Кривые второго порядка. Эллипс

Лекция 8. Линии второго порядка.

План лекции

8.1. Окружность, исследование уравнения окружности.

8.2. Вывод канонического уравнения эллипса.

8.3. Гипербола и парабола, их канонические уравнения.

8.4. Линии второго порядка. Приведение кривых второго порядка к каноническому виду.

8.5. Полярное уравнение кривой второго порядка.

Окружностью называется множество всех точек плоскости, равноудаленных от данной точки (центра окружности) на расстояние, равное радиусу окружности.

Рисунок 8.1.Окружность.

Пусть С (а,в ) – центр окружности, r – радиус окружности, M (x,y ) – произвольная точка окружности (Рисунок 8.1). По определению окружности . Выразим это равенство в координатах: . Возведем обе части в квадрат:

. (8.1)

Таким образом, координаты любой точки, лежащей на окружности, удовлетворяют уравнению (8.1). Покажем, что координаты точки, не лежащей на окружности, не удовлетворяют уравнению (8.1).

Действительно, если точка М - внутри окружности, то расстояние , т.е. , а если точка M - вне окружности, то , т.е. . Следовательно, уравнению (8.1) удовлетворяют координаты всех точек, лежащих на окружности, и не удовлетворяют координаты точек, не лежащих на окружности. Поэтому уравнение (81) и есть уравнение окружности.

Если в уравнении (8.1) раскрыть скобки, то получим уравнение

где , , .

Если , то уравнение (8.2) определяет окружность.

Если , то уравнение (8.2) определяет точку .

Если , то уравнение (8.2) не имеет геометрического смысла. В этом случае говорят о мнимой окружности.

Рисунок 8.2.Окружность, имеющая

каноническое уравнение

Уравнение (8.1) можно упростить, если поместить начало новой системы координат в центр окружности (Рисунок 8.2). Тогда ее уравнение будет иметь вид:

Это уравнение называется каноническим уравнением окружности , т.е. уравнением самого простого вида.

Эллипсом называется множество всех точек плоскости, сумма расстояний которых до двух данных точек F 1 и F 2 , называемых фокусами, есть величина постоянная (ее обозначают ) и большая, чем расстояние между фокусами.

центром эллипса , т.к. относительно этой точки эллипс симметричен.

Длина |F 1 F 2 | называется фокусным расстоянием , обозначим ее , а половина этого расстояния называется полуфокусным расстоянием , оно равно с .

Примем центр эллипса за начало координат, за ось абсцисс примем прямую, проходящую через фокусы (Рисунок 8.3).

Рисунок 8.3. Эллипс

Тогда координаты фокусов будут F 1 (-c;0), F 2 (c;0). Всякий отрезок, соединяющий две точки эллипса, если он проходит через центр, называется диаметром эллипса . Наибольший диаметр проходит через фокусы, этот диаметр A 1 A 2 называется большой осью эллипса . Длина большой оси эллипса |A 1 A 2 |=2a . Действительно, по определению эллипса |F 1 A 2 |+|F 2 A 2 |=2a , но |F 1 A 2 |=|OA 2 |+c , |F 2 A 2 |=|OA 2 |-c . Тогда получаем 2|OA 2 |=2a, или |OA 2 |=a . Аналогично |A 1 O|=a , следовательно, |A 1 A 2 |=2a . Число а называется большой полуосью . Наименьший диаметр эллипса перпендикулярен наибольшему, его называют малой осью эллипса и обозначают через 2b , так что |B 1 B 2 |=2b . Число b называется малой полуосью . Концы осей, т.е. точки A 1 ,A 2 ,B 1 ,B 2 называются вершинами эллипса. Основное свойство эллипса применимо и для вершин В 1 и В 2 . Например, для вершины В 2 получим |F 1 B 2 |+|F 2 B 2 |=2a , а т.к. |F 1 B 2 |=|F 2 B 2 | , то 2|F 2 B 2 |=2a , или |F 2 B 2 |=a . Тогда из прямоугольного ∆OF 2 B 2 получаем важное соотношение:

(8.4)

Форма эллипса при заданном а зависит только от расстояния между фокусами, т.е. от с . При сближении фокусов и при совпадении их с началом координат эллипс постепенно обратится в окружность. Наоборот, если фокусы отодвигаются от начала координат, эллипс постепенно сплющивается и вырождается в прямолинейный отрезок A 1 A 2 . Степень сжатия эллипса определяется его эксцентриситетом , который определяется дробью:

Для эллипса эксцентриситет может изменяться от 0 до 1, причем для окружности , для эллипса, выродившегося в прямолинейный отрезок, .

Для получения канонического уравнения эллипса возьмем произвольную точку эллипса М(x,y). Тогда по определению |MF 1 |+|MF 2 |=2a . Выразим это равенство в координатах:

Для упрощения уравнения (8.6) придется дважды его возводить в квадрат и приводить подобные члены. В результате будет получено уравнение

или после деления на –

Построение эллипса, согласно его определению, можно осуществить посредством нити длиной , закрепленной концами в фокусах. Зацепив нить острием карандаша, и двигая его так, чтобы нить всё время была в натянутом состоянии, мы заставим острие вычертить эллипс.

Гиперболой называется множество всех точек плоскости, абсолютная величина разности расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная (её обозначают ) и меньшая расстояния между фокусами ().

Середина расстояния между фокусами называется центром гиперболы , так как относительно этой точки гипербола симметрична. Длина - называется фокусным расстоянием , а половина этого расстояния полуфокусным расстоянием . Удобно центр гиперболы принять за начало координат, а за ось абсцисс принять прямую, проходящую через фокусы (Рисунок 8.4).

Всякий отрезок, соединяющий две точки гиперболы и проходящий через центр, называется диаметром гиперболы . Наименьший диаметр лежит на оси абсцисс; этот диаметр называется действительной осью гиперболы, причем . Действительно по определению гиперболы , но , , тогда , или . Аналогично , следовательно, .

Число называется действительной полуосью , точки и называются вершинами гиперболы . Отношение называется эксцентриситетом гиперболы , причем для гиперболы .

Рисунок 8.4. Гипербола

Пусть - произвольная точка гиперболы. Тогда по определению , или в координатной форме

Уравнение (8.8) в результате преобразований, аналогичных проводимым при выводе уравнения эллипса, может быть сведено к виду:

.

Обозначая , получаем каноническое уравнение гиперболы :

Прямые являются асимптотами гиперболы . Это прямые, к которым гипербола приближается в бесконечности, но не пересекает их. С геометрической точки зрения - ордината асимптоты, восстановленной из вершины гиперболы. Для построения асимптот гиперболы целесообразно предварительно построить прямоугольник со сторонами и , параллельными координатным осям и с центром в начале координат (такой прямоугольник называется основным прямоугольником гиперболы). Точки и определяют мнимую ось гиперболы .



Если в уравнении (8.9) , то гипербола называется равнобочной . Ее асимптоты образуют прямой угол. Если за оси принять асимптоты, то уравнение примет вид . Таким образом, равнобочная гипербола является графиком обратной пропорциональности.

Заметим, что уравнение

(8.10)

тоже определяет гиперболу, у которой действительная ось расположена на оси , а мнимая ось – на оси .

Параболой называется множество всех точек плоскости, равноудаленных от данной точки (называемой фокусом параболы) и от данной прямой (называемой директрисой параболы).

Для вывода канонического уравнения параболы проведем ось прямоугольной системы координат через фокус перпендикулярно директрисе, начало координат поместим на равных расстояниях от фокуса и директрисы (Рисунок 8.5). Расстояние от фокуса до директрисы обозначим через (оно называется параметром параболы). Тогда , а директриса задается уравнением . Пусть - произвольная точка параболы. Опустим перпендикуляр на директрису . Тогда по определению . Выразим это условие в координатах:

.

Рисунок 8.5. Парабола.

Возводя в квадрат и приводя подобные, получаем каноническое уравнение параболы :

Вершиной параболы называется точка пересечения параболы с ее осью симметрии. Ось симметрии параболы называется осью параболы. Парабола, определяемая уравнением (8.11), имеет ось, совпадающую с осью .

Заметим, что уравнение определяет параболу, симметричную относительно оси .

Между эллипсом, гиперболой и параболой имеется близкое родство. Это объясняется тем, что все они - линии второго порядка. Все эти линии могут быть получены при пересечении прямого кругового конуса с плоскостью, поворачивающейся вокруг оси, выбранной, например, перпендикулярно к оси конуса (Рисунок 8.6). Пока наклон мал, в сечении получается эллипс. При увеличении наклона эллипс удлиняется, его эксцентриситет растет. Когда плоскость наклонена к оси конуса так же, как образующие, в сечении получается парабола. Наконец, когда плоскость будет пересекать обе половины конуса, в сечении будет гипербола. По этой причине эллипс, гиперболу и параболу иногда называют коническими сечениями.

Рисунок 8.6. Родство кривых второго порядка.

Родство между указанными линиями обусловлено тем, что все они задаются уравнением второй степени, а поэтому и носят общее название линий (или кривых ) второго порядка .

Общим уравнением линий второго порядка называется уравнение вида

. (8.12)

Путем преобразования координат это уравнение можно привести к каноническому виду. Осуществим поворот осей координат на угол по формулам:

(8.13)

Угол выберем таким, чтобы получилось уравнение, не содержащее произведение координат. Для этого подставляем (8.13) в (8.12) и приравниваем коэффициент при к . В результате получаем уравнение для определения угла поворота:

. (8.15)

Формула (8.15) определяет 4 возможных значения для любое из которых позволяет привести уравнение (8.12) к виду:

(8.16)

Если , то уравнение (8.16) может быть приведено к виду:

которое с помощью параллельного переноса начала координат

сводится к каноническому виду.

Если , т.е. или , то уравнение (8.16) может быть приведено к виду.

Свойства кривых второго порядка

Эллипс, гипербола, парабола

Если в уравнении F(x , y ) = 0 линии на плоскости функция F(x , y ) есть многочлен некоторой степени от двух переменных, то такая линия называется алгебраической , степень многочлена называется порядком кривой. Например, прямая – алгебраическая линия первого порядка. Рассмотрим линии второго порядка.

К кривым второго порядка относятся эллипс, гипербола и парабола. Эти кривые играют большую роль в прикладных вопросах.

Определение 1.

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух фиксированных точек, принадлежащих этой же плоскости и называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Найдем уравнение эллипса. Для этого возьмем систему координат так, чтобы ось ОХ проходила через фокусы, а ось OY делила расстояние между фокусами пополам. Пусть расстояние между фокусами F 1 и F 2 равно 2с , а сумма расстояний от текущей точки М(х , у ) эллипса до фокусов равна 2а : r 1 + r 2 = 2a , 2a > 2с .

Тогда фокусы имеют координаты F 1 (с , 0) и F 2 (–с , 0), расстояния от т. М(х , у ) до фокусов равны соответственно

r 1 = , r 2 = .

Из определения получаем уравнение эллипса

+ = 2а

Упрощая это уравнение, получим

Полагая здесь а 2 – с 2 = b 2 , получим уравнение

, (1)

которое называется каноническим уравнением эллипса .

Исследуем форму эллипса, используя это уравнение.

1) Нетрудно видеть, что если точка (х , у ) принадлежит эллипсу, то ему принадлежат и точки (–х , у ), (х , –у ) , (–х , –у ), т.е. эллипс симметричен относительно осей координат и относительно начала координат.

2) Запишем уравнение (1) в виде откуда следует, что х Î[–a ; a ], y Î [–b , b ].

3) В силу симметрии достаточно изучить характер линии при х Î.

Когда х растет от 0 до а , убывает от b до 0, т.к. у ¢ = < 0 для всех х Î и отразим его симметрично относительно осей координат и начала координат.

Точки А, В, С, D пересечения эллипса с осями координат называются вершинами эллипса , точка О называется центром эллипса, отрезок АО = ОС = а называется большой полуосью, а ОВ = OD = b малой полуосью эллипса, расстояния r 1 и r 2 от точки эллипса до фокусов называются фокальными радиусами .

Если бы мы расположили фокусы эллипса на оси ОУ, уравнение эллипса имело бы точно такой же вид, как и уравнение (1), только большой полуосью была бы b . В дальнейшем, договоримся, что большая полуось соответствует оси, на которой лежат фокусы эллипса и, наоборот, из уравнения эллипса по большему параметру а или b можно определить, на какой оси координат лежат фокусы эллипса.

На практике по заданному каноническому уравнению построить эллипс можно так: от начала координат влево и вправо по оси ОХ отложить отрезки длиной а , а по оси ОУ вверх и вниз – отрезки длины b . Через полученные точки-вершины провести гладкую замкнутую овальную линию.

Если а = b = , то с = 0, фокусы эллипса сливаются в одну точку – начало координат – и эллипс вырождается в окружность

х 2 +у 2 = а 2

с центром в начале координат и радиусом а .

Определение 2.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний которых до двух заданных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Если расположить фокусы гиперболы на оси ОХ так, чтобы начало координат оказалось в середине между ними, обозначить расстояние между фокусами 2с , модуль разности расстояний – 2а , 2a > 2с , то символьное уравнение гиперболы будет иметь вид |r 1 – r 2 | = 2a , а в координатной форме оно запишется так:

½ ½= 2а .

Преобразовав это уравнение так же как в случае уравнения эллипса, и обозначив b 2 = с 2 – а 2 , получим каноническое уравнение гиперболы

, (2).

Исследуя форму гиперболу, находим, что

1) кривая симметрична относительно осей и начала координат, поэтому исследование формы достаточно провести для части кривой, расположенной в первой четверти и являющейся графиком функции , х Î [а , +¥), ;

2) точки пересечения с осью ОХ (–а , 0) и (а , 0) – эти точки называются вершинами гиперболы ; с осью ОУ кривая не пересекается;

3) прямые у = являются асимптотами гиперболы. При изменении х от а до бесконечности функция возрастает от 0 до бесконечности, т.к. у ¢ = > 0 для всех х Î[a , +¥). Кроме того, эта часть кривой выпуклая: у ¢¢= >0 при х Î[a , +¥). Изобразив часть гиперболы в первой четверти в соответствии с этими исследованиями, затем отобразим эту линию симметрично относительно осей и начала координат на остальные четверти, получим искомую гиперболу.


На практике по заданному каноническому уравнению гиперболу строят так.

1. Сначала строят осевой прямоугольник: слева и справа от начала координат на расстоянии а проводят прямые, параллельные оси ОУ, а сверху и снизу на расстоянии b от начала координат – прямые, параллельные оси ОХ.

2. Прямые, на которых лежат диагонали полученного прямоугольника, есть асимптоты гиперболы.

3. Точки пересечения сторон прямоугольника с осью ОХ – вершины гиперболы. От вершин к асимптотам в левой и правой полуплоскости проводят ветви гиперболы.

Точки А(–а , 0) и С(а , 0) называются вершинами гиперболы, точка О (начало координат) – центром гиперболы. Отрезок ОА = ОС = а называется действительной полуосью гиперболы, отрезок ОВ = OD = b мнимой полуосью . Оси координат при этом так же называют соответственно действительной осью (ее гипербола пересекает в двух точках) и мнимой осью (ее гипербола не пересекает). Расстояния r 1 и r 2 от точки гипербол до фокусов называются фокальными радиусами .

Если фокусы гиперболы расположить на оси ОУ, то ее уравнение будет иметь вид

, или , (3).

где а –мнимая полуось, b – действительная. Гиперболы (2) и (3) называются сопряженными . Они имеют одни и те же асимптоты.

Таким образом, по каноническому уравнению гиперболы легко определить, какая из осей является действительной (ось, квадрат переменной которой входит в уравнение со знаком плюс), а какая – мнимой (квадрат соответствующей переменной входит со знаком минус).

Если а = b , гипербола называется равносторонней (равнобочной), ее асимптоты перпендикулярны друг другу.

Определение 3.

Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и от заданной прямой (директрисы), лежащих в одной плоскости.

Найдем уравнение параболы, используя это определение.

Пусть р – расстояние между фокусом F и директрисой D . Расположим систему координат так чтобы директриса была параллельна оси ОУ, фокус находился на оси ОХ, начало координат располагалось посередине между фокусом и директрисой. Пусть М(х , у ) – текущая точка параболы, фокус F( ,0), уравнение директрисы х =– , проекция точки М на директрису – точка К(– , х ). Тогда символьное уравнение параболы |FM| = |MK| в координатной форме примет вид

После преобразований получаем у 2 = 2рх .

Если фокус параболы поместить в точку F(– , 0), а директрисой взять прямую х = , то уравнение приобретет вид у 2 = –2рх . Поэтому каноническим уравнением параболы называют уравнение вида

у 2 = 2рх , (4)

где р – параметр произвольного знака.

Исследуем расположение параболы по ее каноническому уравнению (4).

1) Проходит через начало координат (0, 0).

2) Кривая симметрична относительно оси ОХ: точки (х , у ) и (х , –у ) принадлежат параболе. Ось ОХ при этом называют осью параболы .

3) В силу симметрии исследование достаточно провести при у > 0. Рассмотрим функцию , при р > 0 область определения этой функции х Î. Производные этой функции равны у ¢ = , у ¢¢= .Для р >0 эта функция возрастает при х Î(0, +¥), убывает при х Î(–¥, 0), а в точке (0, 0) имеет минимум. Для р < 0, наоборот, при х Î(0, +¥) убывает, при х Î(–¥, 0) возрастает, в точке (0, 0) – максимум. Точку (0, 0) называют вершиной параболы . При р >0 и при у ¢¢ < 0, значит, кривая выпуклая.

4) По этим исследованиям вырисовывается следующая кривая



Если фокус параболы расположить на оси ОУ, директрису провести параллельно оси ОХ, начало координат расположить по-прежнему посередине между фокусом и директрисой, то получим уравнение параболы в виде

х 2 = 2ру , (5)

которое также называется каноническим уравнением параболы. Эта парабола имеет вершиной начало координат, осью симметрии ось ОУ; при р >0 ветви параболы направлены вверх, при р < 0 – вниз.

Свойства кривых второго порядка

Для всех рассмотренных кривых есть общая характеристика: фокус.

Фокус в переводе с латинского означает очаг . С фокусами кривых второго порядка связаны их оптические свойства

Представим себе, что эллипс, гипербола, парабола вращаются вокруг оси, содержащей фокусы. При этом образуется поверхность, которую называют соответственно эллипсоидом, гиперболоидом, параболоидом. Если реальную поверхность такого вида покрыть (со стороны фокусов) амальгамой, то получится соответственно эллиптическое, гиперболическое, параболическое зеркало. Известные из физики законы отражения света позволяют сделать такие выводы:

1) Если источник света поместить в одном из фокусов эллиптического зеркала, то его лучи, отразившись от зеркала, соберутся в другом фокусе.

Этим свойством пользовались фокусники: помещали источник света в одном фокусе эллиптического зеркала, в другом – воспламеняющееся вещество, которое загоралось без видимых причин, что поражало зрителей. Поэтому слово «фокус» получило тот смысл, в котором мы привыкли его употреблять.

2) Если источник света поместить в фокусе параболического зеркала, то его лучи, отразившись, пойдут параллельно оси параболы. На этом основано устройство прожектора.

3) Если источник света поместить в одном из фокусов гиперболического зеркала, то его лучи пойдут так, как если бы они исходили из второго фокуса.

Наряду с фокусами, характерными компонентами кривых второго порядка являются директрисы и эксцентриситет.

Определение 4.

Прямая D называется директрисой кривой, если отношение расстояния d от любой точки кривой до L к расстоянию r от этой точки до фокуса F кривой есть величина постоянная. Величина называется эксцентриситетом кривой.

Эллипс имеет две директрисы D 1 и D 2 , расположенные вне эллипса, и перпендикулярные большой оси (параллельные малой) эллипса.

У гиперболы также две директрисы, расположены они между ветвями гиперболы перпендикулярно действительной оси (параллельно мнимой оси).

Уравнения директрис эллипса и гиперболы имеют вид , где а – большая или действительная полуось; директриса и фокус, расположенные по одну сторону от центра кривой, называются соответствующими друг другу. Постоянным является отношение расстояний от точки кривой до соответствующих друг другу фокусов и директрис.

У параболы один фокус и одна директриса, перпендикулярная оси параболы. Уравнения директрис в зависимости от расположения фокуса имеют вид .

Эксцентриситет кривой второго порядка характеризует форму этой кривой. Для эллипса эксцентриситет e < 1, для гиперболы e >1, у параболы e = 1, у окружности e = 0. Если а – большая или действительная полуось, с – половина фокусного расстояния, то эксцентриситет равен . Зависимость формы кривой второго порядка с одними и теми же фокусом и директрисой от эксцентриситета показана на рисунке.

1. Линии второго порядка на евклидовой плоскости.

2. Инварианты уравнений линий второго порядка.

3. Определение вида линий второго порядка по инвариантам ее уравнения.

4. Линии второго порядка на аффинной плоскости. Теорема единственности.

5. Центры линий второго порядка.

6. Асимптоты и диаметры линий второго порядка.

7. Привидение уравнений линий второго порядка к простейшему.

8. Главные направления и диаметры линий второго порядка.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1. Линии второго порядка в евклидовой плоскости.

Определение:

Евклидова плоскость – это пространство размерности 2,

(двумерное вещественное пространство).

Линии второго порядка представляют собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Эти линии часто встречаются в различных вопросах естествознания. Например, движение материальной точки под воздействием центрального поля силы тяжести проис­ходит по одной из этих линий.

Если секущая плоскость пересекает все прямолинейные образующие одной полости конуса, то в сечении получится ли­ния, называемая эллипсом (рис. 1.1,а). Если секущая плоскость пересекает образующие обеих полостей конуса, то в сечении по­лучится линия, называемая гиперболой (рис. 1.1,6). И, наконец, если секущая плоскость параллельна одной из образующих ко­нуса (на 1.1, в - это образующая АВ), то в сечении получится линия, называемая параболой. Рис. 1.1 дает наглядное представление о форме рассматриваемых линий.


Рисунок 1.1

Общее уравнение линии второго порядка имеет следующий вид:

(1)

(1*)

Эллипсом называется множесво точек плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фо­кусами, есть величина постоянная.

При этом не исключается совпадение фокусов эллипса. Оче­видно, если фокусы совпадают, то эллипс представляет собой окружность.

Для вывода канонического уравнения эллипса выберем на­чало О декартовой системы координат в середине отрезка F 1 F 2 , а оси Ох и Оу направим так, как указано на рис. 1.2 (если фокусы F 1 и F 2 совпадают, то О совпадает с F 1 и F 2 , а за ось Ох можно взять лю­бую ось, проходящую через О).

Пусть длина отрезка F 1 F 2 F 1 и F 2 соответствен­но имеют координаты (-с, 0) и (с, 0). Обозначим через постоян­ную, о которой говорится в опреде­лении эллипса. Очевидно, 2а > 2с, т. е. а > с ( Если М - точка эллипса (см. рис. 1.2), то | MF ] |+ | MF 2 | = 2 a , а так как сумма двух сторон MF 1 и MF 2 треугольника MF 1 F 2 больше третьей стороны F 1 F 2 = 2c, то 2а > 2с. Случай 2а = 2с естественно исключить, так как тогда точка М располагается на отрезке F 1 F 2 и эллипс вырождается в отрезок.).

Пусть М - точка плоскости с координатами (х, у) (рис. 1.2). Обозначим через r 1 и r 2 расстояния от точки М до точек F 1 и F 2 соответственно. Со­гласно определению эллипса равенство

r 1 + r 2 = 2а (1.1)

является необходимым и достаточным условием расположения точки М (х, у) на данном эллипсе.

Используя формулу расстояния между двумя точками, получим

(1.2)

Из (1.1) и (1.2) вытекает, что соотношение

(1.3)

представляет собой необходимое и достаточное условие распо­ложения точки М с координатами х и у на данном эллипсе. По­этому соотношение (1.3) можно рассматривать как уравнение эллипса. Путем стандартного приема «уничтожения радикалов» это уравнение приводится к виду

(1.4) (1.5)

Так как уравнение (1.4) представляет собой алгебраическое следствие уравнения эллипса (1.3), то координаты х и у любой точки М эллипса будут удовлетворять и уравнению (1.4). По­скольку при алгебраических преобразованиях, связанных с изба­влением от радикалов, могли появиться «лишние корни», мы дол­жны убедиться в том, что любая точка М, координаты которой удовлетворяют уравнению (1.4), располагается на данном эллипсе. Для этого, очевидно, достаточно доказать, что величи­ны r 1 и r 2 для каждой точки удовлетворяют соотношению (1.1). Итак, пусть координаты х и у точки М удовлетворяют уравне­нию (1.4). Подставляя значение у 2 из (1.4) в правую часть вы­ражения (1.2) для г 1 после несложных преобразований найдем, что

, тогда .

Совершенно аналогично найдем, что

. Таким обра­зом, для рассматриваемой точки М , (1.6)

т. е.r 1 + r 2 = 2а, и поэтому точка М располагается на эллипсе. Уравнение (1.4) называется каноническим уравнением эллипса. Величины а и b называются соответственно большой и малой полуосями эллипса (наименование «большая» и «малая» объяс­няется тем, что а>Ь).

Замечание . Если полуоси эллипса а и b равны, то эллипс представляет собой окружность, радиус которой равен R = a = b , а центр совпадает с началом координат.

Гиперболой называется множество точек плоскости, для которых абсолютная величина раз­ности расстояний до двух фиксированных точек, F 1 и F 2 этой пло­скости, называемых фокусами, есть величина постоянная ( Фокусы F 1 и F 2 гиперболы естественно считать различными, ибо если указанная в определении гиперболы постоянная не равна нулю, то нет ни одной точки плоскости при совпаденииF 1 и F 2 , которая бы удовлетворяла требованиям определения гиперболы. Если же эта постоянная равна нулю и F 1 совпадает с F 2 , то любая точка плоскости удовлетворяет требованиям определения гиперболы.).

Для вывода канонического уравнения гиперболы выберем начало координат в середине отрезка F 1 F 2 , а оси Ох и Оу на­правим так, как указано на рис. 1.2. Пусть длина отрезка F 1 F 2 равна 2с. Тогда в выбранной системе координат точки F 1 и F 2 соответственно имеют координаты (-с, 0) и (с, 0) Обозначим через 2а постоянную, о которой говорится в определении гипер­болы. Очевидно, 2a< 2с, т. е. a < с. Мы должны убедиться в том, что уравнение (1.9), получен­ное путем алгебраических преобразований уравнения (1.8), не приобрело новых корней. Для этого достаточно доказать, что для каждой точки М, координаты х и у которой удовлетворяют уравнению (1.9), величины r 1 и r 2 удовлетворяют соотношению (1.7). Проводя рассуждения, аналогичные тем, которые были сделаны при выводе формул (1.6), найдем для интересующих нас величин r 1 и r 2 следующие выражения:

(1.11)

Таким образом, для рассматриваемой точки М имеем

, и поэтому она располагается на гиперболе.

Уравнение (1.9) называется каноническим уравнением ги­перболы. Величины а и b называются соответственно действи­тельной и мнимой полуосями гиперболы.

Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до не­которой фиксированной прямой, также расположенной в рас­сматриваемой плоскости.

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Рассмотрим задачу приведения уравнения линии второго порядка к наиболее простому (каноническому) виду.

Напомним, что алгебраической линией второго порядка называется геометрическое место точек плоскости, которое в какой-либо аффинной системе координат Ox_1x_2 может быть задано уравнением вида p(x_1,x_2)=0, где p(x_1,x_2) - многочлен второй степени двух переменных Ox_1x_2 . Требуется найти прямоугольную систему координат, в которой уравнение линии приняло бы наиболее простой вид.

Результатом решения поставленной задачи является следующая основная теорема (3.3)

Классификация алгебраических линий второго порядка (теорема 3.3)

Для любой алгебраической линии второго порядка существует прямоугольная система координат Oxy , в которой уравнение этой линии принимает один из следующих девяти канонических видов:

Теорема 3.3 дает аналитические определения линий второго порядка. Согласно пункту 2 замечаний 3.1, линии (1), (4), (5), (6), (7), (9) называются вещественными (действительными), а линии (2), (3), (8) - мнимыми.

Приведем доказательство теоремы, поскольку оно фактически содержит алгоритм решения поставленной задачи.

Без ограничения общности можно предполагать, что уравнение линии второго порядка задано в прямоугольной системе координат Oxy . В противном случае можно перейти от непрямоугольной системы координат Ox_1x_2 к прямоугольной Oxy , при этом уравнение линии будет иметь тот же вид и ту же степень согласно теореме 3.1 об инвариантности порядка алгебраической линии.

Пусть в прямоугольной системе координат Oxy алгебраическая линия второго порядка задана уравнением

A_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0,

в котором хотя бы один из старших коэффициентов a_{11},a_{12},a_{22} отличен от нуля, т.е. левая часть (3.34) - многочлен двух переменных x,y второй степени. Коэффициенты при первых степенях переменных x и y , а также при их произведении x\cdot y взяты удвоенными просто для удобства дальнейших преобразований.

Для приведения уравнения (3.34) к каноническому виду используются следующие преобразования прямоугольных координат:

– поворот на угол \varphi

\begin{cases}x=x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\y=x"\cdot\sin\varphi+y"\cdot\cos\varphi;\end{cases}

– параллельный перенос

\begin{cases}x=x_0+x",\\y=y_0+y";\end{cases}

– изменение направлений координатных осей (отражения в координатных осях):

оси ординат \begin{cases}x=x",\\y=-y",\end{cases} оси абсцисс \begin{cases}x=-x",\\y=y",\end{cases} обеих осей \begin{cases}x=-x",\\y=-y";\end{cases}

– переименование координатных осей (отражение в прямой y=x )

\begin{cases}x=y",\\y=x",\end{cases}

где x,y и x",y" - координаты произвольной точки в старой (Oxy) и новой O"x"y" системах координат соответственно.

Кроме преобразования координат обе части уравнения можно умножать на отличное от нуля число.

Рассмотрим сначала частные случаи, когда уравнение (3.34) имеет вид:

\begin{aligned} &\mathsf{(I)\colon}~ \lambda_2\cdot y^2+a_0,~\lambda_2\ne0;\\ &\mathsf{(II)\colon}~ \lambda_2\cdot y^2+2\cdot a_1\cdot x,~\lambda_2\ne0,~a_1\ne0;\\ &\mathsf{(III)\colon}~ \lambda_1\cdot x^2+\lambda_2\cdot y^2+a_0,~\lambda_1\ne0,~\lambda_2\ne0. \end{aligned}

Эти уравнения (также многочлены в левых частях) называются приведенными. Покажем, что приведенные уравнения (I), (II), (III) сводятся к каноническим (1)–(9).

Уравнение (I). Если в уравнении (I) свободный член равен нулю (a_0=0) , то, разделив обе части уравнения \lambda_2y^2=0 на старший коэффициент (\lambda_0\ne0) , получим y^2=0 - уравнение двух совпадающих прямых (9), содержащих ось абсцисс y=0 . Если же свободный член отличен от нуля a_0\ne0 , то разделим обе части уравнения (I) на старший коэффициент (\lambda_2\ne0): y^2+\frac{a_0}{\lambda_2}=0 . Если величина отрицательная, то, обозначив ее через -b^2 , где b=\sqrt{-\frac{a_0}{\lambda_2}} , получаем y^2-b^2=0 - уравнение пары параллельных прямых (7): y=b или y=-b . Если же величина \frac{a_0}{\lambda_2} положительная, то, обозначив ее через b^2 , где b=\sqrt{\frac{a_0}{\lambda_2}} , получаем y^2+b^2=0 - уравнение пары мнимых параллельных прямых (8). Это уравнение не имеет действительных решений, поэтому на координатной плоскости нет точек, отвечающих этому уравнению. Однако в области комплексных чисел уравнение y^2+b^2=0 имеет два сопряженных решения y=\pm ib , которые иллюстрируются штриховыми линиями (см. пункт 8 теоремы 3.3).

Уравнение (II). Разделим уравнение на старший коэффициент (\lambda_2\ne0) и перенесем линейный член в правую часть: y^2=-\frac{2a_1}{\lambda_2}\,x . Если величина отрицательная, то, обозначая p=-\frac{a_1}{\lambda_2}>0 , получаем y^2=2px - уравнение параболы (6). Если величина \frac{a_1}{\lambda_2} положительная, то, изменяя направление оси абсцисс, т.е. выполняя второе преобразование в (3.37), получаем уравнение (y")^2=\frac{2a_1}{\lambda_2}\,x" или (y")^2=2px" , где p=\frac{a_1}{\lambda_2}>0 . Это уравнение параболы в новой системе координат Ox"y" .

Уравнение (III). Возможны два случая: либо старшие коэффициенты одного знака (эллиптический случай), либо противоположных знаков (гиперболический случай).

В эллиптическом случае (\lambda_1\lambda_2>0)

\mathsf{(III)}\quad\Leftrightarrow\quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0\quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1

Противоположен знаку a_0 , то, обозначая положительные величины и \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 - уравнение эллипса (1).

Если знак старших коэффициентов \lambda_1,\lambda_2 совпадает со знаком a_0 , то, обозначая положительные величины \frac{a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем -\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~\Leftrightarrow~\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1 - уравнение мнимого эллипса (2). Это уравнение не имеет действительных решений. Однако оно имеет решения в области комплексных чисел, которые иллюстрируются штриховой линией (см. пункт 2 теоремы 3.3).

Можно считать, что в уравнениях эллипса (действительного или мнимого) коэффициенты удовлетворяют неравенству a\geqslant b , в противном случае этого можно добиться, переименовывая координатные оси, т.е. делая преобразование (3.38) системы координат.

Если свободный член уравнения (III) равен нулю (a_0=0) , то, обозначая положительные величины \frac{1}{|\lambda_1|} и \frac{1}{|\lambda_2|} через a^2 и b^2 , получаем \frac{x^2}{a^2}+\frac{y^2}{b^2}=0 - уравнение пары мнимых пересекающихся прямых (3). Этому уравнению удовлетворяет только точка с координатами x=0 и y=0 , т.е. точка O - начало координат. Однако в области комплексных чисел левую часть уравнения можно разложить на множители \frac{x^2}{a^2}+\frac{y^2}{b^2}=\left(\frac{y}{b}+i\,\frac{x}{a}\right)\!\!\left(\frac{y}{b}-i\,\frac{x}{a}\right) , поэтому уравнение имеет сопряженные решения y=\pm i\,\frac{b}{a}\,x , которые иллюстрируются штриховыми линиями, пересекающимися в начале координат (см. пункт 3 теоремы 3.3).

В гиперболическом случае (\lambda_1,\lambda_2<0) при a_0\ne0 переносим свободный член в правую часть и делим обе части на -a_0\ne0 :

\mathsf{(III)}\quad \Leftrightarrow \quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0 \quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1.

Величины \frac{-a_0}{\lambda_1} и \frac{-a_0}{\lambda_2} имеют противоположные знаки. Без ограничения общности считаем, что знак \lambda_2 совпадает со знаком свободного члена a_0 , т.е. \frac{a_0}{\lambda_2}>0 . В противном случае нужно переименовать координатные оси, т.е. сделать преобразование (3.38) системы координат. Обозначая положительные величины \frac{-a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 - уравнение гиперболы (4).

Пусть в уравнении (III) свободный член равен нулю (a_0=0) . Тогда можно считать, что \lambda_1>0 , а \lambda_2<0 (в противном случае обе части уравнения умножим на –1) . Обозначая положительные величины \frac{1}{\lambda_1} и -\frac{1}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 - уравнение пары пересекающихся прямых (5). Уравнения прямых находятся в результате разложения на множители левой части уравнения

\frac{x^2}{a^2}-\frac{y^2}{b^2}=\left(\frac{x}{a}-\frac{y}{b}\right)\!\!\left(\frac{x}{a}+\frac{y}{b}\right)=0 , то есть y=\pm\frac{b}{a}\cdot x

Таким образом, приведенные уравнения (I),(II),(III) алгебраической линии второго порядка сводятся к одному из канонических видов (1)–(9), перечисленных в теореме 3.3.

Осталось показать, что общее уравнение (3.34) можно свести к приведенным при помощи преобразований прямоугольной системы координат.

Упрощение общего уравнения (3.34) производится в два этапа. На первом этапе при помощи поворота системы координат "уничтожается" член с произведением неизвестных. Если произведения неизвестных нет (a_{12}=0) , то поворот делать не надо (в этом случае переходим сразу ко второму этапу). На втором этапе при помощи параллельного переноса "уничтожаются" один или оба члена первой степени. В результате получаются приведенные уравнения (I),(II),(III).

Первый этап: преобразование уравнения линии второго порядка при повороте прямоугольной системы координат.

Если коэффициент a_{12}\ne0 , выполним поворот системы координат на угол \varphi . Подставляя выражения (3.35) в уравнение (3.34), получаем:

\begin{gathered} a_{11}(x"\cos\varphi-y"\sin\varphi)^2+2a_{12}(x"\cos\varphi-y"\sin\varphi)(x"\sin\varphi+y"\cos\varphi)+a_{22}(x"\sin\varphi+y"\cos\varphi)^2+\\ +2a_1(x"\cos\varphi-y"\sin\varphi)+2a_2(x"\cos\varphi-y"\sin\varphi)+a_0=0. \end{gathered}

Приводя подобные члены, приходим к уравнению вида (3.34):

A"_{11}(x")^2+2a"_{12}x"y"+a"_{22}(y")^2+2a"_1x"+2a"_2y"+a"_0=0,

\begin{aligned}a"_{11}&=a_{11}\cos^2\varphi+2a_{12}\cos\varphi\sin\varphi+a_{22}\sin^2\varphi;\\ a"_{12}&=-a_{11}\cos\varphi\sin\varphi+a_{12}(\cos^2\varphi-\sin^2\varphi)+a_{22}\cos\varphi\sin\varphi;\\ a"_{22}&=a_{11}\sin^2\varphi-2a_{12}\cos\varphi\sin\varphi+a_{22}\cos^2\varphi;\\ a"_1&=a_1\cos\varphi+a_2\sin\varphi;\quad a"_2=-a_1\sin\varphi+a_2\cos\varphi; \quad a"_0=a_0. \end{aligned}

Определим угол \varphi так, чтобы a"_{12}=0 . Преобразуем выражение для a"_{12} , переходя к двойному углу:

A"_{12}= -\frac{1}{2}\,a_{11}\sin2\varphi+a_{12}\cos2\varphi+\frac{1}{2}\,a_{22}\sin2\varphi= \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi.

Угол \varphi должен удовлетворять однородному тригонометрическому уравнению \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi=0 , которое равносильно уравнению

\operatorname{ctg}2\varphi=\frac{a_{11}-a_{22}}{2a_{12}},

поскольку a_{12}\ne 0 . Это уравнение имеет бесконечное количество корней

\varphi=\frac{1}{2}\operatorname{arcctg}\frac{a_{11}-a_{22}}{2a_{12}}+\frac{\pi}{2}\,n, \quad n\in\mathbb{Z}.


Выберем любой из них, например, угол \varphi из интервала 0<\varphi<\frac{\pi}{2} . Тогда в уравнении (3.39) исчезнет член 2a"_{12}x"y" , поскольку a"_{12}=0 .

Обозначив оставшиеся старшие коэффициенты через \lambda_1= a" и \lambda_2=a"_{22} , получим уравнение

\lambda_1\cdot(x")^2+\lambda_2\cdot(y")^2+2\cdot a"_1\cdot x"+2\cdot a"_2\cdot y"+a"_0=0.

Согласно теореме 3.1, уравнение (3.41) является уравнением второй степени (при преобразовании (3.35) порядок линии сохраняется), т.е. хотя бы один из старших коэффициентов \lambda_1 или \lambda_2 отличен от нуля. Далее будем считать, что именно коэффициент при (y")^2 не равен нулю (\lambda_2\ne0) . В противном случае (при \lambda_2=0 и \lambda_1\ne0 ) следует сделать поворот системы координат на угол \varphi+\frac{\pi}{2} , который также удовлетворяет условию (3.40). Тогда вместо координат x",y" в (3.41) получим y",-x" соответственно, т.е. отличный от нуля коэффициент \lambda_1 будет при (y")^2 .

Второй этап: преобразование уравнения линии второго порядка при параллельном переносе прямоугольной системы координат.

Уравнение (3.41) можно упростить, выделяя полные квадраты. Нужно рассмотреть два случая: \lambda_1\ne0 или \lambda_1=0 (согласно предположению \lambda_2\ne0 ), которые называются центральный (включающий эллиптический и гиперболический случаи) или параболический соответственно. Геометрический смысл этих названий раскрывается в дальнейшем.

Центральный случай: \lambda_1\ne0 и \lambda_2\ne0 . Выделяя полные квадраты по переменным x",y" , получаем

\begin{gathered}\lambda_1\left[(x")^2+2\,\frac{a"_1}{\lambda_1}\,x"+{\left(\frac{a"_1}{\lambda_1}\right)\!}^2\right]+ \lambda_2\left[(y")^2+2\,\frac{a"_2}{\lambda_2}\,y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0~\Leftrightarrow\\ \Leftrightarrow~ \lambda_1{\left(x"+\frac{a"_1}{\lambda_1}\right)\!}^2+\lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0. \end{gathered}

После замены переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_1}{\lambda_1},\\ y""&=y"+\frac{a"_2}{\lambda_2}, \end{aligned}\right.

получаем уравнение

\lambda_1\,(x"")^2+\lambda_2\,(y"")^2+a""_0=0,

где a""_0=-\lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0 .

Параболический случай: \lambda_1=0 и \lambda_2\ne0 . Выделяя полный квадрат по переменной y" , получаем

\begin{gathered} \lambda_2\left[(y")^2+2\cdot\frac{a"_2}{\lambda_2}\cdot y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0 \quad \Leftrightarrow \\ \Leftrightarrow \quad \lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0.\end{gathered}

Если a"_1\ne0 , то последнее уравнение приводится к виду

\lambda_2{\left(y"+ \frac{a"_2}{\lambda_2}\right)\!}^2+ 2\cdot a"_1\left=0.

Сделав замену переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_0}{2a"_1}- \frac{\lambda_2}{2a"_1}{\left(\frac{a"_2}{\lambda_2}\right)\!}^2,\\ y""&=y"+ \frac{a"_2}{\lambda_2}, \end{aligned}\right.

получим, где a""_1=a"_1

\lambda_2\cdot(y"")^2+2\cdot a""_1\cdot x""=0,

Если a"_1=0 , то уравнение (3.44) приводится к виду, где a""_0=-\lambda_2{\left(\frac{a"_2}{\lambda_2} \right)\!}^2+a"_0 ,

\lambda_2\cdot(y"")^2+a""_0,

\left\{\begin{aligned}x""&=x",\\y""&=y"+\frac{a"_2}{\lambda_2}.\end{aligned}\right.

Замены переменных (3.42), (3.45), (3.48) соответствуют параллельному переносу системы координат Ox"y" (см. пункт 1"a" замечаний 2.3).

Таким образом, при помощи параллельного переноса системы координат Ox"y" получаем новую систему координат O""x""y"" , в которой уравнение линии второго порядка принимает вид (3.43), или (3.46), или (3.47). Эти уравнения являются приведенными (вида (III),(II) или (I) соответственно).

Основная теорема 3.3 о приведении уравнения алгебраической линии второго порядка к каноническому виду доказана.

Замечания 3.8

1. Система координат, в которой уравнение алгебраической линии второго порядка имеет канонический вид, называется канонической. Каноническая система координат определяется неоднозначно. Например, изменяя направление оси ординат на противоположное, снова получаем каноническую систему координат, так как замена переменной y на (-y) не изменяет уравнений (1)–(9). Поэтому ориентация канонической системы координат не имеет принципиального значения, ее всегда можно сделать правой, изменив при необходимости направление оси ординат.

2. Ранее показано, что преобразования прямоугольных систем координат на плоскости сводятся к одному из преобразований (2.9) или (2.10):

\begin{cases} x=x_0+x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi+y"\cdot\cos\varphi, \end{cases}\quad \begin{cases} x=x_0+x"\cdot\cos\varphi+y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi-y"\cdot\cos\varphi.\end{cases}

Поэтому задача приведения уравнения линии второго порядка к каноническому виду сводится к нахождению начала O"(x_0,y_0) канонической системы координат O"x"y" и угла \varphi наклона ее оси абсцисс O"x" к оси абсцисс Ox исходной системы координат Oxy .

3. В случаях (3),(5),(7),(8),(9) линии называются распадающимися, поскольку соответствующие им многочлены второй степени разлагаются в произведение многочленов первой степени.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!