаний измерения производятся различными приборами). В этом случае оценка для математического ожидания имеет вид

где - вес г-го измерения.

В формулу (5.12) результат каждого измерения включается со своим весом С .. Поэтому оценку результатов измерений т х называют средневзвешенной.

Можно показать, что оценка (5.12) является несмещенной, состоятельной и эффективной оценкой математического ожидания. Минимальная дисперсия оценки определяется выражением


При проведении экспериментов с моделями на ЭВМ подобные задачи возникают в том случае, когда оценки находят по результатам нескольких серий испытаний и число испытаний в каждой серии различно. Например, проведены две серии испытаний объемом п 1 и п 2 , по результатам которых получены оценки т хi и т х _. С целью повышения точности и достоверности определения математического ожидания результаты этих серий испытаний объединяют. Для этого следует воспользоваться выражением (5.12)

При вычислении коэффициентов С вместо дисперсий D подставляют их оценки, полученные по результатам испытаний в каждой серии.

Аналогичный подход используют и при определении вероятности наступления случайного события по результатам серий испытаний.

Для оценивания математического ожидания случайной величины X, кроме выборочного среднего, могут использоваться и другие статистики. Чаще всего для этих целей используют члены вариационного ряда, т. е. порядковые статистики , на базе которых строят оценки,

удовлетворяющие основным из предъявляемых требований, а именно состоятельности и несмещенности.

Предположим, что вариационный ряд содержит п = 2к членов. Тогда в качестве оценки математического ожидания может быть принято любое из средних:

При этом к-е среднее

есть не что иное, как статистическая медиана распределения случайной величины X, поскольку имеет место очевидное равенство

Преимущество статистической медианы состоит в том, что она свободна от влияния аномальных результатов наблюдений, неизбежного при использовании первого среднего, т. е. среднего из наименьшего и наибольшего числа вариационного ряда.

При нечетном объеме выборки п = - 1 статистической медианой является ее средний элемент, т. е. к -й член вариационного ряда Me = х к.

Существуют распределения, у которых среднее арифметическое не является эффективной оценкой математического ожидания, например, распределение Лапласа. Можно показать, что для распределения Лапласа эффективной оценкой математического ожидания является выборочная медиана.

Доказано, что если случайная величина X имеет нормальное распределение, то при достаточно большом объеме выборки закон распределения статистической медианы близок к нормальному с числовыми характеристиками

Из сравнения формул (5.11) и (5.14) следует, что дисперсия статистической медианы в 1,57 раза больше дисперсии среднего арифметического. Следовательно, среднее арифметическое как оценка математического ожидания во столько же раз эффективнее статистической медианы. Однако из-за простоты вычислений, нечувствительности к аномальным результатам измерений (“засоренности” выборки) на практике в качестве оценки математического ожидания тем не менее используют статистическую медиану.

Следует отметить, что для непрерывных симметричных распределений математическое ожидание и медиана совпадают. Поэтому статистическая медиана может служить хорошей оценкой математического ожидания лишь при симметричном распределении случайной величины.

Для несимметричных распределений статистическая медиана Me имеет существенное смещение относительно математического ожидания, поэтому для его оценивания непригодна.

ТЕМА: Точечные оценки математического ожидания. Точечные оценки дисперсии. Точечная оценка вероятности события. Точечная оценка параметров равномерного распределения.

п.1. Точечные оценки математического ожидания.

Предположим, что функция распределения случайной величины ξ зависит от неизвестного параметра θ : P (ξ θ;).

Если x 1 , x 2 …., x n - выборка из генеральной совокупности случайной величиныξ, то оценкой параметра θ называется произвольная функция от выборочных значений

Значение оценки меняется от выборки к выборке и, значит, есть случайная величина. В большинстве экспериментов значение этой случайной величины близки к значению оцениваемого параметра, если для любого значения n математическое ожидание величины равно истинному значению параметра, то оценки , удовлетворяющие условию называются несмещенными . Несмещенность оценки означает, что эта оценка не несет в себе систематической ошибки.

Оценка называется состоятельной оценкой параметра θ , если для любого ξ>0 справедливо

Таким образом, с ростом объема выборки увеличивается точность результата.

Пусть x 1 , x 2 x n – выборка из генеральной совокупности, соответствующей случайной величине ξ с неизвестным математическим ожиданием и известной дисперсией Dξ=σ 2 . Построим несколько оценок неизвестного параметра. Если, то , т.е. рассматриваемая оценка является несмещенной оценкой. Но, поскольку значение вообще не зависит от объема выборки n, то оценка не является состоятельной.

Эффективной оценкой математического ожидания нормально распределенной случайной величины является оценка

Впредь для оценки неивестного математического ожидания случайной величины будем использовать выборочное среднее, т. е.

Существуют стандартные (регулярные) методы получения оценок неизвестных параметров распределения. Наиболее известные из них: метод моментов , метод максимального правдоподобия и метод наименьших квадратов.

п.2 Точечные оценки дисперсии.

Для дисперсии σ 2 случайной величины ξ можно предложить следующую оценку:

где - выборочное среднее.

Доказано, что эта оценка состоятельная, но смещенная.

В качестве состоятельной несмещенной оценки дисперсии исполь­зуют величину

Именно несмещенностью оценки s 2 объясняется ее более частое использование в качестве оценки величины D ξ.

Заметим, что Mathcad предлагает в качестве оценки дисперсии величину , а не s 2: функция var (x ) вычисляет величину

где mean (x ) -выборочное среднее .

ЗАДАНИЕ 6.5

Μξ и дисперсии D ξ случайной величины ξ по приведенным в задании выборочным значениям .

Порядок выполнения задания

    Прочитайте с диска файл, содержащий выборочные значения, или введите заданную выборку с клавиатуры.

    Вычислите точечные оценки Μξ и D ξ.

Пример выполнения задания

Найдите состоятельные несмещенные оценки математического ожи­дания Μξ и дисперсии D ξ случайной величины ξ по выборочным значениям, заданным следующей таблицей.

Для выборки, заданной таблицей такого типа (приведено выборочное значение и число, указывающее, сколько раз это значение встречается в выборке), формулы для состоятельных несмещенных оценок математического ожидания и дисперсии имеют вид:

, ,

где k - количество значений в таблице; n i - количество значений x i в выборке; n - объем выборки.

Фрагмент рабочего документа Mathcad с вычислениями точечных оценок приведен ниже.

Из приведенных вычислений видно, что смещенная оценка дает заниженное значение оценки дисперсии.

п.3. Точечная оценка вероятности события

Предположим, что в некотором эксперименте событие А (благоприят­ный исход испытания) происходит с вероятностью p и не происходит с вероятностью q = 1 - р. Задача состоит в получении оценки неизвест­ного параметра распределения p по результатам серии n случайных экспериментов. При заданном числе испытаний n количество бла­гоприятных исходов m в серии испытаний - случайная величина, имеющая распределение Бернулли. Обозначим ее буквой μ.

Если событие А в серии из n независимых испытаний произошло

m раз, то оценку величины p предлагается вычислять по формуле

Выясним свойства предлагаемой оценки. Поскольку случайная ве­личина μ имеет распределение Бернулли, то Μμ= np и M = M = р , т.е. налицо несмещенная оценка.

Для испытаний Бернулли справедлива теорема Бернулли, согласно которой, т.е. оценка p состоятельная.

Доказано, что эта оценка эффективна, так как обладает при прочих равных условиях минимальной дисперсией.

В Mathcad для моделирования выборки значений случайной ве­личины, имеющей распределение Бернулли, предназначена функция rbinom(fc,η,ρ), которая формирует вектор из к случайных чисел, κα­ ι ждое из которых равно числу успехов в серии из η независимых испы­таний с вероятностью успеха ρ в каждом.

ЗАДАНИЕ 6.6

Смоделируйте несколько выборок значений случайной величины, име­ющей распределение Бернулли с заданным значением параметра р . Вычислите для каждой выборки оценку параметра p и сравните с за­данным значением. Представьте результаты вычислений графически.

Порядок выполнения задания

1. Используя функцию rbinom(1, n , p ), опишите и сформируй­те последовательность значений случайной величины, име­ющей распределение Бернулли с заданными p и n для n = 10, 20, ..., Ν, как функцию объема выборки п.

2. Вычислите для каждого значения n точечные оценки веро­ятности р.

Пример выполнения задания

Пример получения точечных оценок выборок объема n = 10, 20,..., 200 значений случайной величины μ, имеющей распределение Бернулли с параметром p = 0.3, приведен ниже.

Указание. Поскольку значением функции является вектор , число успехов в серии n независимых испытаний с вероятностью успеха p в каждом испытании содержится в первой компоненте вектора rbinom(1,n , p ) , т.е. число успехов равно rbinom(1, n , p ). В приведенном выше фрагменте k - я компонента вектора Ρ содержит число успехов в серии 10k независимых испытаний для k = 1,2,..., 200.

п. 4. Точечная оценка параметров равномерного распределения

Обратимся еще к одному поучительному примеру. Пусть - выборка из генеральной совокупности, соответствующей случай­ной величине ξ, имеющей равномерное распределение на отрезке с неизвестным параметром θ . Наша задача - оценить этот неизвестный параметр.

Рассмотрим один из возможных способов построения требуемой оценки. Если ξ - случайная величина, имеющая равномерное распре­деление на отрезке , то Μ ξ = . Поскольку оценка величины известна, Μξ =, то за оценку параметра θ можно взять оценку

Несмещенность оценки очевидна:

Вычислив дисперсию и предел D при n →∞, убедимся в состоятельности оценки :

Для получения другой оценки параметра θ обратимся к другой статистике. Пусть = max). Найдем распределение случайной величины:

Тогда математическое ожидание и дисперсия случайной величины

с распределением равны соответственно:

;

т.е. оценка состоятельная, но смещенная. Однако если вместо = max) рассмотреть = max), то и , и, следовательно, оценка состоятельная и несмещенная.

При этом, поскольку

существенно эффективнее оценки

Например, при п= 97 разброс оценки θ^ в 33 рала меньше разброса оценки

Последний пример еще раз показывает, что выбор статистической оценки неизвестного параметра распределения - важная и нетриви­альная задача.

В Mathcad для моделирования выборки значений случайной величи­ны, имеющей равномерное распределение на отрезке [а, Ь], предназна­чена функция runif(fc,o,b), которая формирует вектор из к случайных чисел, каждое из которых - значение равномерно распределенной на отрезке [а, 6] случайной величины.

Пусть случайная выборка порождена наблюдаемой случайной величиной ξ, математическое ожидание и дисперсия которой неизвестны. В качестве оценок для этих характеристик было предложено использовать выборочное среднее

и выборочную дисперсию

. (3.14)

Рассмотрим некоторые свойства оценок математического ожидания и дисперсии.

1. Вычислим математическое ожидание выборочного среднего:

Следовательно, выборочное среднее является несмещенной оценкой для .

2. Напомним, что результаты наблюдений – независимые случайные величины, каждая из которых имеет такой же закон распределения, как и величина , а значит, , , . Будем предполагать, что дисперсия конечна. Тогда, согласно теореме Чебышева о законе больших чисел, для любого ε > 0 имеет место равенство ,

которое можно записать так: . (3.16) Сравнивая (3.16) с определением свойства состоятельности (3.11), видим, что оценка является состоятельной оценкой математического ожидания .

3. Найдем дисперсию выборочного среднего:

. (3.17)

Таким образом, дисперсия оценки математического ожидания уменьшается обратно пропорционально объему выборки.

Можно доказать, что если случайная величина ξ распределена нормально, то выборочное среднее является эффективной оценкой математического ожидания , то есть дисперсия принимает наименьшее значение по сравнению с любой другой оценкой математического ожидания. Для других законов распределения ξ это может быть и не так.

Выборочная дисперсия является смещенной оценкой дисперсии , так как . (3.18)

Действительно, используя свойства математического ожидания и формулу (3.17), найдем

.

Чтобы получить несмещенную оценку дисперсии, оценку (3.14) нужно исправить, то есть домножить на . Тогда получим несмещенную выборочную дисперсию

. (3.19)

Отметим, что формулы (3.14) и (3.19) отличаются лишь знаменателем, и при больших значениях выборочная и несмещенная дисперсии отличаются мало. Однако при малом объеме выборки следует пользоваться соотношением (3.19).

Для оценки среднего квадратического отклонения случайной величины используют так называемое “исправленное” среднее квадратическое отклонение, которое равно квадратному корню из несмещенной дисперсии: .

Интервальные оценки

В статистике имеются два подхода к оцениванию неизвестных параметров распределений: точечный и интервальный. В соответствии с точечным оцениванием, которое рассмотрено в предыдущем разделе, указывается лишь точка, около которой находится оцениваемый параметр. Желательно, однако, знать, как далеко может отстоять в действительности этот параметр от возможных реализаций оценок в разных сериях наблюдений.

Ответ на этот вопрос – тоже приближенный – дает другой способ оценивания параметров – интервальный. В соответствии с этим способом оценивания находят интервал, который с вероятностью, близкой к единице, накрывает неизвестное числовое значение параметра.

Понятие интервальной оценки

Точечная оценка является случайной величиной и для возможных реализаций выборки принимает значения лишь приближенно равные истинному значению параметра . Чем меньше разность , тем точнее оценка. Таким образом, положительное число , для которого , характеризует точность оценки и называется ошибкой оценки (или предельной ошибкой).

Доверительной вероятностью (или надежностью) называется вероятность β , с которой осуществляется неравенство , т. е.

. (3.20)

Заменив неравенство равносильным ему двойным неравенством , или , получим

Интервал , накрывающий с вероятностью β , , неизвестный параметр , называется доверительным интервалом (или интервальной оценкой), соответствующим доверительной вероятности β .

Случайной величиной является не только оценка , но и ошибка : ее значение зависит от вероятности β и, как правило, от выборки. Поэтому доверительный интервал случаен и выражение (3.21) следует читать так: “Интервал накроет параметр с вероятностью β ”, а не так: “Параметр попадет в интервал с вероятностью β ”.

Смысл доверительного интервала состоит в том, что при многократном повторении выборки объема в относительной доле случаев, равной β , доверительный интервал, соответствующий доверительной вероятности β , накрывает истинное значение оцениваемого параметра. Таким образом, доверительная вероятность β характеризует надежность доверительного оценивания: чем больше β , тем вероятнее, что реализация доверительного интервала содержит неизвестный параметр.

Распределение случайной величины (распределение генеральной совокупности) характеризуется обычно рядом числовых характеристик:

  • для нормального распределения N(a, σ) - это математическое ожидание a и среднее квадратическое отклонение σ ;
  • для равномерного распределения R(a,b) - это границы интервала , в котором наблюдаются значения этой случайной величины.
Такие числовые характеристики, как правило, неизвестные, называются параметрами генеральной совокупности . Оценка параметра - соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные .

Когда оценка определяется одним числом, она называется точечной оценкой . Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.
К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость , эффективность и состоятельность .

Интервальные оценки определяются двумя числами – концами интервала, который накрывает оцениваемый параметр. В отличие от точечных оценок, которые не дают представления о том, как далеко от них может находиться оцениваемый параметр, интервальные оценки позволяют установить точность и надёжность оценок.

В качестве точечных оценок математического ожидания, дисперсии и среднего квадратического отклонения используют выборочные характеристики соответственно выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение.

Свойство несмещенности оценки .
Желательным требованием к оценке является отсутствие систематической ошибки, т.е. при многократном использовании вместо параметра θ его оценки среднее значение ошибки приближения равно нулю - это свойство несмещенности оценки .

Определение . Оценка называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

Выборочное среднее арифметическое является несмещенной оценкой математического ожидания, а выборочная дисперсия - смещенная оценка генеральной дисперсии D . Несмещенной оценкой генеральной дисперсии является оценка

Свойство состоятельности оценки .
Второе требование к оценке - ее состоятельность - означает улучшение оценки с увеличением объема выборки.

Определение . Оценка называется состоятельной , если она сходится по вероятности к оцениваемому параметру θ при n→∞.


Сходимость по вероятности означает, что при большом объеме выборки вероятность больших отклонений оценки от истинного значения мала.

Свойство эффективной оценки .
Третье требование позволяет выбрать лучшую оценку из нескольких оценок одного и того же параметра.

Определение . Несмещенная оценка является эффективной , если она имеет наименьшую среди всех несмещенных оценок дисперсию.

Это означает, что эффективная оценка обладает минимальным рассеиванием относительно истинного значения параметра. Заметим, что эффективная оценка существует не всегда, но из двух оценок обычно можно выбрать более эффективную, т.е. с меньшей дисперсией. Например, для неизвестного параметра a нормальной генеральной совокупности N(a,σ) в качестве несмещенной оценки можно взять и выборочное среднее арифметическое, и выборочную медиану. Но дисперсия выборочной медианы примерно в 1.6 раза больше, чем дисперсия среднего арифметического. Поэтому более эффективной оценкой является выборочное среднее арифметическое.

Пример №1 . Найдите несмещенную оценку дисперсии измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 13,15,17.
Решение. Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
13 2 4
15 0 0
17 2 4
45 4 8

Простая средняя арифметическая (несмещенная оценка математического ожидания)


Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего - смещенная оценка).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).

Пример №2 . Найдите несмещенную оценку математического ожидания измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 4,5,8,9,11.
Решение. m = (4+5+8+9+11)/5 = 7.4

Пример №3 . Найдите исправленную дисперсию S 2 для выборки объема n=10, если выборочная диспресия равна D = 180.
Решение. S 2 = n*D/(n-1) = 10*180/(10-1) = 200