Обратимый и необратимый процесс. Термодинамически обратимые и необратимые процессы

1. Обратимым термодинамическим процессом называется термодинамический процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Необходимым и достаточным условием обратимости термодинамического процесса является его равновесность.


2. Необратимым термодинамическим процессом называется термодинамический процесс, не допускающий возможности возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.
Все реальные процессы протекают с конечной скоростью. Они сопровождаются трением, диффузией и теплообменом при конечной разности между температурами системы и внешней среды. Следовательно, все они неравновесны и необратимы.


Необратимость возникает только в том случае, если частиц много. Если мы имеем систему из большого числа частиц – появляются другие новые законы. Если заснимем движение частицы на пленку, то в любом направлении просмотра всё будет нормально для нас. Если заснимем растворение кристалла и посмотрим в обратном направлении – понятно, что такого не бывает. Для рассмотрения необратимых процессов нужны системы из б.ч.ч. Движение одной частицы обратимо, а группы частиц – необратимо. Для описания системы из б.ч.ч. можно использовать термодинамический или статический метод.

· При термодинамическом методе не важен состав. Важно, как меняется система при действии на нее. Уравнение теплового баланса и уравнение Менделеева-Клапейрона достигло этого подхода. Алгебраическая сумма всех количеств теплоты (поглощенных и выделенных) в теплоизолированной системе равна нулю. Q1+ Q2+…+ Qn= 0, где n – количество тел системы. Q = сm(t2 – t1), где m – масса тела, кг; (t2 – t1) – разность температур тела,° С (или К); с – удельная теплоёмкость вещества, из которого состоит тело. Термодинамика – описательная наука, позволяет исключить невозможные сценарии развития в системе.

· Статическая физика. P=nkT , где k – постоянная Больцмана. (pV=nRt) Давление в газе объяснено упругими соударениями молекул со стенками сосуда – импульс. Статистический подход позволяет понять, что такое давление и абсолютная температура. Абсолютный 0 температур – прекращается всякое движение молекул. - кинетическая энергия связана с температурой. Молекулы обладают разными скоростями. Если бы скорость была равна 0 – вся атмосфера лежала бы на Земле. Если бы скорости молекул ограничены были, то атмосфера обрывалась бы . Атмосфера меняется постепенно, давление уменьшается с высотой. Концентрация молекул и давления в атмосфере станет равным нулю только на бесконечной высоте. Если есть молекулы разных масс: самые легкие будут легче улетать. Водород улетел из атмосферы почти весь. Тяжелые молекулы ближе к Земле. g – постоянна только на небольших расстояниях от Земли. Если расстояние больше вместо g используют . ; . То как ведет себя атмосфера зависит от массы планеты. Маленькие быстрее теряют атмосферу. Скорости молекул простираются от нуля до бесконечности. При хаотическом движении распределение скоростей молекул можно определить (вывел Максвелл).


· Функция распределения Максвелла. Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным. В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из имеем , тогда . Вероятность того, что молекула обладает скоростью в интервале (Vx;Vx+dVx), будет равна Кол-во молекул конечно, а скоростей бесконечно. - число молекул со скоростью в интервале (Vx;Vx+dVx). Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от υ х до υ х +dυ х; y-компонента, в интервале от υ y до υ y +dυ y ; z-компонента, в интервале от υ z до υ z +dυ z будет равна произведению вероятностей каждого из условий (событий) в отдельности: , где (Vx; Vx+dVx) ; (Vy; Vy+dVy) ; (Vz; Vz+dVz) – число молекул, которые одновременно обладают скоростью в интервалах.

Подобно тому, как в первом начале термодинамики вводится функция состояния – внутренняя энергия, во втором начале – функция состояния, получившая название энтропия (S) (от греческого entropia – поворот, превращение). Рассмотрение изменения этой функции привело к разделению всех процессов на две группы: обратимые и необратимые (самопроизвольные) процессы.

Процесс называется обратимым , если его можно провести сначала в прямом, а затем в обратном направлении и так, что ни в системе, ни в окружающей среде не останется никаких изменений. Полностью обратимый процесс – абстракция , но многие процессы можно вести в таких условиях, чтобы их отклонение от обратимости было весьма мало. Для этого необходи мо, чтобы в каждой своей бесконечно малой стадии состояние системы, в которой этот процесс происходит, отвечало бы состоянию равновесия.

Состояние равновесия – особое состояние термодинамической системы, в которое она переходит в результате обратимого или необратимого процессов и может оставаться в нем бесконечно долго. Реальные процессы могут приближаться к обратимым, но для этого они должны совершаться медленно.

Процесс называется необратимым (естественным, спонтанным, самопроизвольным) , если он сопровождается рассеянием энергии, т. е. равномерным распределением между всеми телами системы в результате процесса теплопередачи.

В качестве примеров необратимых процессов могут быть названы следующие:

    замерзание переохлажденной жидкости;

    расширение газа в вакуумированное пространство;

    диффузия в газовой фазе или в жидкости.

Систему, в которой произошел необратимый процесс, можно возвратить в исходное состояние, но для этого над системой нужно совершить работу.

К необратимым процессам относится большинство реальных процессов, так как они всегда сопровождаются работой против сил трения, в результате чего происходят бесполезные энергозатраты, сопровождающиеся рассеянием энергии.

Для иллюстрации понятий рассмотрим идеальный газ, находящийся в цилиндре под поршнем. Пусть начальное давление газа Р 1 при его объеме V 1 (рис. 4.1).

Давление газа уравновешено насыпанным на поршень песком. Совокупность равновесных состояний описывается уравнениемpV = const и графически изображается плавной кривой (1).

Если с поршня снять некоторое количество песка, то давление газа над поршнем резко снизится (от А до В) лишь после чего произойдет увеличение объема газа до равновесной величины (от В до С). Характер этого процесса – ломанная линия 2. Эта линия характеризует зависимость P=f (V) при необратимом процессе.

Рис. 4.1. Зависимость давления газа от его объема при обратимом (1) и необратимом процессах (2, 3).

Из рисунка видно, что при обратимом расширении газа совершаемая им работа (площадь под плавной кривой 1) больше, чем при любом необратимом его расширении.

Таким образом, любой термодинамический процесс характеризуется максимально возможной величиной работы, если он совершается в обратимом режиме. К аналогичному выводу можно прийти, если рассмотреть процесс сжатия газа. Только следует иметь ввиду, что в этом случае величина работы – отрицательная величина (рис. 4.1, ломаная 3).

Основы термодинамики

Обратимые и необратимые тепловые процессы.

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

Работа газа при изменении его объема.

Работа совершается только тогда, когда изменяется объем.

Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

A=Fdl=pSdl=pdV, гдеS-площадь поршня,Sdl=dV-изменение объема системы. Таким образом,A=pdV.(1)

Полную работу А, совершаемую газом при изменении его объема от V1 доV2, найдем интегрированием формулы (1):A=pdV(отV1 доV2).(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

П

Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатахp,V.

Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

Первое начало термодинамики.

Существует 2 способа обмена энергией между телами:

    передача энергии через перенос тепла (посредством теплопередачи);

    через совершение работы.

Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

∆U=Q-A или Q=∆U+A.(1)

Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , гдеdU- бесконечно малое изменение внутренней энергии системы,A- элементарная работа,Q– бесконечно малое количество теплоты.

Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики,A=Q,

Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const )

При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, чтоdU m =C v dT.

Тогда для произвольной массы газа получим Q=dU=m\M*C v dT.

Изобарный процесс (p = const ).

При этом процессе работа газа при увеличении объема от V1 доV2 равнаA=pdV(отV1 доV2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривойp=f(V) и значениямиV1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет видA=m\M*R(T 2 -T 1)(1.1).

При изобарном процессе при сообщении газу массой mколичества теплоты

Q=m\M*C p dTего внутренняя энергия возрастает на величинуdU=m\M*C v dT. При этом газ совершает работу, определяемую выражением(1.1).

Изотермический процесс (T = const ).

Этот процесс описывается законом Бойля-Мариотта: pV=const.

Найдем работу изотермического расширения газа: A=pdV(отV1 доV2)=m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

Т.к при Т=constвнутренняя энергия идеального газа не изменяется:dU=m/M*C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процессаQ=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс.

АП - это процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим можно отнести все быстропротекающие процессы. Из 1-го начала термодинамики (Q=dU+A) для адиабатического процесса следует, чтоA= -dU, т.е внешняя работа совершается за счет изменения внутренней энергии системы. Т.о,pdV= -m/M*C v dT(1).

Продифференцировав ур-е состояния для идеального газа,pV=m/M*RT, получим

PdV + Vdp=m/M*RdT.(2)

Исключим из ур-я (1) и (2) температуру T: (pdV+Vdp)/(pdV)= -R/C v = -(C p -C v)/C v .

Разделив переменные и учитывая, что C p /C v =, найдемdp/p= -dV/V.

Интегрируя это ур-е в пределах от p1 доp2 и соответственно отV1 доV2, а затем, потенцируя, придем к выражениюp2/p1=(V1/V2)  , илиp1(V1)  =p2(V2)  .Так как состояния 1 и 2 выбраны произвольно, то можно записать

pV  =const(ур-е адиабатического процесса или ур-е Пуассона).Здесь- показатель адиабаты (или коэффициент Пуассона),=(i+2)/i.

Вычислим работу, совершаемую газом в адиабатическом процессе: A= -m/M*C v dT.

Если газ адиабатически расширяется от объема V1 доV2, то его температура уменьшается отT1 доT2 и работа расширения идеального газа

A= - m/M*C v dT=m/M* C v (T1-T2).

Изохорный, изобарный, изотермический и адиабатический процессы имеют одну особенность – они происходят при постоянной теплоемкости.

Эквиваленты теплоты и работы .

Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A", совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Энтропия.

Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия. Пусть Q - теплота, полученная термодинамической системой в изотермическом процессе, а T - температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой. Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T - есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T - называется энтропией. Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S - энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 - неравенство Клаудио. Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 - 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Связь энтропии с вероятностью состояния системы .

Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W - это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ; где k - постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Второй закон термодинамики .

Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии - нагревателя. (by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему. Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Цикл Карно .

Для создания тепловой машины недостаточно просто иметь нагретое тело (нагреватель), требуется еще 2-е тело – холодильник. Т.о, рабочее тело передает теплоту от нагревателя к холодильнику и попутно совершает полезную работу.

Вкачестве рабочего тела Сади Карно выбрал идеальный газ. Он рассмотрел следующий процесс:

Кривые 1-2, 3-4 – изотермы, кривые 2-3,4-1 – адиабаты.

На участке 1-2 газ получает теплотуQ1 от нагревателя и, расширяясь, совершает работу (т.е расходует полученноеQ1 на совершение работы).Q1=∆U+A1, ∆U=0, т.к. T=const. Q1=A1.

На участке 2-3: газ совершает работу А2, которая равна убыли внутренней энергии; температура понижается. А2= - ∆U2 (температура понижается от Т1 до Т2).

На участке 3-4 :Vуменьшается, Т2=const. Внешние силы совершают работу по сжатию газаA3:Q2= -A3,Q2=A′. От системы отводится количество теплотыQ2: |Q2|=A3.

На участке 4-1 :Vуменьшается,Tувеличивается.A’4=∆U,Q=∆U+A, 0= ∆U4 +A4 =∆U4-A’4,A’4=∆U(внешние силы совершили работу, которая пошла на увеличение внутренней энергии.

Для изотерм A=A1+A3=Q4-|Q2|.

Площадь под изотермой 3-4 меньше, чем под изотермой 1-2 |A’3|<|A1|,Q1>Q2газ получает от нагревателя больше теплоты, чем отдает холодильнику.

За полный цикл: ∆U=0, А=А1 – А’3 - ∆U2(=A2) +A’4, ∆U2=3/2*m/M*R(T2-T1).

A=Q1-|Q2| - 3/2*m/M*R(T2-T1) + (-3/2*m/M*R(T1-T2))=Q1-|Q2|.

Коэффициентом полезного действия тепловой машины называется отношение полезной работы, совершаемой за цикл, к количеству теплоты, полученной системой. Выражается в процентах. =(Q1-|Q2|)/Q1 * 100% (1), или =A/Q1 *100% (2). Эти формулы можно использовать для любой тепловой машины.

Теорема Карно: Q1/T1=|Q2|/T2 (для машины Карно).=(T1-T2)/T1 *100%.

КПД, определяемый формулами (1) и (2) – наибольший возможный. В реальных тепловых машинах КПД меньше.

2.5. Фазовые равновесия и фазовые превращения.

Фаза - это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний того же вещества.

Переход вещества из одной фазы в другую называется фазовым переходом . При таких переходах меняются механические, тепловые, электрические и магнитные свойства вещества.

Тройная точка .

Кривые плавления и парообразования в пересекаются в точке A. Эту точку называют тройной точкой, т.к. если при давлении p тр. и температуре Tтр некоторые количества вещества в твердом, жидком и газообразном состояниях находятся в контакте, то без подведения или отвода тепла количество вещества, находящегося в каждом из 3х состояний, не изменяется

Из диаграммы состояний видно, что переход вещества при нагревании из твердого состояния в газообразное может совершиться, минуя жидкое состояние. Переход кристалл-жидкость-газ при нормальном атмосферном давлении происходит лишь у тех веществ, у которых давление в тройной точке ниже этого давления. Те же вещества, которых давление в тройной точке превышает атмосферное, в результате нагревания при атмосферном давлении не плавятся, а переходят в газообразное состояние.

Поскольку тройной точке соответствует вполне определенная температура, она может служить опорной точкой термодинамической шкалы.

Реальные газы .

При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a - постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю.

Уравнение Ван-дер-Ваальса :

(p + a / V (ст.2)) (V - b) = RT, где b - так называемый "запрещенный объем"

Критическая температура .

Было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Tк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких давлениях. При критической температуре средняя кинетическая энергия теплового движения молекул вещества примерно равна модулю потенциальной энергии их связи в жидкости или твердом теле. Т. к. силы притяжения, действующие между молекулами разных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются критические температуры для различных веществ.

Диаграмма состояний вещества .

Чем выше температура жидкости, тем больше плотность и давление ее пара. Геометрическим местом точек, отмечающих на диаграмме p, T равновесные состояния между жидким и газообразным состояниями вещества, является кривая AK (рисунок - график, правая часть параболы - CB выходит не из нуля, а чуть выше и правее; из точки A этой кривой, чуть дальше, выходит еще более широкая часть параболы - AK; все пространство делится на 3 части таким образом - твердое тело, жидкость и газ; оси - T и p).

Процесс испарения твердых тел называется сублимацией.

Обратимым термодинамическим процессом называется процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения. Обратимым может быть лишь равновесный процесс, так как при равновесном процессе система проходит непрерывную последовательность состояний, бесконечно мало отличающихся друг от друга. Эту последовательность состояний можно пройти (бесконечно

медленно) как в прямом, так и в обратном направлениях, причем возникающие в окружающих телах на любом промежуточном этапе процесса изменения будут отличаться для прямого и обратного процессов лишь знаком. В этих условиях при возвращении системы в исходное состояние все произошедшие в окружающей среде изменения окажутся скомпенсированными.

Примером обратимого механического процесса может служить свободное падение тела без трения (в пустоте). Если такое тело испытывает упругий удар о горизонтальную плоскость, то оно возвратится в исходную точку траектории, причем форма тела и плоскости после удара восстановятся - каких-либо изменений в окружающих телах не произойдет.

Следует отметить, что всякий чисто механический процесс, в котором отсутствует трение, является принципиально обратимым. Запишем первое начало для процесса, переводящего тело из состояния 1 в состояние 2:

Изменяя внешние воздействия, можно тело вернуть из состояния 2 в первоначальное состояние 1. Тогда

В разобранном примере объект наблюдения, претерпев ряд изменений, возвращается в первоначальное состояние. Такого рода процессы называются циклическими или круговыми. Внутренняя энергия есть функция состояния тела поэтому, складывая (64.1) и (64.2), получим:

Пусть переход является равновесным, протекающим при бесконечно малой разности между температурой исследуемой системы и температурами источников теплоты и бесконечно малом различии внутреннего и внешнего давлений. Тогда изменением внешних воздействий (изменением знака малых разностей указанных величин) можно систему вернуть из состояния 2 в начальное состояние равновесно через те же промежуточные состояния, которые имели место в первой стадии процесса (рис. 7.3). В этом случае, очевидно, и согласно Изменение состояний внешних тел связано с совершением над ними (или ими) работы и передачей теплоты, и так как сумма этих эффектов в рассматриваемом случае равна нулю, то указанные тела после ряда изменений возвращаются в первоначальное состояние.

Как известно из опытов, процесс теплопередачи, вызываемый конечной разностью температур и происходящий в сторону убыли температуры, необратим, хотя тела, участвующие в таком процессе, могут претерпевать квазиравновесные изменения. Стало быть, нельзя утверждать, что всякое равновесное изменение тела обратимо.

Поясним это на следующем примере. Пусть имеются два тела с конечной разностью температур (рис. 7.4). Если эти тела соединить плохим проводником тепла А, то их изменения вследствие замедленной теплопередачи будут квазиравновесными. Если после выравнивания температур убрать теплопровод, то тело можно равновесно вернуть в первоначальное состояние через тепловой контакт с термостатом температуры (рис. 7.4). Такая же операция может быть проделана с телом II при использовании другого термостата. В данном примере оба тела возвращаются в первоначальное состояние равновесно, но в целом процесс этот оказывается необратимым из-за того, что в конечном итоге термостат, имеющий температуру отдает некоторое количество теплоты, такое же количество теплоты получит термостат Таким образом, после возвращения тел и II квазиравновесно через тождественные сбстояния в начальные состояния в окружающих телах (термостатах) останутся определенные изменения.

Вернемся к рассмотрению прямых и обратных изменений тела, характеризуемых уравнением (64.3). Пусть прямой процесс 1-2 неравновесен вследствие конечной разности сил внутренних и внешних. Тогда согласно изложенному в § 63 при использовании одних и тех же внешних тел нельзя провести процесс в обратном направлении так, чтобы работы прямого и обратного переходов системы компенсировали бы друг друга: Таким образом, всякий неравновесный процесс необратим: тело, испытывающее неравновесные изменения, можно внешним воздействием вернуть в первоначальное состояние, но при этом в окружающих телах останутся определенные изменения

Ярким примером необратимого процесса является расширение газа в пустоту (в вакуум). При таком расширении газ не совершает работу (внешние тела отсутствуют). Этот пример показывает, что всякий необратимый процесс в одном направлении протекает самопроизвольно, но для возвращения газа в первоначальное состояние (для обращения процесса) следует затратить определенную работу (работу сжатия газа), что будет связано с определенными изменениями в окружающих телах. Физическую природу необратимости легче всего пояснить на примере взаимной диффузии двух газов. В

цилиндре с перегородкой, по одну сторону которой находится гелий (малые молекулы), по другую - аргон (большие молекулы), уберем перегородку и проследим (хотя бы мысленно) за необратимым процессом взаимной диффузии газов. Молекулы гелия, сталкиваясь с большими частицами аргона, постепенно будут проникать в объем, занятый аргоном, молекулы же аргона проникнут в объем, где был чистый гелий. Каждый раз, когда происходит столкновение двух разных молекул, они строго по законам механики разлетаются в определенных направлениях, при этом акты взаимодействия молекул обратимы. В результате же множества столкновений частиц возникают необратимые изменения в системе. Если мы могли бы заснять на кинопленку все акты столкновений, то, запустив фильм в обратном направлении, мы ничего парадоксального не увидели бы в картине столкновения любой пары молекул. В конечном же результате обратимое протекание всех столкновений приведет к самопроизвольному разделению компонент газовой смеси, что в природе не наблюдается. В разобранном примере в начале опыта в системе был известный порядок - два различных газа находились в разных частях объема цилиндра. В хаосе молекулярных столкновений первоначальный порядок нарушился. Переход от более упорядоченных состояний к менее упорядоченным - вот в чем физическая сущность необратимости. Необратимость есть результат проявления статистических закономерностей, свойственных системам с большим числом частиц.

Все возможные процессы делятся на обратимые и необратимые. Соответственно второе начало термодинамики формулируется для обратимых и необратимых процессов. Исторически второе начало термодинамики было сформулировано на основе анализа циклических процессов, хотя в настоящее время в теоретических курсах пользуются и другим, чисто аналитическим методом выведения этого закона. Мы будем пользоваться методом ихлов как более наглядным и легче воспринимаемым на первой стадии ознакомления с термодинамикой. Предварительно же нам придется более подробно остановиться на некоторых особенностях циклов.

Термодинамический процесс называетсяобратимым ,если он может проходить как в прямом, так и в обратном направлении; при этом после возвращения системы в исходное состояние в окружающей среде и в самой системе не происходит никаких изменений.

Равновесный (квазистатический) процесс представляет собой непрерывную последовательность равновесных состояний. Любая точка такого процесса – состояние равновесия, из которого система может идти как в прямом, так и в обратном направлении. Отсюда следует, что любой равновесный процесс обратим.

Только термодинамически равновесные процессы можно изображать графически, потому что для неравновесной системы значение параметров, например, температуры или концентрации, объёму неодинаково, а для всей системы является неопределённой величиной. Процессы, происходящие в таких системах, могут быть изображены графически только приближённо, по усреднённым значениям параметров.

Можно привести пример обратимого процесса из механики – абсолютно упругое соударение. Если заменить переменную времени t на –t , то при абсолютно упругом ударе начальные и конечные скорости тел просто поменяются ролями. Законы Ньютона обратимы.

Обратимые процессы – идеализация. Все реальные процессы в той или иной степени необратимы из-за трения, диффузии, теплопроводности. Все явления переноса – необратимые процессы. Теплота сама собой может переходить только от горячего к холодному, но никогда наоборот. Ещё пример необратимого процесса: абсолютно неупругое соударение, при котором механическая энергия превращается частично или полностью в теплоту.

Обратимые процессы наиболее экономичны, система при таких процессах совершает максимальную работу, а КПД оказывается максимальным.

9) Цикл Карно. Теорема Карно .

Попробуем создать тепловую машину, при работе которой используются только обратимые процессы.

Обратимым может быть адиабатный процесс – теплопередачи там нет вообще; работа внешних сил идёт на приращение внутренней энергии или наоборот, работа системы совершается за счёт убыли внутренней энергии системы, и эти процессы обратимы.

Но теплопередачу от нагревателя как-то надо осуществить, иначе за счёт какой тепловой энергии мы получим полезную работу? Обратимый процесс теплопередачи между двумя телами можно осуществить в изотермическом процессе, если температура обоих тел равна. Тогда безразлично, в какую сторону течёт поток теплоты. Но такой процесс будет и бесконечно медленным.

В цикле Карно (рис.8.10 и 8.11) идеальный газ проходит цикл, состоящий из двух адиабат (2-3 и 4-1) и двух изотерм (1-2 и 3-4).

1-2 – изотермическое расширение от объёма V 1 до V 2 ; при этом газ находится в контакте с нагревателем при температуре T 1 ;

2-3 – адиабатическое расширение от объёма V 2 до V 3 ; конечная температура газа равна температуре охладителя T 2 ;


3-4 – изотермическое сжатие от объёма V 3 до V 4 ; при этом газ находится в контакте с охладителем при температуре T 2 ;

4-1 – адиабатическое сжатие от объёма V 4 до V 1 ; конечная температура газа равна температуре нагревателя T 1 .

Для изотермических процессов:

Для адиабатических процессов:

;

.

Тогда из последних двух равенств:

Тогда КПД цикла Карно равен:

.

Доказана первая часть теоремы Карно:

1) КПД цикла Карно не зависит от природы рабочего тела и определяется только температурами нагревателя и охладителя:

Сформулируем две другие части теоремы Карно, а докажем их позже.

2)КПД любого обратимого цикла не больше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.39)

3)КПД любого необратимого цикла меньше КПД цикла Карно с теми же температурами нагревателя и охладителя:

. (8.40)

Энтропия.

Определение энтропии



Понятие энтропии было введено Клаузиусом. Энтропия – это одна из функций состояния термодинамической системы. Функция состояния – это такая величина, значения которой однозначно определяются состоянием системы, а изменение функции состояния при переходе системы из одного состояния в другое определяется только начальным и конечным состояниями системы и не зависят от пути перехода.

Внутренняя энергия U – функция состояния. Внутренняя энергия идеального газа равна , и её изменение определяется только начальной и конечной температурами: . Величина – это молярная теплоёмкость идеального газа при постоянном объёме.

Количество теплоты Q и работа A не являются функциями состояния: они зависят от пути перехода системы из начального состояния в конечное. Например, пусть идеальный газ переходит из состояния 1 в состояние 2, совершив последовательно сначала изобарный процесс, затем – изохорный (рис.8.12, а ). Тогда совершённая за весь процесс работа равна . Пусть теперь из 1 в 2 идеальный газ переходит, сначала совершив изохорный процесс, а затем изобарный (рис.8.12, b ). Работа при таком переходе равна . Очевидно, . Величина работы оказалась разная, хотя начальное и конечное состояние одинаковы. Поскольку по первому закону термодинамики количество теплоты, сообщённое системе, идёт на приращение внутренней энергии и на работу системы против внешних сил: , то теплота, полученная системой в процессах a и b , тоже будет разной, то есть теплота также не является функцией состояния.

С точки зрения математики, малые приращения величин, не являющихся функциями состояния, не будут полными дифференциалами, и для них нужно использовать обозначения: и . Оказывается, что для теплоты интегрирующим множителем является обратная температура: , и величина, равная отношению полученной системой теплоты к абсолютной температуре, является полным дифференциалом – это приведённая теплота: . По определению Клаузиуса, функция состояния системы, дифференциал которой в обратимом процессе равен приведённой теплоте, является энтропией :

Свойства энтропии

1) Энтропия – функция состояния системы, то есть в замкнутой системе в обратимом процессе, когда система возвращается в исходное состояние, полное изменения энтропии равно нулю:

. (8.42)

2) Энтропия аддитивна, то есть энтропия системы равна сумме энтропий всех её частей.

3) Энтропия замкнутой системы не убывает:

причём для обратимых процессов и для необратимых.

Соотношение (8.43) называется неравенством Клаузиуса и представляет собой одну из формулировок второго начала термодинамики: энтропия замкнутой системы остаётся постоянной, если в ней происходят только обратимые процессы, и возрастает в случае необратимых процессов.

Рассмотрим замкнутую систему, состоящую из двух тел с температурами и . Пусть – количество теплоты, полученное вторым телом от первого . Тогда количество теплоты, полученное первым телом, отрицательно и равно . Полное приращение энтропии системы двух тел в процессе теплопередачи равно сумме изменений энтропий двух тел.