Многомодовое кварцевое оптическое волокно (MM). Одномодовые и многомодовые оптические волокна

Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км. Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше. Вот и попробуем рассмотреть виновника торжества - оптическое волокно. В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями. Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.

Классификация
Чаще всего волокна подразделяют на 2 общих типа волокон 1. Многомодовые волокна 2. Одномодовые дадим пояснение на «бытовом» уровне что есть одномод и многомод. Представим гипотетическую систему передачи с волокном воткнутым в нее. Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света. Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры. Теперь мы знаем что мы используем в качестве передатчика - это свет. Подумаем как свет вводится в волокно: 1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.

Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже). Это основное отличие многомодового и одномодового волокон.

Спасибо enjoint, tegger, hazanko за замечания.

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

Конструкция оптического волокна
Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления. Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка - из менее. Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки - 125мкм. Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым. Оболочка же, как правило, всегда имеет диаметр размером 125мкм.

Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.

Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.

Профиль показателя преломления
Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия. Кратко суть в следующем: когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала) Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.

Здесь отображены 3 профиля преломления: ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового. Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени. Другое дело с градиентным профилем, те моды которые раньше шли по центру - замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру. Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.

Области применения оптических волокон

К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (WDM) без нужды замены кабеля.

А при построении пассивных оптических сетей часто используют многомодовое волокно.

Спасибо тем, кто конструктивно критиковал.

PS если будет интересно, то могут появиться статьи о - дисперсии - типах волоконно-оптических кабелей (не волокон) - системах передачи, используемых для wdm/dwdm уплотнения. - процедура сварки оптических волокон. и типы сколов. Метки:

  • optical fiber
  • оптическое волокно
  • волокно
  • дисперсия

habr.com

Разница между одно- и многомодовыми оптическими кабелями

Главная / Статьи / Разница между одно- и многомодовыми оптическими кабелями

Существует два вида кабелей в волоконно-оптических линиях связи. А именно: кабель волоконно-оптический многомодовый и, соответственно, одномодовый.

Как следует из названия, по архитектуре одномодовый кабель не позволяет пропустить через себя более одного луча – моды. Таким образом, разница между одномодовым и многомодовым оптическим кабелем заключается в способе распространения по ним оптического излучения. Размер сердечника световода самый значительный признак, который может повлиять на то, одномодовый оптический кабель купить или какой-либо другой.

Меньший диаметр сердечника обеспечивает и меньшую модовую дисперсию, и как результат – возможность передачи информации на большие расстояния без использования роутеров, повторителей и ретрансляторов. Негативным фактором является то, что одномодовое волокно и электронные компоненты, которые обеспечивают передачу, прием и трансформацию данных, а также поддерживающие на должном уровнетехнические характеристики оптических кабелей, весьма дорогостоящи.

Что касается конкретных размеров, то волокно одномодового волокна имеет очень тонкий сердечник, диметр которого составляет 10 мкм и меньше. Пропускная способность кабеля варьируется в пределах от 10 Гбитс и выше.

Многомодовый оптический кабель

В отличие от одномодового многомодовый кабель позволяет пропустить через себя n-ное количество модов. Такой проводник и может содержать независимые световые пути в количестве больше одного. Однако величина диаметра сердечника способствует тому, что свет с большей вероятностью будет отражаться от поверхности внешней оболочки сердечника, а это в свою очередь увеличивает модовую дисперсию. Рассеивание луча в кабеле приводит к сокращению расстояния передачи сигнала и необходимости увеличения количества ретрансляторов.

Любой инженер, закончивший проектирование волс, как конечный результат в сети получит скорость передачи данных на уровне 2.5 гбитс. Снова возникает вопрос: «Если я куплю кабель волоконно-оптический, то какой именно стоит выбрать?» Все зависит от технических показателей и необходимого качества связи. Например, можно приобрести кабель оптический 8 волокон. В таком проводнике, как и указано, 8 волокон, которые размещены в центральном модуле.

www.volioptika.ru

Компьютерный блог

Оптический кабель представляет собой тонкое гибкое волокно, которое позволяет передавать свет на большие расстояния благодаря эффекту внутреннего отражения лучей от стенок оболочки. Оптический кабель сегодня выпускается по двум технологиям – одномодовой и многомодовой. О том, чем отличается одномодовый оптический кабель от многомодового и пойдет речь дальше.

Принцип действия

Одномодовый оптический кабель специально разработан для передачи одной «моды» или одного луча света. В тоже время мультимодовый оптический кабель позволяет одновременно передавать несколько «мод» или лучей, каждый из которых переотражается внутри кабеля под своим углом преломления.

Геометрические отличия

Мультимодовый и одномодовый оптический кабель имеют существенные отличия, которые видно невооруженным глазом. Мультимодовый кабель имеет толщину несущей сигнал сердцевины, которая составляет не менее 62.5 мкм в диаметре. Одномодовый кабель является более тонким, а его несущая сердцевина составляет от 8 до 10 мкм в диаметре. Современные сетевые карты оснащаются оптическим портом и на серверах устанавливается сразу несколько сетевых карт с поддержкой прямого подключения одномодового или многомодового кабеля через специальный разъем.

Отличия в пропускной способности

Мультимодовое оптическое волокно имеет ширину полосы пропускания, которая составляет до нескольких сотен МГц на один километр. Благодаря своим свойствам многомодовый кабель способен передавать данные на расстояние до 10 миль, и может использовать для увеличения расстояния передачи данных относительно недорогие оптические повторители (приемо-передатчики сигнала). Из нашей новой статьи вы более подробно узнаете, как работает оптоволоконная сеть.

В тоже время одномодовый кабель может передавать данные более чем на 10 км, но при этом должен использовать излучение от дорогого твердотельного лазерного диода или других одномодовых излучателей. Такой диод обычно состоит из двух излучающих модулей, которые формируют в одном направлении общий световой поток с данными. Передатчики, устанавливаемые на одномодовый оптический кабель обычно стоят в четыре и более раз дороже, чем аналогичные устройства для ретрансляции многомодовых сигналов.

pcnotes.ru

Одномод или многомод, какой кабель выбрать? Что лучше?

Отвечая на вопрос какой оптический кабель лучше одномодовый или многомодовый - двух мнений быть не может. По техническим характеристикам и эксплуатационным показателям - одномодовый оптический кабель лучше, чем многомодовый. Он позволяет передавать большие объемы данных на огромные расстояния (до 40км для приложений 10GBASE и 40GBASE). Поэтому и стоимость одномодового кабеля (и оборудования для передачи данных по нему) выше, чем многомодового.

Но все же какой оптический кабель выбрать для конкретной задачи? Ниже несколько практических рекомендаций, на что можно ориентироваться при выборе типа кабеля:

  • прежде всего, смотрим тип используемого активного оборудования и требования (в том числе в техническом задании) it-службы заказчика или эксплуатирующей организации. и строго следуем рекомендациям производителя активного оборудования или заказчика при выборе типа кабеля и другого оптического оборудования;
  • при необходимости укладки кабеля на расстояния более 500м (прежде всего для магистральных соединений между удаленными крупными узлами) и для передачи большого объема данных используем только одномодовый оптический кабель;
  • для передачи данных в пределах одного здания между кроссовыми и серверными комнатами на разных этажах или в разных корпусах, часто имеет смысл использовать многомодовый кабель. Он дешевле и менее требователен к количеству поворотов/спусков и их радиусу;
  • ну а в тех ситуациях, когда нет достаточной информации об используемом активном оборудовании, длине магистральных линий и других технических данных - используйте одномодовый кабель. Точно не ошибетесь!

Кроме этого, не следует забывать, что для каждого приложения в волоконно-оптической сети рекомендуется закладывать по два волокна и предусматривать 100% резерв оптических волокон (например, если планируется передавать по оптике данные локальной сети (1), телефонии (2) и видеонаблюдения (3), то количество волокон в кабеле должно быть 3*2*100% резерв=12 волокон).

Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км.
Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше.
Вот и попробуем рассмотреть виновника торжества - оптическое волокно.

В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями.

Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.

Классификация

Чаще всего волокна подразделяют на 2 общих типа волокон
1. Многомодовые волокна
2. Одномодовые

Дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.
Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.
Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.
Теперь мы знаем что мы используем в качестве передатчика - это свет.

Подумаем как свет вводится в волокно:
1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.
Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

Это основное отличие многомодового и одномодового волокон.
Спасибо enjoint, tegger, hazanko за замечания.

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

Конструкция оптического волокна

Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления.
Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка - из менее.

Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки - 125мкм.

Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым.
Оболочка же, как правило, всегда имеет диаметр размером 125мкм.

Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.

Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.

Профиль показателя преломления

Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия.
Кратко суть в следующем:
когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала)
Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.

Здесь отображены 3 профиля преломления:
ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового.
Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени.
Другое дело с градиентным профилем, те моды которые раньше шли по центру - замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру.
Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.

Области применения оптических волокон

К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (

Принцип передачи данных волоконно-оптическим кабелем

Как известно, все данные в компьютере представляются в виде нулей и единиц. Все стандартные кабели передают бинарные данные с помощью электрических импульсов. И только волоконно-оптический кабель, используя тот же принцип, передает данные с помощью световых импульсов. Источник света посылает данные по волоконно-оптическому «каналу», а принимающая сторона должна преобразовать полученные данные в необходимый формат.

Канал оптической передачи состоит из передатчика, световедущего оптического волокна и приёмника.

Существуют два типа оптоволоконных кабелей:

-многомодовый (multimode) , или мультимодовый, кабель, более дешевый, но менее качественный (ММ );

-одномодовый (single mode) кабель, более дорогой, но имеющий лучшие характеристики (SM ).

Основные различия между этими типами связаны с разными режимами прохождения световых лучей в кабеле.

Одномодовый кабель имеет диаметр центрального волокна 3 - 10 мкм. Для передачи данных используют свет с длиной волны 1300 и 1500 нм. Дисперсия и потери сигнала на этих частотах очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Однако длина одномодового кабеля может достигать 80 км.

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (Рис). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62,5/125). Допустимая длина кабеля достигает 2-5 км.

Для передачи данных на одном конце оптоволокна устанавливают передатчик-излучатель, на другом - фотоприемник. Тем самым, одновременно задействованы два волокна, одно из которых передает, а другое – принимает данные. Принятый оптический сигнал преобразуется в электрический с помощью специальных устройств – медиаконвертеров (Рис. 107), имеющих порты для подключения оптоволокна и кабеля «витая пара». Медиаконвертеры могут иметь исполнение в виде модулей, подключаемых непосредственно в слот коммутатора, как это показано на рис.

В последнее время для экономии числа волокон (а также соединительной аппаратуры) используют волновое мультиплексирование (WDM, Wave Division Multiplexing ): на одной длине волны передают сигнал в одном направлении, на другой - в обратном. Для этого используются приемопередатчики со встроенным WDM и одним разъемом для подключения волокна. На противоположных концах линии устанавливают разнотипные приемопередатчики: у одного передатчика длина волны равна1300 нм, у приемника – 1550 нм; у другого - наоборот.



Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.


Рис.1 Одномодовое и многомодовое оптическое волокно

12 декабря 2008 в 13:40

Оптические волокна. Классификация.

  • IT-инфраструктура

Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км.
Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше.
Вот и попробуем рассмотреть виновника торжества - оптическое волокно.

В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями.

Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.

Классификация

Чаще всего волокна подразделяют на 2 общих типа волокон
1. Многомодовые волокна
2. Одномодовые

Дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.
Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.
Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.
Теперь мы знаем что мы используем в качестве передатчика - это свет.

Подумаем как свет вводится в волокно:
1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.
Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

Это основное отличие многомодового и одномодового волокон.
Спасибо enjoint, tegger, hazanko за замечания.

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

Конструкция оптического волокна

Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления.
Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка - из менее.

Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки - 125мкм.

Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым.
Оболочка же, как правило, всегда имеет диаметр размером 125мкм.

Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.

Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.

Профиль показателя преломления

Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия.
Кратко суть в следующем:
когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала)
Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.

Здесь отображены 3 профиля преломления:
ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового.
Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени.
Другое дело с градиентным профилем, те моды которые раньше шли по центру - замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру.
Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.

Области применения оптических волокон

К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (

Ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.

Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера - создать границу раздела сред и не дать излучению покинуть пределы ядра.

И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли - например, ядро может иметь показатель преломления n 1 =1.468, а демпфер - значение n 2 =1.453.

Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых - 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:

Ступенчатый профиль показателя преломления (step - index fiber ) - самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (graded - index fiber ) , в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.

Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния - коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.

Класс волокна

Размер ядра/демпфера, мкм

Коэффициент широкополосности,
режим OFL, МГц·км

Примечание

850 нм

1300 нм

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak ) , чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.

Одномодовый и многомодовый волоконно-оптический кабель: правила выбора

Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:

    для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния

    для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна

    для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4

    для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4

    для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2

Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.

На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:

    в морских и трансокеанских кабельных линиях связи;

    в наземных магистральных линиях дальней связи;

    в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;

    в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);

    в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;

    в СКС в магистралях длиной более 550 м (как правило, между зданиями);

    в СКС, обслуживающих центры обработки данных, независимо от расстояния.

Многомодовое волокно в основном используется:

    в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;

    в горизонтальных сегментах СКС и в системах FTTD (fiber - to - the - desk ), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;

    в центрах обработки данных в дополнение к одномодовому волокну;

    во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.

Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.

Тестирование одномодовых и многомодовых оптических кабелей

После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, JDSU, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров , имеющих соответствующий динамический диапазон и разрешающую способность.

На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки .

Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, JDSU, NOYES (FOD), Greenlee Communication и других).

Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.

Качественное оборудование - напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.

Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.