Характеристическое уравнение ду имеет вид. Неоднородные дифференциальные уравнения второго порядка

Уравнение

где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:

и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).

Однородные дифференциальные линейные уравнения второго порядка

Пусть в линейном уравнении

И - постоянные действительные числа.

Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:

Подставляя в исходное дифуравнение, получаем:

Отсюда, учитывая, что , имеем:

Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:

1) Корни действительные и разные . В этом случае общее решение уравнения:

Пример 1

2) Корни действительные и равные . В этом случае общее решение уравнения:

Пример 2

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте об Онлайн помощи по высшей математике .

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

3) Корни комплексные . В этом случае общее решение уравнения:

Пример 3

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

Неоднородные дифференциальные линейные уравнения второго порядка

Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами

где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:

Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:

Если 0 – однократный корень характеристического уравнения, то

Если 0 – двухкратный корень характеристического уравнения, то

Аналогично обстоит дело, если – многочлен произвольной степени

Пример 4

Решим соответствующее однородное уравнение.

Характеристическое уравнение:

Общее решение однородного уравнения:

Найдем частное решение неоднородного дифуравнения:

Подставляя найденные производные в исходное дифуравнение, получаем:

Искомое частное решение:

Общее решение исходного дифуравнения:

Частное решение ищем в виде , где – неопределенный коэффициент.

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.

Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.

Пример 5

Характеристическое уравнение:

Общее решение соответствующего однородного дифференциального уравнения:

Найдем частное решение соответствующего неоднородного дифференциального уравнения:

Общее решение дифуравнения:

В этом случае частное решение ищем в форме тригонометрического двучлена:

где и – неопределенные коэффициенты

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.

Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:

Пример 6

Характеристическое уравнение:

Общее решение соответствующего однородного дифуравнения:

Найдем частное решение неоднородного дифуравнения

Подставляя в исходное дифуравнение, получаем:

Общее решение исходного дифуравнения:

Сходимость числового ряда
Дано определение сходимости ряда и подробно рассматриваются задачи на исследование сходимости числовых рядов - признаки сравнения, признак сходимости Даламбера, признак сходимости Коши и интегральный признак сходимости Коши⁡.

Абсолютная и условная сходимость ряда
На странице рассмотрены знакочередующиеся ряды, их условная и абсолютная сходимость, признак сходимости Лейбница для знакочередующихся рядов - содержится краткая теория по теме и пример решения задачи.

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет общее решение
, гдеилинейно-независимые частные решения этого уравнения.

Общий вид решений однородного дифференциального уравнения второго порядка с постоянными коэффициентами
, зависит от корней характеристического уравнения
.

Корни характеристического

уравнения

Вид общего решения

Корни идействительные и различные

Корни ==

действительные и одинаковые

Корни комплексные
,

Пример

Найти общее решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

1)

Решение:
.

Решив его, найдем корни
,
действительные и различные. Следовательно, общее решение имеет вид:
.

2)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни

действительные и одинаковые. Следовательно, общее решение имеет вид:
.

3)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни
комплексные. Следовательно, общее решение имеет вид:.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид

Где
. (1)

Общее решение линейного неоднородного дифференциального уравнения второго порядка имеет вид
, где
– частное решение этого уравнения,– общее решение соответствующего однородного уравнения, т.е. уравнения.

Вид частного решения
неоднородного уравнения (1) в зависимости от правой части
:

Правая часть

Частное решение

–многочлен степени

, где – число корней характеристического уравнения, равных нулю.

, где =
является корнем характеристического уравнения.

Где – число, равное числу корней характеристического уравнения, совпадающих с
.

где – число корней характеристического уравнения, совпадающих с
.

Рассмотрим различные виды правых частей линейного неоднородного дифференциального уравнения :

1.
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где

, а– число корней характеристического уравнения, равных нулю.

Пример

Найти общее решение
.

Решение:





.

Б) Так как правая часть уравнения является многочленом первой степени и ни один из корней характеристического уравнения
не равен нулю (
), то частное решение ищем в виде, гдеи– неизвестные коэффициенты. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим.

Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства
,
, находим
,
. Итак, частное решение данного уравнения имеет вид
, а его общее решение.

2. Пусть правая часть имеет вид
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где
– многочлен той же степени, что и
, а– число, показывающее, сколько разявляется корнем характеристического уравнения.

Пример

Найти общее решение
.

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.



характеристического уравнения

, где– неизвестный коэффициент. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим. Откуда
, то есть
или
.

Итак, частное решение данного уравнения имеет вид
, а его общее решение
.

3. Пусть правая часть имеет вид , где
и– данные числа. Тогда частное решение
можно искать в виде, гдеи– неизвестные коэффициенты, а– число, равное числу корней характеристического уравнения, совпадающих с
. Если в выражение функции
входит хотя бы одна из функций
или
, то в
надо всегда вводитьобе функции.

Пример

Найти общее решение .

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.

Б) Так как правая часть уравнения есть функция
, то контрольное число данного уравнения, оно не совпадает с корнями
характеристического уравнения
. Тогда частное решение ищем в виде

Где и– неизвестные коэффициенты. Дифференцируя дважды, получими. Подставляя
,
и
в исходное уравнение, находим

.

Приводя подобные слагаемые, получим

.

Приравниваем коэффициенты при
и
в правой и левой частях уравнения соответственно. Получаем систему
. Решая ее, находим
,
.

Итак, частное решение исходного дифференциального уравнения имеет вид .

Общее решение исходного дифференциального уравнения имеет вид .


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка .

Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.

Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение :
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .

Действительные корни

Рассмотрим действительные корни . Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.

Пусть - кратный корень кратности p . То есть
. В этом случае множитель входит в p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; ...; .

Комплексные корни

Рассмотрим комплексные корни . Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного действительные, то кроме корня имеется комплексно сопряженный корень
.

Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения :
; .

Пусть - кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; ... ;
; ; ; ... .

После того как фундаментальная система линейно независимых решений найдена, по получаем общее решение .

Примеры решений задач

Пример 1

Решить уравнение:
.

Решение


.
Преобразуем его:
;
;
.

Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .

Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .

Общее решение исходного уравнения имеет вид:
.

Ответ

Пример 2

Решить уравнение

Решение

Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение .
.

Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.

Основы решения линейных неоднородных дифференциальных уравнений второго порядка (ЛНДУ-2) с постоянными коэффициентами (ПК)

ЛНДУ 2-го порядка с постоянными коэффициентами $p$ и $q$ имеет вид $y""+p\cdot y"+q\cdot y=f\left(x\right)$, где $f\left(x\right)$ - непрерывная функция.

В отношении ЛНДУ 2-го с ПК справедливы два следующих утверждения.

Предположим, что некоторая функция $U$ является произвольным частным решением неоднородного дифференциального уравнения. Предположим также, что некоторая функция $Y$ является общим решением (ОР) соответствующего линейного однородного дифференциального уравнения (ЛОДУ) $y""+p\cdot y"+q\cdot y=0$. Тогда ОР ЛНДУ-2 равно сумме указанных частного и общего решений, то есть $y=U+Y$.

Если правая часть ЛНДУ 2-го порядка представляет собой сумму функций, то есть $f\left(x\right)=f_{1} \left(x\right)+f_{2} \left(x\right)+...+f_{r} \left(x\right)$, то сначала можно найти ЧР $U_{1} ,U_{2} ,...,U_{r} $, которые соответствуют каждой из функций $f_{1} \left(x\right),f_{2} \left(x\right),...,f_{r} \left(x\right)$, а уже после этого записать ЧР ЛНДУ-2 в виде $U=U_{1} +U_{2} +...+U_{r} $.

Решение ЛНДУ 2-го порядка с ПК

Очевидно, что вид того или иного ЧР $U$ данного ЛНДУ-2 зависит от конкретного вида его правой части $f\left(x\right)$. Простейшие случаи поиска ЧР ЛНДУ-2 сформулированы в виде четырех следующих правил.

Правило № 1.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=P_{n} \left(x\right)$, где $P_{n} \left(x\right)=a_{0} \cdot x^{n} +a_{1} \cdot x^{n-1} +...+a_{n-1} \cdot x+a_{n} $, то есть называется многочленом степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных нулю. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом неопределенных коэффициентов (НК).

Правило № 2.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot P_{n} \left(x\right)$, где $P_{n} \left(x\right)$ представляет собой многочлен степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} \cdot e^{\alpha \cdot x} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha $. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом НК.

Правило № 3.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=a\cdot \cos \left(\beta \cdot x\right)+b\cdot \sin \left(\beta \cdot x\right)$, где $a$, $b$ и $\beta $ - известные числа. Тогда его ЧР $U$ ищут в виде $U=\left(A\cdot \cos \left(\beta \cdot x\right)+B\cdot \sin \left(\beta \cdot x\right)\right)\cdot x^{r} $, где $A$ и $B$ - неизвестные коэффициенты, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $i\cdot \beta $. Коэффициенты $A$ и $B$ находят методом НК.

Правило № 4.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot \left$, где $P_{n} \left(x\right)$ - многочлен степени $n$, а $P_{m} \left(x\right)$ - многочлен степени $m$. Тогда его ЧР $U$ ищут в виде $U=e^{\alpha \cdot x} \cdot \left\cdot x^{r} $, где $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ - многочлены степени $s$, число $s$ - максимальное из двух чисел $n$ и $m$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha +i\cdot \beta $. Коэффициенты многочленов $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ находят методом НК.

Метод НК состоит в применении следующего правила. Для того чтобы найти неизвестные коэффициенты многочлена, которые входят в состав частного решения неоднородного дифференциального уравнения ЛНДУ-2, необходимо:

  • подставить ЧР $U$, записанное в общем виде, в левую часть ЛНДУ-2;
  • в левой части ЛНДУ-2 выполнить упрощения и сгруппировать члены с одинаковыми степенями $x$;
  • в полученном тождестве приравнять коэффициенты при членах с одинаковыми степенями $x$ левой и правой частей;
  • решить полученную систему линейных уравнений относительно неизвестных коэффициентов.

Пример 1

Задача: найти ОР ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. Найти также ЧР, удовлетворяющее начальным условиям $y=6$ при $x=0$ и $y"=1$ при $x=0$.

Записываем соответствующее ЛОДУ-2: $y""-3\cdot y"-18\cdot y=0$.

Характеристическое уравнение: $k^{2} -3\cdot k-18=0$. Корни характеристического уравнения: $k_{1} =-3$, $k_{2} =6$. Эти корни действительны и различны. Таким образом, ОР соответствующего ЛОДУ-2 имеет вид: $Y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} $.

Правая часть данного ЛНДУ-2 имеет вид $\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. В ней необходимо рассматривать коэффициент показателя степени экспоненты $\alpha =3$. Этот коэффициент не совпадает ни с одним из корней характеристического уравнения. Поэтому ЧР данного ЛНДУ-2 имеет вид $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $.

Будем искать коэффициенты $A$, $B$ методом НК.

Находим первую производную ЧР:

$U"=\left(A\cdot x+B\right)^{{"} } \cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=A\cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot 3\cdot e^{3\cdot x} =\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot e^{3\cdot x} .$

Находим вторую производную ЧР:

$U""=\left(A+3\cdot A\cdot x+3\cdot B\right)^{{"} } \cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=3\cdot A\cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot 3\cdot e^{3\cdot x} =\left(6\cdot A+9\cdot A\cdot x+9\cdot B\right)\cdot e^{3\cdot x} .$

Подставляем функции $U""$, $U"$ и $U$ вместо $y""$, $y"$ и $y$ в данное ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x}. $ При этом, поскольку экспонента $e^{3\cdot x} $ входит как множитель во все составляющие, то её можно опустить. Получаем:

$6\cdot A+9\cdot A\cdot x+9\cdot B-3\cdot \left(A+3\cdot A\cdot x+3\cdot B\right)-18\cdot \left(A\cdot x+B\right)=36\cdot x+12.$

Выполняем действия в левой части полученного равенства:

$-18\cdot A\cdot x+3\cdot A-18\cdot B=36\cdot x+12.$

Применяем метод НК. Получаем систему линейных уравнений с двумя неизвестными:

$-18\cdot A=36;$

$3\cdot A-18\cdot B=12.$

Решение этой системы таково: $A=-2$, $B=-1$.

ЧР $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $ для нашей задачи выглядит следующим образом: $U=\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

ОР $y=Y+U$ для нашей задачи выглядит следующим образом: $y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

С целью поиска ЧР, удовлетворяющего заданным начальным условиям, находим производную $y"$ ОР:

$y"=-3\cdot C_{1} \cdot e^{-3\cdot x} +6\cdot C_{2} \cdot e^{6\cdot x} -2\cdot e^{3\cdot x} +\left(-2\cdot x-1\right)\cdot 3\cdot e^{3\cdot x} .$

Подставляем в $y$ и $y"$ начальные условия $y=6$ при $x=0$ и $y"=1$ при $x=0$:

$6=C_{1} +C_{2} -1; $

$1=-3\cdot C_{1} +6\cdot C_{2} -2-3=-3\cdot C_{1} +6\cdot C_{2} -5.$

Получили систему уравнений:

$C_{1} +C_{2} =7;$

$-3\cdot C_{1} +6\cdot C_{2} =6.$

Решаем её. Находим $C_{1} $ по формуле Крамера, а $C_{2} $ определяем из первого уравнения:

$C_{1} =\frac{\left|\begin{array}{cc} {7} & {1} \\ {6} & {6} \end{array}\right|}{\left|\begin{array}{cc} {1} & {1} \\ {-3} & {6} \end{array}\right|} =\frac{7\cdot 6-6\cdot 1}{1\cdot 6-\left(-3\right)\cdot 1} =\frac{36}{9} =4; C_{2} =7-C_{1} =7-4=3.$

Таким образом, ЧР данного дифференциального уравнения имеет вид: $y=4\cdot e^{-3\cdot x} +3\cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.