Повторные независимые испытания схема и формула бернулли.

Производится n опытов по схеме Бернулли с вероятностью успеха p . Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: , где C m n - число сочетаний из n по m .
Ряд распределения имеет вид:

x 0 1 ... m n
p (1-p) n np(1-p) n-1 ... C m n p m (1-p) n-m p n
Этот закон распределения называется биноминальным .

Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np формула Пуассона.

Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1 . Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x) .
Решение . Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P 3 (0) = (1-p) n = (1-0.3) 3 = 0.34
P 3 (1) = np(1-p) n-1 = 3(1-0.3) 3-1 = 0.44

P 3 (3) = p n = 0.3 3 = 0.027

x i 0 1 2 3
p i 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.34 + 1 2 *0.44 + 2 2 *0.19 + 3 2 *0.027 - 0.9 2 = 0.63
Среднее квадратическое отклонение σ(x) .

Функция распределения F(X) .
F(xF(0F(1F(2F(x>3) = 1
  1. Вероятность появления события в одном испытании равна 0.6 . Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2 . Вероятность появления события в отдельном испытании равна 0.6 . Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1 , больше 0.97 . (Ответ: 801)

Пример №3 . Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение . Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4 . Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2) . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание . Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5 . Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99 . Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

(опять же согласно теореме 5.5) 48!(12!)4 способами. Следовательно, искомая вероятность равна

24 48!(13!) 4 = 2448!13 4 = 0,105... .

(12!)4 52! 52!

Любопытно, что при игре «в дурака» такая вероятность оказывается существенно меньше. Действительно, найдем вероятность того, что при раздачечетыремигрокампо6картизколодыв36карт,каждыйигрокполучит ровно по одному тузу. Поскольку раздается 24 карты из 36, то нам прежде всего надо знать число способов, которыми можно выбрать 24 карты из 36. Это число равно C 36 24 = 36!(24!12!) .

Далее, число способов, которыми можно разбить 24 карты на 4 группы по 6 карт согласно теореме 5.5 равно 24! (6!)4 . Таким образом, общее число способов, которыми можно раздать четырем игрокам по 6 карт из колоды в 36

карт, равно C 36 24 (6!) 24! 4 . Четыре туза могут быть распределены между четырьмя

игроками 4!= 24 способами. Число способов, которыми можно раздать четыремигрокампо5картизоставшихся32 карт, подсчитываетсяаналогично

предыдущему, и будет равно C 32 20 (5!) 20! 4 . Таким образом, искомая вероятность равна

24 C 20

32!12!64

(5!)4

≈ 0,022 .

(6!)4

§6. ИСПЫТАНИЯ БЕРНУЛЛИ. ФОРМУЛА ПУАССОНА

6.1. Схема независимых испытаний Бернулли

На практике часто встречается ситуация, хорошо иллюстрирующаяся

следующими примерами.

Некто несколько раз подряд бросает монету. Спрашивается, можно ли заранее оценить вероятность того, что в результате n бросаний герб выпадет ровноm раз? Или:n раз бросается игральная кость; требуется оценить вероятность того, что при этомm раз выпадет 5 или 6 очков.

Очевидно, что без дополнительных предположений относительно условий проведения эксперимента однозначно ответить на эти вопросы нельзя. Так, результат, несомненно, должен зависеть от того, является ли монета (или кость) правильной, т.е. однородной и симметричной. С другой стороны, возможно ли ответить на вопрос: сколько раз надо бросить монету (или кость), чтобы с достаточной степенью уверенности можно было утверждать, что данная монета (или кость) не является правильной ? Умение отвечать на такой вопрос весьма важно, например, для игорных заведений.

Естественно предположить, что если монета правильная, то вероятность появления герба при каждом бросании равна ½ . Аналогично, в случае правильной кости вероятность появления 5 или 6 очков при каждом бросании равна⅓ . Иными словами, если испытаний достаточно много, то герб при бросании монеты будет появляться примерно в половине исходов, а 5 или 6 очков на кости – в одной трети случаев.

Однако всеэти рассуждения основаны на интуиции. Мы жепостараемся в этом параграфе описать теоретическую модель, которая позволит нам вполне обоснованно ответить на все сформулированные выше вопросы. Модель, о которой пойдет речь ниже, впервые была предложена швейцарским математиком Якобом Бернулли (1654 1705), и получила его имя37 .

Схема независимых испытаний Бернулли. Будем производить последовательные испытания, в результате каждого из которых может

37 Основные результаты Я. Бернулли по теории вероятностей были опубликованы лишь после его смерти в 1713 г. Брат Я. Бернулли – Иоганн (1667-1748) и сын – Даниил (1700-1782) являлись членами Петербургской Императорской Академии Наук, и внесли большой вклад в развитие вариационного исчисления и теоретической механики.

наступить или не наступить некоторое событие А . Пусть при каждом отдельном испытании вероятность наступления событияА одна и та же и не зависит от наступления или ненаступления этого события при других испытаниях; обозначим эту вероятность черезp . Обычно говорят, чтоp – это вероятность «успеха»; соответственно величинаq = 1− p называется вероятностью «неудачи». Понятно, что эта терминология весьма условна.

Такая модель называется схемой (независимых) испытаний Бернулли.

Зададимся следующим вопросом: какова вероятность того, что при проведении n испытаний «успех» (т.е. появления событияА ) будет наблюдаться ровно вm случаях?38

Эта задача решается следующим образом. Представим себе все возможные комбинации из последовательных результатов наших испытаний. Так, например, в случае 3 испытаний возможны восемь таких комбинаций39 , а именно:

AAA; AAA; AAA; AAA;

AAA; AAA; AAA; AAA.

Выделим те комбинации, в которых событие А наступает ровноm раз (и, следовательно, не наступает ровноn ─ m раз); назовем для краткости такие комбинациидопустимыми . Определим вероятность появления каждой отдельной допустимой комбинации. Для этого заметим, что появление допустимой комбинации представляет собой произведениеn событий, а именно:m наступлений событияА при одних испытаниях иn ─ m его ненаступлений при других испытаниях. Вероятность наступления событияА при каждом отдельном испытании по условию равнаp ; вероятность его ненаступления равна, следовательно,q = 1− p . По условию наступления или ненаступления событияА при различных испытаниях представляют собой независимые события; следовательно, вероятность их произведения равна

38 Здесь естественно считать, что m = 0, 1, 2, …,n .

39 Здесь A означает событие, противоположное событиюА , т.е. «неудачу».

произведению их вероятностей, т. е. равна величине p m q n − m = p m (1− p )n − m . Заметимтеперь, чтособытие, состоящеевнаступлениисобытияА ровно

при m испытаниях, равносильно появлению хотя бы одной из допустимых комбинаций. Так как различные допустимые комбинации представляют собой несовместимые события, искомая вероятность появления событияА ровно вm испытаниях равна сумме вероятностей появления допустимых комбинаций. Поскольку вероятности появления допустимых комбинаций одинаковы, то вероятность их суммы равна величинеKp m q n − m , гдеK – число всех допустимых комбинаций. Это число равно, очевидно, числу различных способов, которыми можно выделитьm мест из общего числаn мест, иными

словами равно

числу сочетаний из n элементов поm , т.е. равно

C n m= C n n− m=

m!(n− m)!

Таким образом, вероятность появления ровно m «успехов» в последовательностиn независимых испытаний Бернулли равна

распределением Бернулли , определяется формулой (6.1) и дает значение вероятностиm «успехов» вn испытаниях Бернулли с вероятностью «успеха»p . При фиксированныхn иp она является функцией целочисленного неотрицательного аргументаm .

Испытания Бернулли – теоретическая схема, и только практика может показать, годна ли схема для описания данного физического опыта. Однако такая ситуация, как мы видели ранее, вполне естественна при построении вероятностных моделей. При всем этом во многих практических ситуациях использование схемы Бернулли оказывается вполне оправданным.

Приведем следующий поучительный пример . Американский ученый Уэлдон провел 26 306 серий испытаний по 12 бросаний одной и той же

игральной кости в каждой серии, вычисляя частоту появления события («успеха»), состоящего в выпадении на кости 5 или 6 очков. Результаты его опытов приведены в табл. 6.1.

Если кость считать правильной, то вероятность «успеха» должна быть равна ⅓ . Соответствующие теоретические значения функцииb (k ;12,13) даны во второй колонке. Эксперимент показал, однако, довольно существенное отличие от теоретических значений приp =⅓ , но хорошее согласование с теоретическими значениями функцииb (k ;12, 0.3377) дляp = 0.3377 . Этот результат естественно интерпретировать в том смысле, что игральная кость, использованная в эксперименте,не является правильной .

Это замечание имеет весьма важные практические приложения в вопросах, связанных с контролем за выполнением определенных нормативов (например, в производстве). В связи с этим рассмотрим следующий пример.

Таблица 6.1

Экспериментальная

Задача о снабжении энергией . Допустим, чтоn рабочих время от

Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.

Предположим, что имеется n независимых испытаний с двумя исходами в каждом испытании. Один из исходов будем называть успехом и кодировать цифрой 1, другой исход будем называть неудачей и кодировать цифрой 0. Предполагаем, что вероятность успеха в каждом испытании одна и та же и равна числу p , следовательно, вероятность неудачи равна . Эта схема, очевидно, является обобщением схемы независимого бросания монеты.

Пусть вероятность того, что общее число успехов равно m. Тогда основная формула схемы Бернулли имеет вид .

Когда числа n и m становятся большими, вычисления по этой формуле становятся затруднительны. Поэтому используются три предельные теоремы: теорема Пуассона, локальная теорема Муавра–Лапласа и интегральная теорема Муавра–Лапласа. Приведем их формулировки.

Теорема Пуассона . (Формулировка приводится в упрощенном виде.) Пусть имеется n независимых испытаний. – вероятность успеха в одном испытании, – вероятность неудачи. Пусть . Тогда для любого фиксированного m справедливо соотношение

при

Комментарий. На практике эта теорема применяется при Это означает, что p должно быть очень малым числом, а n большим.

Локальная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний Бернулли с вероятностью успеха p () в одном испытании и – вероятностью неудачи. Величина не зависит от n . Предположим, что для некоторой постоянной выполнено условие , где Тогда при

.

Комментарий. Эта теорема применяется, когда p отделено от нуля и единицы.

Интегральная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний с вероятностью успеха p () в одном испытании и вероятностью неудачи. Величина не зависит от n . Тогда для любых вещественных чисел при

.

Комментарий. Здесь – функция распределения стандартного нормального закона, значения которой затабулированы в таблицах, приведенных в большинстве задачников по теории вероятностей и математической статистике.

Приведем задачи на применение схемы Бернулли и соответствующих предельных теорем.

Задача 30. Случайное блуждание по прямой.Частица движется по целым точкам вещественной прямой, перемещаясь каждую секунду либо на единицу вправо, либо на единицу влево с равными вероятностями. Найти вероятность того, что через n секунд частица вернется в точку 0.

Решение. Очевидно, вернуться в 0 частица может только за четное число секунд. Поэтому считаем, что . Считая успехом движение частицы вправо, заметим, что для возвращения за n секунд должно быть ровно k успехов. Поэтому из формулы Бернулли следует, что вероятность возвращения равна .

Задача 31. Имеется 5 студенческих групп по 25 человек, в каждой из которых по 5 отличников. Из каждой группы выбирается случайным образом по одному студенту. Найти вероятность того, что среди выбранных студентов будет 3 отличника.

Решение. Вероятностьвыбрать отличника в одной группе равна . Выбор отличника будем считать успехом. Тогда число успехов среди испытаний должно равняться . Таким образом, по основной формуле схемы Бернулли искомая вероятность равна .

Задача 32. (Задача Банаха) У рассеянного курильщика в правом и левом карманах пиджака находится по коробку спичек. В каждом коробке по n спичек. Каждый раз, когда ему требуется закурить, курильщик вынимает новую спичку либо из левого, либо из правого кармана с вероятностью 1/2. Найти вероятность того, что в тот момент, когда окажется пустым один из коробков, во втором коробке останется k спичек.

Решение. Пусть A – это событие, сформулированное в вопросе задачи. Будем считать испытанием Бернулли вытаскивание спичек, причем вытаскивание спички из правого кармана будем считать успехом, а из левого – неудачей. Очевидно, вероятность успеха равна 1/2. Поскольку к моменту окончания «эксперимента» из одного коробка вытащили n спичек, а из другого – спичек, то общее число испытаний Бернулли можно считать равным , причем событие A реализуется, если число успехов равно n или k . Поэтому . Здесь использовано свойство биномиальных коэффициентов, согласно которому слагаемые в скобках равны между собой.

Задача 33. Монета бросается 100 раз. Найти приближенно вероятность того, что герб выпадет 40 раз. (Воспользоваться таблицей.)

,

где Таким образом, используя таблицы для плотности нормального распределения, получим .

Задача 34. Город ежедневно посещают 1000 туристов, которые днем идут обедать. Каждый из них выбирает для обеда один из двух городских ресторанов с равными вероятностями и независимо друг от друга. Владелец одного из ресторанов желает, чтобы с вероятностью близкой к 0,99, все пришедшие в ресторан туристы смогли бы там одновременно пообедать. Сколько мест должно быть для этого в ресторане?

Решение. Обозначим через событие, состоящее в том, что i-й турист пообедал у заинтересованного владельца ресторана i= 1, 2,…, 1000. Наступление события будем называть успехом в i- м испытании. Вероятность успеха . Пусть m – общее число успехов, событие A состоит в переполнении ресторана, k – общее число мест в ресторане. Тогда нам надо подобрать k таким образом, чтобы выполнялось приближенное равенство

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обозначим эти вероятности как p и q . Исход с вероятностью p будем называть “успехом”, а исход с вероятностью q – “неудачей”.

Очевидно, что

Пространство элементарных событий для каждого испытания состоит из двух точек. Пространство элементарных событий для n испытаний Бернулли содержит точек, каждая из которых представляет один возможный исход составного опыта. Поскольку испытания независимы, то вероятность последовательности событий равна произведению вероятностей соответствующих исходов. Например, вероятность последовательности событий

{У, У, Н, У, Н, Н, Н}

равна произведению

Примеры испытаний Бернулли.

1. Последовательные бросания “правильной” монеты. В этом случае p = q = 1/2 .

При бросании несимметричной монеты соответствующие вероятности изменят свои значения.

2. Каждый результат опыта можно рассматривать как A или .

3. Если существует несколько возможных исходов, то из них можно выделить группу исходов, которые рассматриваются как “успех”, называя все прочие исходы “неудачей”.

Например, при последовательных бросаниях игральной кости под “успехом” можно понимать выпадение 5, а под “неудачей” – выпадение любого другого числа очков. В этом случае p = 1/6, q = 5/6.

Если же под “успехом” понимать выпадение четного, а под “неудачей” – нечетного числа очков, то p = q = 1/2 .

4. Повторные случайные извлечения шара из урны, содержащей при каждом испытании a белых и b черных шаров. Если под успехом понимать извлечение белого шара, то , .

Феллер приводит следующий пример практического применения схемы испытаний Бернулли. Шайбы, изготовляемые при массовом производстве, могут отличаться по толщине, но при проверке они классифицируются на годные и дефектные – в зависимости от того, находится ли толщина в предписанных границах. И хотя продукция по многим причинам не может вполне соответствовать схеме Бернулли, эта схема задает идеальный стандарт для промышленного контроля качества продукции, несмотря даже на то, что этот стандарт никогда не достигается вполне точно. Машины подвержены изменениям, и поэтому вероятности не остаются одними и теми же; в режиме работы машин имеется некоторое постоянство, в результате чего длинные серии одинаковых отклонений оказываются более вероятными, чем это было бы при действительной независимости испытаний. Однако с точки зрения контроля качества продукции желательно, чтобы процесс соответствовал схеме Бернулли, и важно то, что в некоторых пределах этого можно добиться. Целью текущего контроля является обнаружение уже на ранней стадии существенных отступлений от идеальной схемы и использование их как указаний на угрожающее нарушение правильности работы машины.