Проверка статистических гипотез в MS EXCEL о равенстве среднего значения распределения (дисперсия неизвестна). Проверка гипотезы о равенстве двух генеральных средних

Проверка равенства среднего определенному значению.

Выборки извлечены из совокупности, имеющей нормальное распределение, данные независимы.

Критериальное значение вычисляется по формуле:

где N - размер выборки;

S 2 - эмпирическая дисперсия выборки;

А - предполагаемая величина среднего значения;

X- среднее значение.

Число степеней свободы для t-критерия V = n-1.

Нулевая гипотеза

Н 0: X = А против Н А: X≠А. Нулевая гипотеза о равенстве средних отвергается, если по абсолютной величине критериальное значение больше верхней α/2 % точки t-распределения взятого с V степенями свободы, то есть при │t│> t vα/2 .

Н 0: Х< А против Н А: X > А. Нулевая гипотеза отвергается, если критериальное значение больше верхней α% точки t-распределения взятого с V степенями свободы, то есть при │t│> t vα .

Н 0: Х>А против H А: X < А. Нулевая гипотеза отвергается, если критериальное значение меньше нижней α% точки t-распределения, взятого с V степенями свободы.

Критерий устойчив при малых отклонениях от нормального распределения.

Пример

Рассмотрим пример, представленный на рис. 5.10. Допустим, что нам необходимо проверить гипотезу о равенстве среднего для выборки (ячейки 123:130) величине 0,012.

Сначала находим среднее выборки (=СРЗНАЧ(123:130) в I31) и дисперсию (=ДИСП(I23:I30) в I32). После этого рассчитываем критериальное (=(131-0,012)*КОРЕНЬ(133)/132) и критическое (=СТЬЮДРАСПОБР(0,025;133-1)) значения. Поскольку критериальное значение (24,64) больше критического (2,84), то гипотеза о равенстве среднего 0,012 отвергается.

Рисунок 5.10 Сравнение среднего значения с константой

1. проверить гипотезы о средних и дисперсиях с помощью параметрических критериев Фишера и Кохрена (таблица 5.4);

2. проверить гипотезу о равенстве средних при неравных дисперсиях выборок (для этого в одной из выборок своего варианта убрать 1 или 2 значения) (таблица 5.4);

3. проверить гипотезу о равенстве среднего заданному значению А (таблица 5.5) и данные из 1-го столбца по варианту.

Таблица 5.4

Варианты заданий

Данные эксперимента
Вариант
2,3 2,6 2,2 2,1 2,5 2,6
1,20 1,42 17,3 23,5 2,37 2,85 35,2 26,1 2,1 2,6
5,63 5,62 26,1 27,0 5,67 2,67 35,9 25,8 5,1 5,63
2,34 2,37 23,9 23,3 2,35 2,34 33,6 23,8 2,34 2,38
7,71 7,90 28,0 25,2 2,59 2,58 35,7 26,0 7,63 7,6,1
1,2 1,6 1,7 2,6 1,9 2,8
1,13 1,15 21,6 21,2 2,13 2,16 31,7 1,12 1,12
1,45 1,47 24,7 24,8 2,45 2,47 34,8 24,5 1,49 1,45
3,57 3,59 25,9 25,7 2,55 2,59 36,0 25,7 3,58 3,58
3,3 3,6 2,5 2,4 3,4 3,5
Данные эксперимента
Вариант
7,3 7,6 12,2 12,1 3,5 4,6
6,20 6,42 217,3 230,5 12,37 12,85 75,2 86,1 3,1 4,6
7,63 5,62 264,1 278,0 15,67 14,67 75,9 75,8 5,1 5,63
6,34 5,37 233,9 236,3 12,35 12,34 73,6 73,8 3,34 4,38
7,71 7,90 281,0 255,2 12,59 12,58 85,7 86,0 3,63 4,6,1
6,2 6,6 11,7 12,6 3,9 4,8
4,13 4,15 251,6 261,2 12,13 12,16 71,7 5,12 4,12
5,45 6,47 244,7 247,8 12,45 12,47 74,8 84,5 3,49 4,45
5,57 5,59 250,9 255,7 12,55 12,59 86,0 85,7 3,58 3,58
5,3 5,6 12,5 12,4 3,4 3,5

Таблица 5.5

Значение А

Варианты
2,2 2,2 2,2 6,5 12,2 3,5

В качестве исходных данных в задании можете использовать свои экспериментальные данные.

Отчет должен содержать расчеты статистических характеристик.

Контрольные вопросы:

1. Какие статистические задачи решаются при исследовании технологических процессов производства пищевой промышленности?

2. Каким образом сравниваются статистические характеристики случайных величин?

3. Уровень значимости и доверительная вероятность при достоверности оценки экспериментальных данных.

4. Как осуществляется проверка статистических гипотез с помощью критериев согласия?

5. От чего зависит мощность критерия согласия для анализа экспериментальных выборок?

6. Каким образом осуществояется подбор критерия для решения задач анализа технологических процессов производства пищевых продуктов?

7. Каким образом осуществляется классификация критериев согласия для анализа выборок результатов исследований технологических процессов производства пищевых продуктов?

8. Какие требования предъявляются к выборкам резльтатов исследований технологических процессов производства пищевых продуктов?

Пусть требуется проверить нулевую гипотезу о нормальном законе распределения случайной величины. Уровень значимости принять =0,001 .

Обычно точные параметры гипотетического нормального закона нам неизвестны, поэтому нулевую гипотезу (Н0) словесно можно сформулировать следующим образом: F(х) является функцией нормального распределения с параметрами М(X) =а = и D(X) = .

Для проверки этой нулевой гипотезы найдем точечные оценки математического ожидания и среднего квадратического отклонения нормально распределенной случайной величины:

При проверке гипотезы о нормальном распределении генеральной совокупности сравниваются эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормальности распределения) частоты. Для этого используются статистика 2 - Пирсона с =k-r-1 степенями свободы (k - число групп, r - число оцениваемых параметров, в настоящем примере оценивались математическое ожидание и среднее квадратическое отклонение, следовательно, r = 2). Если 2расч. 2кр., то нулевая гипотеза отвергается и считается, что предположение о нормальности распределения не согласуется с опытными данными. В противном случае (2расч. < 2кр.) нулевая гипотеза принимается.

Вычисляются теоретические вероятности рi, попадания СВ ХN в частичные интервалы , содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона

Рассмотрим использование MS EXCEL при проверке статистических гипотез о среднем значении распределения в случае неизвестной дисперсии. Вычислим тестовую статистику t 0 , рассмотрим процедуру «одновыборочный t -тест», вычислим Р-значение (Р- value ).

Материал данной статьи является продолжением статьи . В указанной статье даны основные понятия проверки гипотез (нулевая и альтернативная гипотезы, тестовые статистики, эталонное распределение, Р-значение и др. ).

СОВЕТ : Для проверки гипотез потребуется знание следующих понятий:

  • , и их .

Формулировка задачи. Из генеральной совокупности имеющей с неизвестным μ (мю) и неизвестной дисперсией взята выборка размера n. Необходимо проверить статистическую гипотезу о равенстве неизвестного μ заданному значению μ 0 (англ. Inference on the mean of a population, variance unknown).

Примечание : Требование о нормальности исходного распределения, из которого берется выборка , не является обязательным. Но, необходимо, чтобы были выполнены условия применения .

Сначала проведем проверку гипотезы , используя доверительный интервал , а затем с помощью процедуры t -тест. В конце вычислим Р-значение и также используем его для проверки гипотезы .

Пусть нулевая гипотеза Н 0 утверждает, что неизвестное среднее значение распределения μ равно μ 0 . Соответствующая альтернативная гипотеза Н 1 утверждает обратное: μ не равно μ 0 . Это пример двусторонней проверки , т.к. неизвестное значение может быть как больше, так и меньше μ 0 .

Если упрощенно, то проверка гипотезы заключается в сравнении 2-х величин: вычисленного на основании выборки среднего значения Х ср и заданного μ 0 . Если эти значения «отличаются больше, чем можно было бы ожидать исходя из случайности», то нулевую гипотезу отклоняют.

Поясним фразу «отличаются больше, чем можно было бы ожидать исходя из случайности». Для этого, вспомним, что распределение Выборочного среднего (статистика Х ср ) стремится к нормальному распределению со средним значением μ и стандартным отклонением равным σ/√n, где σ – стандартное отклонение распределения, из которого берется выборка (не обязательно нормальное ), а n – объем выборки (подробнее см. ).

К сожалению, в нашем случае дисперсия а, значит, и стандартное отклонение , неизвестны, поэтому вместо нее мы будем использовать ее оценку - s 2 и, соответственно, стандартное отклонение выборки s.

Известно, что если вместо неизвестной дисперсии распределения σ 2 мы используем дисперсию выборки s 2 , то распределением статистики Х ср является с n-1 степенью свободы .

Таким образом, знание распределения статистики Х ср и заданного , позволяют нам формализовать с помощью математических выражений фразу «отличаются больше, чем можно было бы ожидать исходя из случайности».

В этом нам поможет доверительный интервал (как строится доверительный интервал нам известно из статьи ). Если среднее выборки попадает в доверительный интервал, построенный относительно μ 0 , то для отклонения нулевой гипотезы оснований нет. Если не попадает, то нулевая гипотеза отвергается.

Воспользуемся выражением для Доверительного интервала , которое мы получили в статье .

Напомним, что доверительный интервал обычно определяют через количество стандартных отклонений , которые в нем укладываются. В нашем случае в качестве стандартного отклонения берется стандартная ошибка s/√n.

Количество стандартных отклонений зависит от количества степеней свободы используемого t-распределения и уровня значимости α (альфа) .

Для визуализации проверки гипотезы методом доверительного интервала в создана .

Примечание : Перечень статей о проверке гипотез приведен в статье .

t-тест

Ниже приведем процедуру проверки гипотезы в случае неизвестной дисперсии . Данная процедура имеет название t -тест :

В MS EXCEL верхний α /2-квантиль вычисляется по формуле
=СТЬЮДЕНТ.ОБР(1-α /2; n-1)

Учитывая симметричность t-распределения относительно оси ординат, верхний α /2-квантиль равен обычному α /2-квантилю со знаком минус:
=-СТЬЮДЕНТ.ОБР(α /2; n-1)

Также в MS EXCEL имеется специальная формула для вычисления двухсторонних квантилей :
=СТЬЮДЕНТ.ОБР.2Х(α ; n-1)
Все три формулы вернут один и тот же результат.

Примечание : Подробнее про квантили распределения можно прочитать в статье .

Примечание : Если вместо t-распределения использовать стандартное нормальное распределение, то мы получим необоснованно более узкий доверительный интервал , тем самым мы будем чаще необоснованно отвергать нулевую гипотезу , когда она справедлива (увеличим ошибку первого рода ).

Отметим, что различие в ширине интервалов зависит от размера выборки n (при уменьшении n различие увеличивается) и от уровня значимости (при уменьшении α различие увеличивается). Для n=10 и α = 0,01 относительная разница в ширине интервалов составляет порядка 20%. При большом размере выборки n (>30), различием в интервалах часто пренебрегают (для n=30 и α = 0,01 относительная разница составляет 6,55%). Это свойство используется в функции Z.ТЕСТ() , которая вычисляет р-значение (см. ниже) с использованием нормального распределения (аргумент σ должен быть опущен или указана ссылка на стандартное отклонение выборки ).

В случае односторонней гипотезы речь идет об отклонении μ только в одну сторону: либо больше либо меньше μ 0 . Если альтернативная гипотеза звучит как μ>μ 0 , то гипотеза Н 0 отвергается в случае t 0 > t α ,n-1 . Если альтернативная гипотеза звучит как μ<μ 0 , то гипотеза Н 0 отвергается в случае t 0 < - t α ,n-1 .

Вычисление Р-значения

При проверке гипотез большое распространение также получил еще один эквивалентный подход, основанный на вычислении p -значения (p-value).

СОВЕТ : Подробнее про p -значение написано в статье .

Если p-значение , вычисленное на основании выборки , меньше чем заданный уровень значимости α , то нулевая гипотеза отвергается и принимается альтернативная гипотеза . И наоборот, если p-значение больше α , то нулевая гипотеза не отвергается.

Другими словами, если p-значение меньше уровня значимости α , то это свидетельство того, что значение t -статистики , вычисленное на основе выборки при условии истинности нулевой гипотезы , приняло маловероятное значение t 0 .

Формула для вычисления p-значения зависит от формулировки альтернативной гипотезы :

  • Для односторонней гипотезы μ<μ 0 p-значение вычисляется как =СТЬЮДЕНТ.РАСП(t 0 ; n-1; ИСТИНА)
  • Для другой односторонней гипотезы μ>μ 0 p-значение вычисляется как =1-СТЬЮДЕНТ.РАСП(t 0 ; n-1; ИСТИНА)
  • Для двусторонней гипотезы p-значение вычисляется как =2*(1-СТЬЮДЕНТ.РАСП(ABS(t 0);n-1;ИСТИНА))

Соответственно, t 0 =(СРЗНАЧ(выборка )-μ 0)/ (СТАНДОТКЛОН.В(выборка )/ КОРЕНЬ(СЧЁТ(выборка ))) , где выборка – ссылка на диапазон, содержащий значения выборки .

В файле примера на листе Сигма неизвестна показана эквивалентность проверки гипотезы через доверительный интервал , статистику t 0 (t -тест) и p -значение .

Примечание : В MS EXCEL нет специализированной функции для одновыборочного t-теста . При больших n можно использовать функцию Z.ТЕСТ() с опущенным 3-м аргументом (подробнее про эту функцию см. статью ). Функция СТЬЮДЕНТ.ТЕСТ() предназначена для .

Иногда оказывается, что средний результат из основной серии опытов отличается от среднего результата другой серии опытов. Необходимо определить случайно или нет, это различие т.е. можно ли считать, что результат эксперимента представляет собой выборка из двух независимых генеральных совокупностей с одинаковыми средними, или средние этих совокупностей не равны.

Формальная постановка этой задачи выглядит следующим образом – изучаются две случайные величины, распределённые по нормальному закону:

, где σ – стандартное отклонение.

Предполагается, что дисперсии и известны, а математические ожидания не известны.

Пусть имеются две серии наблюдений величины Χ и Υ.

Χ: х 1 , х 2 , …, х n 1 .

Υ: y 1 , y 2 , …, y n 2 .

Выдвигаем следующую гипотезу, что m x =m y . На основании наблюдений необходимо подтвердить или опровергнуть эту гипотезу. Если подтвердится нулевая гипотеза, то можно говорить о том, что различия между средними величинами в двух выборках статистически незначимо, т.е. объясняется как случайная ошибка.

Для проверки этой гипотезы используется z-тест. Для этого рассчитывается

z-критерий (z-статистика), который определяется следующим образом:

Среднее арифметическое значение из серии n наблюдений.

z-критерий распределён нормально с нулевым математическим ожиданием и единичной дисперсией.

Н 1: m x ≠ m y

Нулевая гипотеза о том, что средние значения равны: H 0: =

Альтернативная гипотеза о том, что средние значения не равны, выглядит следующим образом: H 1: ≠ .

При альтернативной гипотезе возможны варианты: либо < , либо > . Соответственно мы должны применить двусторонний критерий. Таким образом существуют две критические точки: и .

Эти точки выбираются из условия:

(1) Р(-∞

(2) Р(

По значению определяем левую и правую критические точки.

,

где F(z) – интегральная функция распределения случайной величины Z, а F -1 (…) – обратная функция.

Определение: Пусть функция y = f(x) задана на сегменте , и пусть множеством значений этой функции является сегмент [α, β]. Пусть, далее, каждому y из сегмента [α, β] соответствует только одно значение x из сегмента , для которого f(x) = y. Тогда на сегменте [α, β] можно определить функцию x = f -1 (y), ставя в соответствие каждому y из [α, β] то значение x из , для которого f(x) = y. Функция x = f -1 (y) называется обратной для функции y = f(x).

Значения критических точек можно найти через функцию: =НОРМСТОБР, указав в диалоговом окне значение вероятности () - для нахождения значения ,или же значение (1 - ) – для нахождения значения ).

Величина Z , распределённая нормально с параметрами Z=N(0;1), распределена симметрично:

0,05

Геометрическая интерпретация: вероятность попадания в области отклонения гипотезы равна сумме заштрихованных площадей.

Последовательность проведения тестирования:

1. Вычисляем статистику Z.

2. Задаёмся уровнем значимости .

3. Определяем критические точки, исходя из условий (1) и (2).

4. Сравниваем рассчитанное в п.1 значение Z со значением критических точек:

Если значение Z- статистики будет по абсолютной величине больше чем значение критической точки, то нулевая гипотеза отклоняется при данном уровне значимости . Это означает, что две совокупности, из которых сделана выборка, различны и, следовательно, средние значения и математические ожидания для этих выборок не равны. В противном случае принимается гипотеза о равенстве средних значений, и можно рассматривать эти две совокупности как одну общую с одним и тем же математическим значением.

В пакете EXCEL существует инструмент анализа, который называется «двухвыборочный Z -тест для средних» (Сервис – анализ данных – двухвыборочный Z- тест для средних). Он служит для проверки гипотезы о различии между средними (математическими ожиданиями) двух нормальных распределений с известными дисперсиями.

Когда вызывается этот инструмент, то появляется диалоговое окно, в котором задаются следующие параметры:

* Гипотетическая средняя разность: вводится число, предполагаемой разности между средними для изучаемой генеральной последовательности. Для проверки гипотезы о равенстве средних необходимо ввести значение ноль.

* Дисперсия переменной 1 (известная): вводится известное значение дисперсии случайной величины Х.

* Дисперсия переменной 2 (известная): вводится известное значение дисперсии случайной величины У.

* Метки: если активируем, то первая строка воспринимается как заголовок и не считается.

* Альфа: задаётся уровень значимости , равный вероятности совершить ошибку первого рода.

ЗАДАНИЕ 1:

Известны выборочные данные о диаметре валиков в миллиметрах, изготовляемых автоматом 1 и 2.

Дисперсия для автомата 1: = 5 мм 2 .

Дисперсия для автомата 2: =7 мм 2 .

Уровень значимости = 0,05.

1.Используя двухвыборочный Z- тест для средних проверить для вашего варианта гипотезу о равенстве средних значений.

2.Проверить эту же гипотезу, используя расчётные формулы.