Модели сетевого планирования и управления. Контрольные работы по основам менеджмента

Техника построения сетевой модели заключается в следующем:

Сеть или ориентированный конечный граф без контуров состоят из множе­ства узлов (вершин, точек) и дуг (ребер, звеньев), соединяющих раз­личные пары узлов. На каждой дуге задана ее ориентация (определено направление), поэтому говорят, что сеть является ориентированной.

В описании ориентированной сети используют числа натурального ряда для обозначения узла (E i . ) и пару чисел, определяющих исходя­щий (i ) и входящий (j ) узлы для ориентирования дуги (i, j ).

Последова­тельность дуг, соединяющих узлы, называется путем между этими узлами.

Сеть называют связной при условии, что существует, по крайней мере, один путь между любой парой узлов.

Построение сетевой модели должно следовать определенным пра­вилам:

Каждая операция в сети представляется только одной дугой (i, j ) ;

Ни одна пара операций не должна определяться одинаковыми начальными и конечными событиями;

При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на сле­дующие вопросы: какие операции необходимо завершить непос­редственно перед началом рассматриваемой операции; какие операции должны следовать после завершения данной операции; какие операции могут выполняться одновременно?

В сети не должно быть событий (кроме исходного), в которые не входит ни одна дуга, и событий (кроме завершающего), из которых не выходит ни одна дуга.

В построении модели используют три вида операций (рис. 6.8):

1) действительная операция - работа, требующая затрат времени и ресурсов (сплошная линия);

2) операция-ожидание, т.е. работа, требующая только затраты вре­мени (штрих-пунктирная линия);

3) фиктивная операция - логическая связь, которая отражает технологическую или ресурсную зависимость с отсутствием связывающих их операций (пунктирная линия).

Построение сетевой модели начинается с составления (1) списка операций (работ), подлежащих выполнению . Последовательность опера­ций в списке может быть произвольной, так как построение сетевой модели проходит несколько итераций. Перечень операций тщательно продумывается и детализируется. Операции, включенные в список, характеризуются определенной продолжительностью, которая уста­навливается на основе действующих нормативов или по аналогии. Та­кие временные оценки называются детерминированными.

Список операций представляется в виде таблицы, в которой указы­ваются индекс мероприятия, его содержание, очередность и продол­жительность. После составления списка операций приступают к (2) про­цедуре построения сети , фрагмент которой приведен на рис. 6.8.

Особенность сети на рис. 6.8 заключается в вводе фиктивных опе­раций е 2 _ 3 и е 5 __ 6 . В частности, фиктивная операция е 2 _ 3 указывает, что в качестве опорной для операции е 3 _ 4 наряду с операцией е 1 _ 3 вы­ступает и операция e 1 _ 2 . Подобную роль выполняет и фиктивная опе­рация е 5 _ 6 для действительной операции е 6 _ 8 . На построенной сетевой модели выполняются расчеты с использованием специальных правил для определения критического пути и резервов времени для отдельных операций, которые несложно преобразовать в реальную шкалу време­ни, удобную для разработки программы или проекта работ.

Дополнением к планированию работ по проекту служит построе­ние графика Ганта и диаграммы распределения потребностей в чело­веческих и материальных ресурсах . График Ганта дает возможность пользователю определить, какие действия имеют место в любой отре­зок времени. Диаграмма потребностей позволяет проанализировать варианты распределения ресурсов, особенно при возникновении про­блем с выполнением запланированных мероприятий. Если существу­ют ограничения на расход ресурсов и по диаграмме выяснено их превышение, то необходимо изыскать возможности «выровнять» (равномеризировать) потребности на протяжении проекта, особенно ког­да речь идет о рабочей силе. Такие действия потребуют корректирова­ния первоначального варианта диаграммы Ганта.

Рис. 6.8. Фрагмент сетевой модели календарного плана-графика

Для детального изучения различных классов сетевых моделей сле­дует обратиться к специальной литературе по исследованию операций, в частности работам , по управлению проектами .

Сетевая модель «дерево»

Частным случаем сети выступает связная сеть , или «дерево (целей, проблем, задач)», - дедуктивно-логическая модель . Граф называется связным, если он не со­держит циклов и для любых двух его вершин существует соединяющий их путь. Идея построения дедуктивно-логической модели в виде «дерева» выглядит следующим образом. Имеется исходный элемент Х 0 , представляющий собой сформулированную общую цель, проблему или задачу. Ему придается статус «корня дерева ». Выведенные из «корня дерева» дуги образуют концевые узлы которые затем при последующей декомпозиции могут стать корневыми, например х 2ав, и таким образом до элементарных операций. Граф «дере­во» графически отображается подобно иерархической модели, приве­денной на рис. 6.1.

Отметим основные свойства модели «дерево» :

а) вершины графа фиксируют определенный иерархический уровень
«дерева» и представляют аналог иерархической системы управления с прямыми связями, т.е. когда имеются «сигналы» управления, идущие с верхнего уровня к ближайшему нижнему уровню, представляющему частичное разложение его цели на подцели или функции на подфункции и т.д.;

б) ребра графа ориентированы таким образом, что все операции (или цели), начинающиеся в вершине Х 0 и составленные из последователь­ности ребер, являются элементами общей совокупности (технологии, комплекса) или цели;

в) если соединить корень или другую вершину графа с некоторым выходом, то будет реализована булева функция - конъюнкция или структурная функция системы, определяющая один из возможных пу­тей или функционирования системы, или решения проблемы, или до­стижения цели.

«Дерево» как инструмент исследования используют для построения абстрактно-дедуктивной модели определенного назначения :

«дерево целей» для анализа системы в терминах целей;

«дерево задач» для анализа системы в терминах функций;

«смешанное дерево», где цель одновременно будет считаться и
функцией, тогда это будет функционально-целевой анализ;

«дерево решений» содержит проблемы, формулировки которых в неявном виде определяют и цели (разрешение проблем), и за­дачи (что надо сделать для разрешения проблем).

Эскизные модели

Принципы построения

Под эскизной моделью будем понимать структурную модель, построенную на логической согласованности функций, действий, потоков и т.д., не ограниченную строго соответствующим графическим языком и пра­вилами.

1. Ясность. Простейшие модели используются для того, чтобы сделать более ясными ситуации, процессы и следствия, поэтому графическое отображение должно быть точным и аккуратным и в то же время по­нятным и простым.

2. Простота. Следует избегать слишком сложных конструкций моде­лей, несущих излишнюю информацию. Если анализируется сложная ситуация, то следует построить несколько различных схем, представ­ляющих конкретные аспекты этой ситуации.

3. Логичность. Язык простейших структурных моделей в наибольшей степени приближен к созданию рисунка «портрета» реальных объек­тов (ситуации, явления, процесса, действия и т.д.), поэтому они долж­ны тестироваться на правильность отображения.

4. Информированность. Каждая модель должна иметь имя и название, например «системная карта функционирования банка» и т.д. Должен быть обозначен и каждый элемент как носитель или цели, или функ­ции, или устройства, или процесса, а связи определенным образом ориентированы.

5. Четкость. Все поясняющие надписи и предположения должны быть кратко и четко сформулированы, чтобы не осталось недопонимания на содержательном уровне.

6. Согласованность. При построении схем необходимо тщательно от­слеживать функциональную, логическую, конструктивную и другие зависимости между элементами, чтобы получить неискаженную ин­формацию.

7. Творчество. Для того чтобы модель была эффективна, ее построе­ние не должно испытывать ограничения со стороны инструменталь­ных возможностей. Наглядная схема, нарисованная от руки, всегда воспринимается лучше и над ней проще работать, но язык ее должен соответствовать определенным правилам.

В целях популяризации простого инструментария, удобного для использования на первых шагах исследования систем управления, пе­рейдем к краткому рассмотрению основных групп эскизных моделей.

Типы эскизных моделей

6.6.2.1. Системная карта. Исследование системы целесообразно начинать с построения системной карты, представляющей собой ее простейший графический образ, формируемый исходя из основных понятий теории систем - система как некоторая целостность, ее граница как замкну­тый контур, структурообразующие элементы - подсистемы. Для пост­роения системной карты целесообразно использовать индуктивный ме­тод познания: вначале следует определить, что будет рассматриваться в качестве структурообразующих элементов (подсистем), которые долж­ны быть прежде всего однородны, т.е. это могут быть функциональные подсистемы, а также группы или команды, ресурсы, оборудование и т.д. Выбранные структурообразующие элементы объединяют согласно по­зиции некоторого субъекта-исследователя в систему.

Рассмотрим композицию, состоящую из системной карты системы управления и отдельно ее подсистемы, приведенную на рис. 6.9.

Пер­вый этап познания системы управления - это ее общесистемное представление в виде совокупности подсистем, которыми выступают виды управленческой деятельности (рис. 6.9 а). Каждой подсистеме дается имя, отражающее без дополнительного пояснения ее функциональное назначение. Отметим, что сущность подсистем с формальной точки зрения двойственна: с одной стороны, она сама является системой, как показано на рис. 6.9 б, а с другой - представляет собой элемент сложной системы. В качестве структурообразующих элементов каждой под­системы могут рассматриваться операционные функции и объекты уп­равления, результат деятельности которых - некоторая продукция (ин­формация, расчет, подготовленный документ, разработанное решение).

Рис. 6.9. Системная карта системы управления (а)

и подсистемы управления снабжением (б)

6.6.2.2. Схема влияния . Если системную карту дополнить стрелками, обозначающими взаимовлияние подсистем и структурообразующих элементов другого уровня посредством поглощения или генерирования информа­ционных, материальных и денежных потоков, то получим модель, назы­ваемую схемой влияния. Интенсивность влияния обычно выражается тол­щиной стрелок. При изучении любой подсистемы управления, чтобы не усложнять картину, следует построить три схемы влияния:

1) потоки, поступающие в подсистемы от структурообразующих элементов внутренней среды системы;

2) потоки, поступающие из исследуемой подсистемы в структурообразующие элементы системы управления;

3) потоки, поступающие от структурообразующих элементов внешней среды. В целом они отображают композицию схем или структурную модель взаимодействия подсистемы управления с внутренней и
внешней средой.

6.6.2.3. Поле сил. Как вариант представления взаимодействия среды и структурообразующего элемента может рассматриваться и модель поля сил (рис. 6.10), предложенная К. Левиным. Модель «поле сил» ос­нована на идее, что любая ситуация в любой момент времени не ста­тична, а находится в динамическом равновесии под влиянием двух групп факторов, определяемых как движущие и сдерживающие силы. Первая группа факторов действует таким образом, чтобы вывести си­туацию из состояния равновесия, вторая группа направлена на под­держание устойчивого состояния или равновесия.

Рис. 6.10. Модель поля сил

Построение и анализ поля сил выполняются на предварительной ста­дии исследования проблемы, когда целесообразно сгруппировать суще­ствующее множество факторов, оказывающих влияние на текущее состояние, и разобраться в характере этого влияния. Благодаря этому происходят систематизация и разделение факторов на движущие к изме­нениям и сдерживающие их.

Графически факторы-силы представляются стрелками, отображающими их направленность, а толщина и длина стрел­ки характеризует силу и продолжительность влияния.

6.6.2.4. Причинно-следственная связь. Эскизные модели, именуемые при­чинно-следственной связью, выстраиваются на основе интеграции идей, используемых при построении моделей «схема влияния» и «поле сил».

Модели этого типа представляются в виде двух следующих ком­позиций: связного графа с «кроной», развивающейся вверх, и дугами, ориентированными вниз, к «корню» графа, и диаграммы Ишикавы (или диаграммы «рыбий скелет»). Их основные атрибуты - слова или фразы, связанные стрелками.

При построении эскизной модели причинно-следственной связи следует соблюдать некоторые правила :

а) указанные в основании стрелки факторы служат «причиной» или
приводят «к результату», находящемуся на острие стрелки;

б) изображаемую графически причинную связь следует всегда проверять таким тестом: «Действительно ли А приводит (или является причиной) к В ?»; если удается по всем связям ответить «да», то схема со­ставлена корректно.

В основу построения модели причинно-следственной связи может быть положен как дедуктивный метод (исходная позиция - конечное событие, действие или проблема), так и индуктивный (единичные фак­торы, которые последовательно интегрируют до конечного события). В первом случае построение модели происходит продвижением назад - вверх по стратам причин до элементарных действий или событий или исходных параметров, во втором - по ходу образования новых и при­влечения дополнительных факторов.

Диаграмма Ишикавы - инструмент, позволяющий выявить отноше­ние между конечным результатом (следствием) и воздействующими на него факторами (причинами) путем их упорядочения и демонстрации свя­зи между ними и факторами и конечным результатом. Факторы разделя­ются на обобщенные, комплексные (как отражение набора единичных факторов) и единичные (первичные, мелкие «кости», капилляры и т.д.). Общий вид диаграммы, по мнению ее разработчика, напоминает рыбий скелет (рис. 6.11). На рис. 6.11 представлены обобщенные и комплексные факторы, оказывающие влияние на улучшение качества продукции.

Особенности построения диаграммы состоят в следующем: пробле­ма - это горизонтальная, центральная линия, обобщенные факторы - наклонные линии, горизонтальные линии к наклонным - это комплексные факторы, определяющие состояние каждого обобщенного фактора. Количество обобщенных факторов, как правило, ограниче­но цифрами 4-6. Модель на рис. 6.11 называется моделью « » -

­ m an (персонал и условия его труда),

­ m achine (оборудование, установки и т.д.),

­ m aterial (предметы труда),

­ m ethod (метод, способ, технология и организация работ и другой инструментарий управления).

Рис. 6.11. Модель причинно-следственной связи (диаграмма Ишикавы)

6.6.2.5. Модель «вход-выход» . Отображение функционирования процесса и системы с использованием модели «вход-выход», реализующей прин­цип «черного ящика», осуществляется простейшим способом.

Графи­ческие элементы - геометрическая фигура для обозначения «процес­са преобразования» и стрелки, указывающие «вход» и «выход» (рис. 6.12).

В качестве процесса преобразования может выступать система любой природы и сложности, так как внутренняя ее структура и меха­низм преобразования входных ресурсов не являются предметом изу­чения на определенном этапе исследования.

На рис. 6.12 в модели «вход» - это используемые ресурсы, «выход» - это продукция или ус­луги, прибыль, налоги и другие результаты деятельности.

Рис. 6.12. Простейшая модель «вход-выход»

Описанный способ изучения систем получил отражение в разви­тии «процессного подхода», когда любой вид деятельности представ­ляется как процесс преобразования, характеризующийся некоторым «входом» и «выходом».

6.6.2.6. Модель функциональных потоков . Эта модель отображает передачу некоторого действия, как правило, посредством перемещения материаль­ных, финансовых и информационных потоков между функционально зависимыми элементами.

Имя элемента дается в форме существительно­го. Такие модели широко используются для отображения движения во времени (t ) товарных (T ), денежных (D ) и информационных потоков (I ). Последние несут функциональным элементам информацию о движении товарных и денежных потоков и по времени опережают их.

Рис. 6.13. Модель функциональных потоков

6.6.2.7. Модель последовательности действий. Эта модель представляет со­бой графическое отображение структуры совершаемых функций или

процессов. К элементам модели относятся функции и операции, со­вершаемые для получения определенного результата, а к связям - упо­рядоченная последовательность действий. Имя элемента дается в форме глагола. Данную модель можно рассматривать как один из первых эта­пов построения SADT-модели, который следует после составления списка функций (рис. 6.14).

Рис. 6.14. Модель последовательности действий оперативного управления

В заключение отметим, что графическая интерпретация объектов и процессов исследований не ограничивается приведенными структур­ными моделями. Широкое распространение получили гибридные мо­дели, синтезирующие несколько подходов и графических языков. На­пример, наиболее информативной получается модель, использующая язык SADT-моделей и математические модели функций.

Развитие системного мышления как концепции современного менеджмента неотделимо от развития графического осмысления ситуа­ций, проблем и управляющих действий, поэтому необходимо изучить, почувствовать эффективность формирования графических образов систем, используя рассмотренные подходы, приемы и правила.

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения параметров сетевой модели :
  • ранний срок свершения события , поздний срок свершения события, ранний срок начала работы, ранний срок окончания работы, поздний срок начала работы, поздний срок окончания работы;
  • резерв времени на свершение события, полный резерв времени, свободный резерв времени;
  • продолжительность критического пути;
а также позволяет оценить вероятность выполнения всего комплекса работ за d дней.
Инструкция . Решение в онлайн режиме осуществляется аналитически и графически. Оформляется в формате Word (см. пример). Ниже представлена видеоинструкция.
Количество вершин Нумерация вершин с №1 .

Исходные данные обычно задаются либо через матрицу расстояний , либо табличным способом .
Ввод данных Матрица расстояний Табличный способ Графический способ Количество строк
Провести анализ сетевой модели: заданы t min и t max заданы t min , t max , m опт
Оптимизация по критерию число исполнителей резервы-затраты сокращение сроков
",0);">

Пример . Описание проекта в виде перечня выполняемых операций с указанием их взаимосвязи приведено в таблице. Построить сетевой график, определить критический путь, построить календарный график.

Работа (i,j) Количество предшествующих работ Продолжительность t ij Ранние сроки: начало t ij Р.Н. Ранние сроки: окончание t ij Р.О. Поздние сроки: начало t ij П.Н. Поздние сроки: окончание t ij П.О. Резервы времени: полный t ij П Резервы времени: свободный t ij С.В. Резервы времени: событий R j
(0,1) 0 8 0 8 0 8 0 0 0
(0,2) 0 3 0 3 1 4 1 0 1
(1,3) 1 1 8 9 8 9 0 0 0
(2,3) 1 5 3 8 4 9 1 1 0
(2,4) 1 2 3 5 13 15 10 10 0
(3,4) 2 6 9 15 9 15 0 0 0

Критический путь: (0,1)(1,3)(3,4) . Продолжительность критического пути: 15.

Независимый резерв времени работы R ij Н - часть полного резерва времени, если все предшествующие работы заканчиваются в поздние сроки, а все последующие работы начинаются в ранние сроки.
Использование независимого резерва времени не влияет на величину резервов времени других работ. Независимые резервы стремятся использовать, если окончание предыдущей работы произошло в поздний допустимый срок, а последующие работы хотят выполнить в ранние сроки. Если R ij Н ≥0, то такая возможность имеется. Если R ij Н <0 (величина отрицательна), то такая возможность отсутствует, так как предыдущая работа ещё не оканчивается, а последующая уже должна начаться (показывает время, которого не хватит у данной работы для выполнения ее к самому раннему сроку совершения ее (работы) конечного события при условии, что эта работа будет начата в самый поздний срок ее начального события). Фактически независимый резерв имеют лишь те работы, которые не лежат на максимальных путях, проходящих через их начальные и конечные события.

Лекция 11

МОДЕЛИ СЕТЕВОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ

Назначение и области применения сетевого планирования и управления

Поиски более эффективных способов планирования сложных процессов привели к созданию принципиально новых методов сетевого планирования и управления (СПУ).

Система методов СПУ - система методов планирования и управления разработкой крупных народнохозяйственных ком­плексов, научными исследованиями, конструкторской и техноло­гической подготовкой производства, новых видов изделий, строи­тельством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.

Первые системы, использующие сетевые графики, были при­менены в США в конце 50-х годов и получили названия СРМ (английская аббревиатура, означающая метод критического пути) и PERT (метод оценки и обзора программы). Система СРМ была впервые применена при управлении строительными работами, система PERT - при разработке систем "Поларис".

В России работы по сетевому планированию начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широ­ко применяться и в других областях народного хозяйства.

СПУ основано на моделировании процесса с помощью сетево­го графика и представляет собой совокупность расчетных мето­дов, организационных и контрольных мероприятий по планиро­ванию и управлению комплексом работ.

Модели сетевого планирования и управления

Система СПУ позволяет:

Формировать календарный план реализации некоторого ком­плекса работ;

Выявлять и мобилизовывать резервы времени, трудовые, ма­териальные и денежные ресурсы;

Осуществлять управление комплексом работ по принципу "ведущего звена" с прогнозированием и предупреждением воз­можных срывов в ходе работ;

Повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ.

Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и созда­ние крупного территориально-промышленного комплекса).

Под комплексом работ (комплексом операций, или проектом) мы будем понимать всякую задачу, для выполнения которой необхо­димо осуществить достаточно большое количество разнообразных работ. Это может быть и строительство некоторого здания, кораб­ля, самолета или любого другого сложного объекта, и разработка проекта этого сооружения, и даже процесс построения планов реализации проекта.

Для того чтобы составить план работ по осуществлению боль­ших и сложных проектов, состоящих из тысяч отдельных иссле­дований и операций, необходимо описать его с помощью некото­рой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.

Сетевая модель и ее основные элементы

Сетевая модель представляет собой план выполнения некото­рого комплекса взаимосвязанных работ (операций), заданного в специфической форме сети, графическое изображение которой называется сетевым графиком. Отличительной особенностью сете­вой модели является четкое определение всех временных взаимо­связей предстоящих работ.

Главными элементами сетевой модели являются события и ра­боты.

Термин работа используется в СПУ в широком смысле. Во-первых, это действительная работа - протяженный во времени процесс, требующий затрат ресурсов (например, сборка изделия, испытание прибора и т.п.). Каждая действительная работа должна быть конкретной, четко описанной и иметь ответственного ис­полнителя.

Во-вторых, это ожидание - протяженный во времени процесс, не требующий затрат труда (например, процесс сушки после по­краски, старения металла, твердения бетона и т.п.).

В-третьих, это зависимость, или фиктивная работа - логиче­ская связь между двумя или несколькими работами (событиями), не требующими затрат труда, материальных ресурсов или време­ни. Она указывает, что возможность одной работы непосредст­венно зависит от результатов другой. Естественно, что продолжи­тельность фиктивной работы принимается равной нулю.

Событие - это момент завершения какого-либо процесса, от­ражающий отдельный этап выполнения проекта. Событие может являться частным результатом отдельной работы или суммарным результатом нескольких работ. Событие может свершиться только тогда, когда закончатся все работы, ему предшествующие. После­дующие работы могут начаться только тогда, когда событие свер­шится. Отсюда двойственный характер события: для всех не­посредственно предшествующих ему работ оно является конеч­ным, а для всех непосредственно следующих за ним - на­чальным. При этом предполагается, что событие не имеет про­должительности и свершается как бы мгновенно. Поэтому каждое событие, включаемое в сетевую модель, должно быть полно, точ­но и всесторонне определено, его формулировка должна включать в себя результат всех непосредственно предшествующих ему ра­бот.

Среди событий сетевой модели выделяют исходное и завершаю­щее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и со­бытий.

События на сетевом графике (или, как еще говорят, на графе) изображаются кружками (вершинами графа), а работы - стрел­ками (ориентированными дугами), показывающими связь между работами. Пример фрагмента сетевого графика представлен на рис.1.

На рис. 2. а приведен сетевой график задачи моделирования и построения оптимального плана некоторого экономического объекта. Чтобы решить эту задачу, необходимо провести следую­щие работы: Л - сформулировать проблему исследования; Б - построить математическую модель изучаемого объекта; В - со­брать информацию; Г - выбрать метод решения задачи; Д - построить и отладить программу для ЭВМ; Е - рассчитать оптимальный план; Ж - передать результаты расчета заказчику. Циф­рами на графике обозначены номера событий, к которым приво­дит выполнение соответствующих работ.

Из графика, например, следует, что работы В и Г можно начать выполнять независимо одна от другой только после свершения события 3, т.е. когда выполнены работы А и Б; работу Д - после свершения события 4, когда выполнены работы А, Б и Г, а работу Е можно выполнить только после наступления события 5, т.е при выполнении всех предшествующих ему работ А, Б, В, Г» Д.

В сетевой модели, представленной на рис. 2 а нет числовых оценок. Такая сеть называется структурной. Однако на практике чаще всего используются сети, в которых заданы оценки продол­жительности работ (указываемые в часах, неделях, декадах, меся­цах и т.д. над соответствующими стрелками), а также оценки других параметров, например трудоемкости, стоимости и т.п. Именно такие сети мы будем рассматривать в дальнейшем.

Прежде сделаем следующее замечание . В рассмотренных примерах сетевые графики состояли из работ и событий. Однако может быть и иной принцип построения сетей - без событий. В такой сети вершины графа (например, изображенные прямо­угольниками) означают определенные работы, а стрелки - зави­симости между этими работами, определяющие порядок их вы­полнения. В качестве примера сетевой график "события - рабо­ты" задачи моделирования и построения оптимального плана некоторого экономического объекта, приведенный на рис. 2 а, представлен в виде сети "работы - связи" на рис. 2 б. А сете­вой график "события - работы" той же задачи, но с неудачно составленным перечнем работ, представлен на рис. 2 в.

Следует отметить, что сетевой график "работы - связи" в от­личие от графика "события - работы" обладает известными пре­имуществами: не содержит фиктивных работ, имеет более про­стую технику построения и перестройки, включает только хорошо знакомое исполнителям понятие работы без менее привычного понятия события. Вместе с тем сети без событий оказываются значительно более громоздкими, так как событий обычно значи­тельно меньше, чем работ (показатель сложности сети, равный отношению числа работ к числу событий, как правило, сущест­венно больше единицы). Поэтому эти сети менее эффективны с точки зрения управления комплексом. Этим и объясняется тот факт, что (при отсутствии в целом принципиальных различий между двумя формами представления сети) в настоящее время наибольшее распространение получили сетевые графики "события - работы".

Порядок и правила построения сетевых графиков

Сетевые графики составляются на начальном этапе планирова­ния. Вначале планируемый процесс разбивается на отдельные работы, составляется перечень работ и событий, продумываются их логические связи и последовательность выполнения, работы закрепляются за ответственными исполнителями. С их помощью оценивается длительность каждой работы. Затем составляется (сшивается) сетевой график. После упорядочения сетевого графи­ка рассчитываются параметры событий и работ, определяются резервы времени и критический путь. Наконец, проводятся ана­лиз и оптимизация сетевого графика, который при необходимости вычерчивается заново с пересчетом параметров событий и работ.

При построении сетевого графика необходимо соблюдать ряд правил.

1. В сетевой модели не должно быть "тупиковых" событий, т.е. событий, из которых не выходит ни одна работа, за исключением завершающего события (рис. 3 а). Здесь либо работа (2, 3) не нужна и ее необходимо аннулировать, либо не замечена необхо­димость определенной работы, следующей за событием 3 для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.

2. В сетевом графике не должно быть "Хвостовых" событий (кроме исходного}, которым не предшествует хотя бы одна работа (событие 3 - на рис. 3 б). Здесь работы, предшествующие со­бытию 3, не предусмотрены. Поэтому событие 3 не может свер­шиться, а следовательно, не может быть выполнена и следующая за ним работа (3, 5). Обнаружив в сети такие события, необходи­мо определить исполнителей предшествующих им работ и вклю­чить эти работы в сеть.

3. В сети не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими (рис. 3 в, г).

Представим себе, что в сетевом графике, изображенном на рис 2 а, работы Б и Д при формулировании первоначального списка работ мы объединили бы в одну работу Б 1 . Тогда получили бы сетевой график, представленный на рис 2в. Событие означает, что к работе Б", которую нельзя выполнить до выбора метода расчета (работа Г), а выбор метода расчета нельзя начинать до окончания построения модели (событие 3"). Другими словами, в сети образо­вался простейший контур: 2"->3"->2".

При возникновении контура (а в сложных сетях, т.е. в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путем пересмотра состава работ добиться его устранения. Так, в нашем примере потребовалось бы разделе­ние работы Б" на Б и Д.

4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой.

Нарушение этого условия происходит при изображении парал­лельно выполняемых работ (рис. 3 д). Если эти работы так и оставить, то произойдет путаница из-за того, что две различные работы будут иметь одно и то же обозначение (7, 2); обычно при­нято под (i , у) понимать работу, связывающую <-е событие с j-м событием. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.

В этом случае рекомендуется ввести фиктивное событие (событие 2" на рис. 3 ё) и фиктивную работу (работа 2", 2), при этом одна из параллельных работ (7, 2) замыкается на это фик­тивное событие. Фиктивные работы изображаются на графике пунктирными линиями.

5. В сети рекомендуется иметь одно исходное и одно завершаю­щее событие. Если в составленной сети это не так (см рис. 3 ж), то добиться желаемого можно путем введения фик­тивных событий и работ, как это показано на рис. 3 з.

Фиктивные работы и события необходимо вводить и в ряд* других случаев. Один из них - отражение зависимости событий не связанных с реальными работами. Например, работы А и 1 (рис. 3 и) могут выполняться независимо друг от друга, но п< условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фик- тивной работы С.

Другой случай - неполная зависимость работ. Например, работа С требует для своего начала завершения работ А и Б, но работа Д связана только с работой Б, а от работы А не зависит. То гда требуется введение фиктивной работы Ф и фиктивного события 3", как показано на рис. 3 к.

Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяженностью во времени.

Страница
9

Правило запрещения необеспеченных событий. В сетевой модели не должно быть событий, в которые не входит ни одной работы, конечно, если это событие не является начальным. Например, событие 3 (рис.4) - необеспеченное.

Работа 3-5 не будет выполнена, так как событию 3 не предшествует ни одной работы (не заданы исходные условия для начала этой работы).

Правило изображения „поставки". „Поставка" - это результат, который получен за пределами системы, т.е. не является результатом работы данного коллектива. „Поставка" изображается кружком, внутри которого поставлен крестик. Рядом с кружком указывается номер спецификации, раскрывающей содержание поставки (рис.5). Из модели видно, что „поставка" необходима для выполнения работы 2-3. Номер 3, стоящий у кружка "поставка", - это третья строка в спецификации.

Рисунок 6.

Работе „г" предшествует только работа „в". Но если необходимо, например, показать, что работе „г" непосредственно предшествует не только работа „в", но и „а", то модель должна быть изображена по-другому (рис.7).

Построение сетевых моделей. Для построения сетевого графика необходимо в технологической последовательности установить: какие работы должны быть завершены до начала данной работы, начаты после ее завершения, какие работы необходимо выполнять одновременно с выполнением данной работы.


Рисунок 7.

Например, необходимо выполнить следующие работы „а", „б", „в", „г", „д". Технологическую последовательность выполнения этих работ запишем в таблицу 1.

Таблица 1 – Исходные данные

Начнем построение модели.

Работам "а" и "б" никакие работы не предшествуют. Это показано графически на Рис.9. Работа "в" выполняется после работы "а" (Рис.9). Работа „г" выполняется после работы "б" (рис.10)


Рисунок 10.

Только после точного определения всех взаимосвязей и последовательности работ можно приступить к построению сетевой модели. При кодировании сетевых моделей необходимо учитывать следующее:

· все события имеют самостоятельные номера;

· кодируются события числами натурального ряда;

· номер последующему событию присваивается после присвоения номеров предшествующим ему событиям;

· стрелка (работа) должна быть всегда направлена от события с меньшим номером к событию с большим номером.

Построение сетевых матриц. Принадлежность работы (стрелки) к тому или иному горизонтальному "коридору" определяется ее горизонтальным участком в данном „коридоре". Принадлежность работы (стрелки) к вертикальному „коридору" определяется вертикальными границами „коридора", этапа или операции, т.е. вертикальными линиями, определяющими масштаб времени матрицы.

Из рис.11 видно, что работы 1-2 и 2-4 выполняются директором, работы 1-3 и 3-4 - заместителем директора, работа 1-4 - главным экономистом. Работы 1-2 и 1-3 выполняются на I этапе решения; работы 2-4 и 3-4 - на II, работа 1-4 - в течение I и II этапов.

Продолжительность каждой работы на сетевой матрице определяется расстоянием по сплошной линии между центрами двух событий, заключающих эту работу (стрелку) в проекции на горизонтальную ось времени. На рис.11 работы 1-2 и 1-3 имеют продолжительность, равную четырем единицам времени.

Местонахождение каждого события на сетевой матрице определяется окончанием наиболее удаленной вправо (на сетке времени) входящей в него стрелки.

I этап решения

II этап решения

Директор

Сетевые графики (сетевые) модели являются мощным и гибким организационным инструментом менеджмента. Они позволяют осуществлять календарное планирование работ, оптимизацию использования ресурсов, сокращать продолжительность выполнения работ в зависимости от их стоимости или же увеличивать продолжительность исходя из бюджетных ограничений, организовывать оперативный менеджмент в ходе реализации деятельности. Сетевые графики занимают важнейшее место в современном проектном менеджменте.

Сетевой график представляет собой ориентированный граф (геометрическую фигуру, состоящую из вершин и направленных стрелок), изображающий все необходимые для достижения цели операции в их технологической взаимосвязи.

Основными понятиями сетевой модели являются:

  • работа;
  • событие;
  • путь.

Работа - это трудовой процесс, требующий затрат времени и ресурсов. В модели работа изображается в виде сплошной стрелки (дуги графа), над которой стоит цифра, показывающая ее продолжительность. Работа идентифицируется номерами начального и конечного события. Иногда в более сложных сетевых моделях допускается нанесение (сверху или снизу от стрелки) и других условных изображений, таких как наименование работы, ее стоимость, объем, исполнителя, продолжительности, количества ресурсов. С другой стороны, иногда используются модели без каких-либо числовых показателей и обозначений. Такая сеть называется структурной сетевой моделью , или топологией .


Рис. 4.1.

В понятие "работа" включается "процесс ожидания" , т.е. процесс, не требующий затрат труда, но требующий затрат времени. Обычно ожидание изображают в виде пунктирной стрелки, над которой указывают продолжительность ожидания ( рис. 4.1 а, б).

Понятие работы учитывает "зависимость" между двумя или несколькими событиями, не требующую затрат времени, ресурсов, но показывающую логическую связь работ, например, что начало одной или нескольких работ зависит от результатов другой работы. На графике зависимость (или как часто ее не совсем правильно называют "фиктивная работа") показывается в виде пунктирной стрелки без указания времени.

Зависимость используется в сетевых графиках не только как технологическая или организационная связь, но и как элемент, необходимый для выполнения определенных правил построения сетевых графиков.

Событие - это результат выполнения одной или нескольких работ, позволяющий начинать другую работу. В сетевых моделях событие изображается, как правило, в виде кружка.

События не являются процессами и не имеют длительности, т.е. совершаются мгновенно. Поэтому каждое событие, включаемое в график, должно быть полно, точно и всесторонне определено (с точки зрения логической связи работ), его формулировка должна включать в себя результат всех непосредственно предшествующих ему работ.

Событие, стоящее в начале сетевого графика, в которое не входит ни одной работы, называется исходным событием . Событие, стоящее в конце сетевого графика, из которого не выходит ни одной работы, называется завершающим событием .

События делятся на простые и сложные. Простые события - это те, в которые входит одна работа. Сложные события - это те, в которых соединяются две или более работ.


Рис. 4.2.

Событие может являться частным результатом отдельной работы или же суммарным результатом нескольких работ. Событие может совершиться только тогда, когда закончатся все работы, ему предшествующие. Последующие работы могут начаться только после того, как произойдет это событие. Отсюда двойственный характер событий (кроме исходного и завершающего): для всех непосредственно предшествующих событию работ оно является конечным, а для всех непосредственно следующих за ним - начальным ( рис. 4.2).

Путь - это непрерывная последовательность стрелок, начиная от исходного события сетевой модели и заканчивая завершающим. Длина пути определяется продолжительностью работ, лежащих на этом пути.

При сравнении продолжительности путей выявляется путь, длина которого (суммарная продолжительность работ на этом пути) имеет наибольшую величину по сравнению с длиной любого другого пути. Такой путь называется критическим. Критический путь определяет общую продолжительность работ. Пример выявления критического пути изображен на рис. 4.3 . Изображенный на рисунке сетевой график имеет пять путей.


Рис. 4.3.

При контроле работ, выполняемых по сетевому графику, главное внимание концентрируется на работах критического пути, так как именно от них зависит выполнение всех работ в установленный срок. Совершенно естественно, что для сокращения общей продолжительности работ надо искать возможности ускорения работ, лежащих на критическом пути.

Работы, лежащие на критическом пути, являются потенциально "узкими местами". Поэтому внимание руководителя должно сосредоточиваться именно на этих работах. А так как критический путь имеет самую большую продолжительность по сравнению с другими путями, то эти последние имеют запас времени, что дает возможность оперативно маневрировать ресурсами или снижать стоимость выполнения работ за счет увеличения их продолжительности.

Как показывает практика, чем больше работ включает сетевой график, тем меньше удельный вес работ, лежащих на критическом пути. Например, в модели со 100 работами на критическом пути будут находиться 10-12% от общего количества работ; при 1000 работ - 7-8%; при 5000 работ - 3-4%.

Правила построения сетевых моделей

Единой принятой последовательности составления сетевого графика нет. Поэтому строить графики можно по-разному - от начала и до окончания, а также и наоборот - от конца к началу. Более логичным и правильным следует признать метод построения графиков от исходного события до завершающего, т.е. слева направо, так как при таком построении четко понимается технология выполнения моделируемых работ. Этот метод получил наибольшее признание.

Поэтому в качестве первого правила последовательности отображения работ следует указать, что сетевые графики следует строить от начала к окончанию, т.е. слева направо.

Правило изображения стрелок. Стрелки, изображающие работы, ожидания или зависимости, могут иметь различный наклон и длину, но должны, как правило, идти слева направо. Стрелки в сетевом графике не должны отклоняться влево от оси ординат. И конечно, следует иметь в виду, что стрелки направляются всегда от предшествующих событий к последующим, от событий с меньшими номерами к событиям с большими номерами.

Правило пересечения стрелок. Пересечения стрелок допустимы, но чем меньше пересечений, тем график более продуман и нагляден.

Изложенные три правила можно рассматривать как предварительные. Теперь перейдем к основным правилам построения сетевых графиков.

Правило обозначения работ. В практике зачастую встречаются случаи, когда две и более работ выходят из одного и того же события, выполняются параллельно и заканчиваются одним и тем же событием.

Например, одновременно начинается проектирование двух вариантов конструкции новой машины. После их разработки проводится сопоставление и выбор лучшего варианта.

Но правильное изображение этих работ на сетевом графике не должно выводить две работы из одного события и завершать их одним тем же событием. При таком изображении обе работы получают одно и то же обозначение, а это недопустимо, так как при расчете сети невозможно будет определить параметры этих работ, да и всего сетевого графика ( рис. 4.4 а).

В сетевом графике между двумя смежными событиями может проходить только одна стрелка. Обычно для распараллеливания работ вводят дополнительное событие, что показано на рис. 4.4 б.


Рис. 4.4.

Правило расчленения и запараллеливания работ. Во многих процессах позволяется начинать следующую работу, не ожидая полного окончания предшествующей. В этом случае производится "расчленение" предшествующей работы.


Рис. 4.5.

На графике вводится дополнительное событие в том месте предшествующей работы, где может начаться новая. Пример этого приведен на рис. 4.5 . Предстоящая работа предполагает необходимость корректировать рабочие чертежи (работа "а", продолжительность 30 дней) и изготовить испытательный стенд (работа "б", продолжительность 25 дней). Если эти работы изобразить последовательно, то общая продолжительность составит 55 дней, как это изображено на рис. 4.5 а, между работами. После составления сетевого графика и анализа взаимосвязи предполагается, что работу "б" можно начать после выполнения половины работы "а", т.е. через 15 дней. Закончить работу "б" можно только после полного окончания работы "а". Исходя из этого можно построить новый сетевой график, изображенный на рис. 4.5 б. Из него видно, что общая продолжительность работ теперь составляет 42 дня, т.е. мы получили выигрыш во времени на 13 дней.

Правило запрещения замкнутых контуров (циклов или петель). При построении сети недопустимо строить замкнутые контуры, т.е. пути, в которых некоторые события соединяются сами с собой. Нельзя допустить, чтобы в сети возник случай, когда один и тот же путь ведет к тому же событию, из которого он первоначально вышел. Различные случаи замкнутых контуров изображены на рис. 4.6 а, б.


Рис. 4.6.

Если такое замыкание произошло, то это означает, что имеются ошибки в технологии или в составлении графика.

Правило запрещения "тупиков". В сетевом графике не должно быть тупиков - событий, из которых не выходит ни одной работы, за исключением завершающего события (в многоцелевых графиках завершающих событий несколько, но это особый случай).

Правило запрещения "хвостовых" событий. В сетевом графике не должно быть хвостовых событий, т.е. событий, в которые не входит ни одной работы, если это событие не является начальным.

Правила запрещения "тупиков" и "хвостовых" событий проиллюстрированы на рис. 4.7 .


Рис. 4.7.

Правила изображения дифференцированно-зависимых работ. В практике построения сетевых графиков постоянно встречаются случаи, когда одна группа работ зависит от другой группы, а одна или несколько работ имеют дополнительные зависимости или ограничения. Обычно для решения этой проблемы вводят дополнительные события, как это показано на