Обратимые и необратимые процессы. Обратимый процесс

ОБРАТИМЫЙ ПРОЦЕСС

ОБРАТИМЫЙ ПРОЦЕСС

В термодинамике, процесс перехода термодинамич. системы из одного в другое, допускающий возможность возвращения её в первонач. состояние через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимых в обратном порядке.

Процесс обратим, если он протекает столь медленно, что его можно рассматривать как непрерывный ряд равновесных состояний, т. е. О. п. должен быть медленным по сравнению с процессами установления равновесия термодинамического в данной системе. Точнее, О. п. характеризуется бесконечно медленным изменением термодинамич. параметров (плотности, давления, темп-ры и др.), определяющих равновесие системы. Такие наз. также квазистатическими, или квазиравновесными. Обратимость квазиравновесного процесса следует из того, что его любое есть состояние термодинамич. равновесия, и поэтому оно не чувствительно к тому, идёт ли процесс в прямом или обратном направлении. О. п. - одно из основных понятий равновесной макроскопической термодинамики. В её рамках I и II начала термодинамики формулируются для О. п.

Реальные процессы в природе протекают с конечной скоростью и сопровождаются рассеянием энергии (из-за трения, теплопроводности и т. п.), поэтому они явл. необратимыми процессами. О. п. есть идеализация процессов природы, протекающих столь медленно, что необратимыми явлениями для них можно пренебречь. Микроскопич. теория О. п. рассматривается в статистической физике.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ОБРАТИМЫЙ ПРОЦЕСС втермодинамике - процесс перехода термодинамич. системы из одного состоянияв другое, к-рый может протекать как в прямом, так и в обратном направлениичерез те же промежуточные состояния. О. п. должен протекать столь медленно, Обратимость квазиравновесного процессаследует из того, что любое промежуточное состояние есть состояние термодинамич. О. п. - одно из осн. понятий равновесноймакро-скопич. термодинамики. Действительно, первое начало термодинамики формулируется для О. п. в виде равенства между бесконечно малым приращением энергии du и суммой подведённоготепла иэлементарной работы совершаемой над системой при квазистатич. процессе, а второе началотермодинамики - в виде равенства между дифференциалом энтропии dS и отношением к темп-ре Т в абс. шкале, что справедливо для О. п. Для необратимогопроцесса второе начало формулируется в виде неравенства ограничивающего возможные направления процесса.
Все процессы в природе протекают с конечнойскоростью и сопровождаются явлениями трения или теплопроводности, поэтомуони необратимы. О. п. - идеализация реальных процессов, протекающих такмедленно, что необратимыми явлениями можно пренебречь. Иногда быстрые процессыможно рассматривать приближённо как квазиравновесные, если равновесие успеваетустановиться не во всей системе, а в её малых элементах объёма, и производствомэнтропии можно пренебречь (напр., распространение звука в приближенииидеальной гидродинамики).
Микроскопич. теорию О. п. изучают в статистическойфизике, где рассматривают малые квазистатич. возмущения распределенияГиббса при медленном изменении внеш. параметров.

Лит. см. при ст. Термодинамика.

Д. Н. Зубарев

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ОБРАТИМЫЙ ПРОЦЕСС" в других словарях:

    В термодинамике процесс, который возможно осуществить в обратном направлении, последовательно повторяя в обратном порядке все промежуточные состояния прямого процесса. Обратимым процессом может быть только равновесный процесс. Реальные процессы,… … Большой Энциклопедический словарь

    ОБРАТИМЫЙ ПРОЦЕСС, всякий процесс, который может при определенных условиях протекать в обратном направлении, т.е. так, что параметры, определяющие систему, изменяются в обратном порядке относительно их первоначальных значений. Если при прямом… … Научно-технический энциклопедический словарь

    обратимый процесс - Термодинамический процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние без того, чтобы в системе и окружающей среде возникали какие либо остаточные изменения. [Сборник… … Справочник технического переводчика

    обратимый процесс - – процесс, протекающий в данных условиях равновесно в прямом и обратном направлении. Общая химия: учебник / А. В. Жолнин … Химические термины

    Эта статья слишком короткая. Пожалуйста … Википедия

    В термодинамике, процесс, который возможно осуществить в обратном направлении, последовательно повторяя в обратном порядке все промежуточные состояния прямого процесса. Обратимый процесс может быть только равновесный процесс. Реальные процессы,… … Энциклопедический словарь

    обратимый процесс - процесс перехода термодинамической системы из одного состояния в другое, допускающее возможность возвращения ее в первоначальное состояние через ту же последовательность промежуточных состояний, но в обратном порядке.… … Энциклопедический словарь по металлургии

    обратимый процесс - Термодинамический процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние без того, чтобы в системе и окружающей среде возникали какие либо остаточные изменения. обратимый… … Политехнический терминологический толковый словарь

    обратимый процесс - grįžtamasis vyksmas statusas T sritis Standartizacija ir metrologija apibrėžtis Sistemos būsenos kitimas, kuris gali vykti įprastine ir atvirkštine tvarka, nekeisdamas aplinkos. atitikmenys: angl. reversible process vok. reversibler Prozess, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    обратимый процесс - grįžtamasis procesas statusas T sritis chemija apibrėžtis Sistemos būsenos kitimas, kuris gali vykti įprastine ir atvirkštine tvarka, nekeisdamas aplinkos. atitikmenys: angl. reversible process rus. обратимый процесс … Chemijos terminų aiškinamasis žodynas

1. Обратимым термодинамическим процессом называется термодинамический процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Необходимым и достаточным условием обратимости термодинамического процесса является его равновесность.


2. Необратимым термодинамическим процессом называется термодинамический процесс, не допускающий возможности возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Все реальные процессы протекают с конечной скоростью. Они сопровождаются трением, диффузией и теплообменом при конечной разности между температурами системы и внешней среды. Следовательно, все они неравновесны и необратимы.


Необратимость возникает только в том случае, если частиц много. Если мы имеем систему из большого числа частиц – появляются другие новые законы. Если заснимем движение частицы на пленку, то в любом направлении просмотра всё будет нормально для нас. Если заснимем растворение кристалла и посмотрим в обратном направлении – понятно, что такого не бывает. Для рассмотрения необратимых процессов нужны системы из б.ч.ч. Движение одной частицы обратимо, а группы частиц – необратимо. Для описания системы из б.ч.ч. можно использовать термодинамический или статический метод.

· При термодинамическом методе не важен состав. Важно, как меняется система при действии на нее. Уравнение теплового баланса и уравнение Менделеева-Клапейрона достигло этого подхода. Алгебраическая сумма всех количеств теплоты (поглощенных и выделенных) в теплоизолированной системе равна нулю. Q1+ Q2+…+ Qn= 0, где n – количество тел системы. Q = сm(t2 – t1), где m – масса тела, кг; (t2 – t1) – разность температур тела,° С (или К); с – удельная теплоёмкость вещества, из которого состоит тело. Термодинамика – описательная наука, позволяет исключить невозможные сценарии развития в системе.

· Статическая физика. P=nkT , где k – постоянная Больцмана. (pV=nRt) Давление в газе объяснено упругими соударениями молекул со стенками сосуда – импульс. Статистический подход позволяет понять, что такое давление и абсолютная температура. Абсолютный 0 температур – прекращается всякое движение молекул. - кинетическая энергия связана с температурой. Молекулы обладают разными скоростями. Если бы скорость была равна 0 – вся атмосфера лежала бы на Земле. Если бы скорости молекул ограничены были, то атмосфера обрывалась бы . Атмосфера меняется постепенно, давление уменьшается с высотой. Концентрация молекул и давления в атмосфере станет равным нулю только на бесконечной высоте. Если есть молекулы разных масс: самые легкие будут легче улетать. Водород улетел из атмосферы почти весь. Тяжелые молекулы ближе к Земле. g – постоянна только на небольших расстояниях от Земли. Если расстояние больше вместо g используют . ; . То как ведет себя атмосфера зависит от массы планеты. Маленькие быстрее теряют атмосферу. Скорости молекул простираются от нуля до бесконечности. При хаотическом движении распределение скоростей молекул можно определить (вывел Максвелл).


· Функция распределения Максвелла. Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным. В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из имеем , тогда . Вероятность того, что молекула обладает скоростью в интервале (Vx;Vx+dVx), будет равна Кол-во молекул конечно, а скоростей бесконечно. - число молекул со скоростью в интервале (Vx;Vx+dVx). Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от υ х до υ х +dυ х; y-компонента, в интервале от υ y до υ y +dυ y ; z-компонента, в интервале от υ z до υ z +dυ z будет равна произведению вероятностей каждого из условий (событий) в отдельности: , где (Vx; Vx+dVx) ; (Vy; Vy+dVy) ; (Vz; Vz+dVz) – число молекул, которые одновременно обладают скоростью в интервалах.

Который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Количественным критерием обратимости/необратимости процесса служит возникновение энтропии - эта величина равна нулю при отсутствии необратимых процессов в термодинамической системе и положительна при их наличии .

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы имеют максимальный КПД. Бо́льший КПД от системы получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

В термодинамике примером тепловой машины, работающей только по обратимым процессам, является машина Карно , состоящая из двух адиабат и двух изотерм. В адиабатических процессах никакого обмена энергией с окружающей средой не происходит. В изотермических процессах теплообмен между окружающей средой (нагревателем, при расширении, и холодильником, при сжатии) и рабочим телом проходит между телами, имеющими одну и ту же температуру. Это важный момент, так как если теплообмен происходит между телами с разной температурой, он является необратимым (второе начало термодинамики).

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости . Химическая обратимость характеризует направление процесса, а термодинамическая - способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам. В состоянии химического равновесия скорость прямой реакции равна скорости обратной реакции!

Между тем опыт показывает, что существуют определенные ограничения, связанные с направлением протекания процессов в природе. Так, энергия путем теплообмена самопроизвольно переходит от горячего тела к более холодному, а обратный процесс сам по себе не происходит, т.е. он необратим.

Терминологические замечания

Понятийный аппарат, используемый в том или ином руководстве по классической термодинамике , существенным образом зависит от системы построения/изложения данной дисциплины, используемой или подразумеваемой автором конкретного пособия. Последователи Р. Клаузиуса строят/излагают термодинамику как теорию обратимых процессов , последователи К. Каратеодори - как теорию квазистатических процессов , а последователи Дж. У. Гиббса - как теорию равновесных состояний и процессов . Ясно, что, несмотря на применение различных описательных дефиниций идеальных термодинамических процессов - обратимых, квазистатических и равновесных, - которыми оперируют упомянутые выше термодинамические аксиоматики , в любой из них все построения классической термодинамики имеют своим итогом один и тот же математический аппарат. Де-факто это означает, что за пределами чисто теоретических рассуждений, то есть в прикладной термодинамике, термины «обратимый процесс», «равновесный процесс» и «квазистатический процесс» рассматривают как синонимы : всякий равновесный (квазистатический процесс) процесс является обратимым, и наоборот, любой обратимый процесс является равновесным (квазистатическим) .

Примеры

Выпечка пирога - необратимый процесс. Гидролиз солей - обратимый процесс.

См. также

Примечания

Литература

  • Tisza Laszlo . Generalized Thermodynamics . - Cambridge (Massachusetts) - London (England): The M.I.T. Press, 1966. - xi + 384 p.
  • Каратеодори К. Об основах термодинамики (рус.) // Развитие современной физики: Сборник статей под ред. Б. Г. Кузнецова . - 1964. - С. 188-222 .
  • Карно С. , Клаузиус, Р. , Томсон У. (лорд Кельвин) и др. Второе начало термодинамики / Под ред.

Котлоагрегат

Значение слова "Котлоагрегат"

Котлоагрегат, котельный агрегат, конструктивно объединённый в единое целое комплекс устройств для получения под давлением пара или горячей воды за счёт сжигания топлива. Главной частью К. являются топочная камера и газоходы, в которых размещены поверхности нагрева, воспринимающие тепло продуктов сгорания топлива (пароперегреватель, водяной экономайзер, воздухоподогреватель). Элементы К. опираются на каркас и защищены от потерь тепла обмуровкой и изоляцией. К. применяются натепловых электростанциях для снабжения паром турбин; в промышленных и отопительных котельных для выработки пара и горячей воды на технологические и отопительные нужды; в судовых котельных установках. Конструкция К. зависит от его назначения, вида применяемого топлива и способа сжигания, единичной паропроизводительности, а также от давления и температуры вырабатываемого пара.

Обратимый процесс (то есть равновесный) - термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Большую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая - способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.

Все происходящие в природе физические процессы делятся на два типа – обратимые и необратимые.

Пусть изолированная система в результате некоторого процесса переходит из состояния А в состояние В и затем возвращается в начальное состояние. Процесс называется обратимым, если возможно осуществить обратный переход из В в А через те же промежуточные состояния так, чтобы при этом не осталось никаких изменений в окружающих телах. Если такой обратный переход осуществить нельзя, если по окончании процесса в самой системе или окружающих телах остались какие-то изменения, то процесс является необратимым.



Любой процесс, сопровождаемый трением, является необратимым, ибо при трении часть работы всегда превращается в тепло, тепло рассеивается, в окружающих телах остается след процесса – нагревание, что делает процесс с участием трения необратимым. Идеальный механический процесс, происходящий в консервативной системе (без участия сил трения), был бы обратимым. Примером такого процесса является колебание тяжелого маятника на длинном подвесе. Из-за малого сопротивления среды амплитуда колебаний маятника практически не изменяется в течение продолжительного времени, при этом кинетическая энергия колеблющегося маятника полностью переходит в его потенциальную энергию и обратно.

Важнейшей принципиальной особенностью всех тепловых явлений, в которых участвует громадное число молекул, является их необратимый характер. Примером необратимого процесса является расширение газа, даже идеального, в пустоту. Предположим, что нам дан закрытый сосуд, разделенный на две равные части заслонкой (рисунок. 1). Пусть в части I находится некоторое количество газа, а в части II – вакуум. Опыт показывает, что если убрать заслонку, то газ равномерно распределится по всему объему сосуда (расширится в пустоту). Это явление происходит как бы "само собой" без внешнего вмешательства. Сколько бы мы не следили в дальнейшем за газом, он будет всегда оставаться распределенным с одинаковой плотностью по всему сосуду; сколько бы мы ни ждали, нам не удастся наблюдать того, чтобы газ, распределенный по всему сосуду I + II сам собой, то есть без вмешательства извне, ушел из части II и сконцентрировался весь в части I, что дало бы нам возможность вновь вдвинуть заслонку и тем самым возвратиться к исходному состоянию. Таким образом, очевидно, что процесс расширения газа в пустоту является необратимым.

Рис 1. Закрытый сосуд, содержащий газ и вакуум и разделённый перегородкой

Опыт показывает, что тепловые явления почти всегда обладают свойством необратимости. Так, например, если рядом находятся два тела, из которых одно теплее другого, то их температуры постепенно выравниваются, то есть тепло "само собой" перетекает от более теплого тела к более холодному. Однако обратный переход теплоты от более холодного тела к нагретому, который может быть осуществлен в холодильной машине, не идет "сам собой". Для осуществления такого процесса требуется затрата работы еще какого-либо тела, что приводит к изменению состояния этого тела. Следовательно, условия обратимости не выполняются.

Кусочек сахара, помещенный в горячий чай, растворяется в нем, но никогда не бывает, чтобы из горячего чая, в котором уже растворен кусочек сахара, этот последний выделился и вновь собрался в виде кусочка. Конечно, получить сахар, выпарив его из раствора, можно. Но этот процесс сопровождается изменениями в окружающих телах, что свидетельствует о необратимости процесса растворения. Необратимым является и процесс диффузии. И вообще примеров необратимых процессов можно привести сколь угодно много. По сути, любой процесс, протекающий в природе в реальных условиях, является необратимым.

Итак, в природе существуют два вида принципиально различных процессов – обратимые и необратимые. М. Планк сказал однажды, что различие между обратимыми и необратимыми процессами лежит гораздо глубже, чем, например, между процессами механическими и электрическими, поэтому его с большим основанием, чем любой другой признак, следовало бы выбрать в качестве первейшего принципа при рассмотрении физических явлений.

Подобно тому, как в первом начале термодинамики вводится функция состояния – внутренняя энергия, во втором начале – функция состояния, получившая название энтропия (S) (от греческого entropia – поворот, превращение). Рассмотрение изменения этой функции привело к разделению всех процессов на две группы: обратимые и необратимые (самопроизвольные) процессы.

Процесс называется обратимым , если его можно провести сначала в прямом, а затем в обратном направлении и так, что ни в системе, ни в окружающей среде не останется никаких изменений. Полностью обратимый процесс – абстракция , но многие процессы можно вести в таких условиях, чтобы их отклонение от обратимости было весьма мало. Для этого необходи мо, чтобы в каждой своей бесконечно малой стадии состояние системы, в которой этот процесс происходит, отвечало бы состоянию равновесия.

Состояние равновесия – особое состояние термодинамической системы, в которое она переходит в результате обратимого или необратимого процессов и может оставаться в нем бесконечно долго. Реальные процессы могут приближаться к обратимым, но для этого они должны совершаться медленно.

Процесс называется необратимым (естественным, спонтанным, самопроизвольным) , если он сопровождается рассеянием энергии, т. е. равномерным распределением между всеми телами системы в результате процесса теплопередачи.

В качестве примеров необратимых процессов могут быть названы следующие:

    замерзание переохлажденной жидкости;

    расширение газа в вакуумированное пространство;

    диффузия в газовой фазе или в жидкости.

Систему, в которой произошел необратимый процесс, можно возвратить в исходное состояние, но для этого над системой нужно совершить работу.

К необратимым процессам относится большинство реальных процессов, так как они всегда сопровождаются работой против сил трения, в результате чего происходят бесполезные энергозатраты, сопровождающиеся рассеянием энергии.

Для иллюстрации понятий рассмотрим идеальный газ, находящийся в цилиндре под поршнем. Пусть начальное давление газа Р 1 при его объеме V 1 (рис. 4.1).

Давление газа уравновешено насыпанным на поршень песком. Совокупность равновесных состояний описывается уравнениемpV = const и графически изображается плавной кривой (1).

Если с поршня снять некоторое количество песка, то давление газа над поршнем резко снизится (от А до В) лишь после чего произойдет увеличение объема газа до равновесной величины (от В до С). Характер этого процесса – ломанная линия 2. Эта линия характеризует зависимость P=f (V) при необратимом процессе.

Рис. 4.1. Зависимость давления газа от его объема при обратимом (1) и необратимом процессах (2, 3).

Из рисунка видно, что при обратимом расширении газа совершаемая им работа (площадь под плавной кривой 1) больше, чем при любом необратимом его расширении.

Таким образом, любой термодинамический процесс характеризуется максимально возможной величиной работы, если он совершается в обратимом режиме. К аналогичному выводу можно прийти, если рассмотреть процесс сжатия газа. Только следует иметь ввиду, что в этом случае величина работы – отрицательная величина (рис. 4.1, ломаная 3).