Общее решение дифференциального уравнения 2 порядка. Дифференциальные уравнения второго порядка и высших порядков

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Решение

Вначале мы решаем однородное дифференциальное уравнение:
(2)

Это уравнение второго порядка.

Решаем квадратное уравнение :
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим производную :
.
Свяжем функции и уравнением:
(6) .
Тогда
.

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;



.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные :
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

.
.





;
.

Ответ

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Решение

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных - замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:


.

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

В этом параграфе будет рассмотрен частный случай линейных уравнений второго порядка, когда коэффициенты уравнения постоянны, т. е. являются числами. Такие уравнения называются уравнениями с постоянными коэффициентами. Этот вид уравнений находит особенно широкое применение.

1. Линейные однородные дифференциальные уравнения

второго порядка с постоянными коэффициентами

Рассмотрим уравнение

в котором коэффициенты постоянны. Полагая, что деля все члены уравнения на и обозначая

запишем данное уравнение в виде

Как известно, для нахождения общего решения линейного однородного уравнения второго порядка достаточно знать его фундаментальную систему частных решений. Покажем, как находится фундаментальная система частных решений для однородного линейного дифференциального уравнения с постоянными коэффициентами. Будем искать частное решение этого уравнения в виде

Дифференцируя эту функцию два раза и подставляя выражения для в уравнение (59), получим

Так как , то, сокращая на получим уравнение

Из этого уравнения определяются те значения k, при которых функция будет решением уравнения (59).

Алгебраическое уравнение (61) для определения коэффициента к называется характеристическим уравнением данного дифференциального уравнения (59).

Характеристическое уравнение является уравнением второй степени и имеет, следовательно, два корня. Эти корни могут быть либо действительными различными, либо действительными и равными, либо комплексными сопряженными.

Рассмотрим, какой вид имеет фундаментальная система частных решений в каждом из этих случаев.

1. Корни характеристического уравнения действительные и различные: . В этом случае по формуле (60) находим два частных решения:

Эти два частных решения образуют фундаментальную систему решений на всей числовой оси, так как определитель Вронского нигде не обращается в нуль:

Следовательно, общее решение уравнения согласно формуле (48) имеет вид

2. Корни характеристического уравнения равные: . В этом случае оба корня будут действительными. По формуле (60) получаем только одно частное решение

Покажем, что второе частное решение образующее вместе с первым фундаментальную систему, имеет вид

Прежде всего проверим, что функция является решением уравнения (59). Действительно,

Но , так как есть корень характеристического уравнения (61). Кроме того, по теореме Виета Поэтому . Следовательно, , т. е. функция действительно является решением уравнения (59).

Покажем теперь, что найденные частные решения образуют фундаментальную систему решений. Действительно,

Таким образом, в этом случае общее решение однородного линейного уравнения имеет вид

3. Корни характеристического уравнения комплексные. Как известно, комплексные корни квадратного уравнения с действительными коэффициентами являются сопряженными комплексными числами, т. е. имеют вид: . В этом случае частные решения уравнения (59), согласно формуле (60), будут иметь вид:

Применяя формулы Эйлера (см. гл. XI, § 5 п. 3), выражения для можно записать в виде:

Эти решения являются комплексными. Чтобы получить действительные решения, рассмотрим новые функции

Они являются линейными комбинациями решений и, следовательно, сами являются решениями уравнения (59) (см. § 3, п. 2, теорему 1).

Легко показать, что определитель Вронского для этих решений отличен от нуля и, следовательно, решения образуют фундаментальную систему решений.

Таким образом, общее решение однородного линейного дифференциального уравнения в случае комплексных корней характеристического уравнения имеет вид

Приведем в заключение таблицу формул общего решения уравнения (59) в зависимости от вида корней характеристического уравнения.

Дифференциальные уравнения 2-го порядка

§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="119" height="25 src="> (или Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1..gif" width="85" height="25 src=">.gif" width="85" height="25 src=">.gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src=">..gif" width="39" height="25 src=">.gif" width="265" height="28 src=">.

Таким образом, уравнение 2-го порядка https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="118" height="25 src=">.gif" width="117" height="25 src=">.gif" width="34" height="25 src=">. Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: https://pandia.ru/text/78/516/images/image020_23.gif" width="95" height="25 src=">.gif" width="76" height="25 src=">.

Решение.

Так как в исходном уравнении в явном виде отсутствует аргумент https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">.gif" width="35" height="25 src=">..gif" width="35" height="25 src=">.gif" width="82" height="38 src="> ..gif" width="99" height="38 src=">.

Так как при https://pandia.ru/text/78/516/images/image029_18.gif" width="85" height="25 src=">.gif" width="42" height="38 src=">.gif" width="34" height="25 src=">.gif" width="68" height="35 src=">..gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">..gif" width="161" height="25 src=">.gif" width="34" height="25 src=">.gif" width="33" height="25 src=">..gif" width="225" height="25 src=">..gif" width="150" height="25 src=">.

Пример 2. Найти общее решение уравнения: https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="107" height="25 src=">..gif" width="100" height="27 src=">.gif" width="130" height="37 src=">.gif" width="34" height="25 src=">.gif" width="183" height="36 src=">.

3. Порядок степени понижается, если удается преобразовать его к такому виду, что обе части уравнения становятся полными производными по https://pandia.ru/text/78/516/images/image052_13.gif" width="92" height="25 src=">..gif" width="98" height="48 src=">.gif" width="138" height="25 src=">.gif" width="282" height="25 src=">, (2.1)

где https://pandia.ru/text/78/516/images/image060_12.gif" width="42" height="25 src=">.gif" width="42" height="25 src="> – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2..gif" width="215" height="25 src="> (2.2)

Примем без доказательства, что (2..gif" width="82" height="25 src=">.gif" width="38" height="25 src=">.gif" width="65" height="25 src=">, то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций https://pandia.ru/text/78/516/images/image071_10.gif" width="93" height="25 src=">.gif" width="42" height="25 src=">.gif" width="195" height="25 src=">, (2.3)

то их линейная комбинация https://pandia.ru/text/78/516/images/image076_10.gif" width="182" height="25 src="> в (2.3) и покажем, что в результате получается тождество:

https://pandia.ru/text/78/516/images/image078_10.gif" width="368" height="25 src=">.

Поскольку функции https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при https://pandia.ru/text/78/516/images/image080_10.gif" width="77" height="25 src="> – решение уравнения (2..gif" width="97" height="25 src=">.gif" width="165" height="25 src="> называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций https://pandia.ru/text/78/516/images/image085_11.gif" width="119" height="25 src=">, т. е..gif" width="77" height="47 src=">.gif" width="187" height="43 src=">.gif" width="42" height="25 src=">. Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть https://pandia.ru/text/78/516/images/image091_10.gif" width="46" height="25 src=">.gif" width="42" height="25 src=">.gif" width="605" height="50">..gif" width="18" height="25 src="> удовлетворяют уравнению (2..gif" width="42" height="25 src="> – решение уравнения (3.1)..gif" width="87" height="28 src=">..gif" width="182" height="34 src=">..gif" width="162" height="42 src=">.gif" width="51" height="25 src="> получается тождество. Таким образом,

https://pandia.ru/text/78/516/images/image107_7.gif" width="18" height="25 src=">, в которой определитель для линейно независимых решений уравнения (2..gif" width="42" height="25 src=">.gif" height="25 src="> оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – линейно независимые решения уравнения (2..gif" width="19" height="25 src=">.gif" width="129" height="25 src=">есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка..gif" width="85" height="25 src=">.gif" width="19" height="25 src=">.gif" width="220" height="47">

Постоянные https://pandia.ru/text/78/516/images/image003_79.gif" width="19" height="25 src="> из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы https://pandia.ru/text/78/516/images/image006_56.gif" width="51" height="25 src=">:

https://pandia.ru/text/78/516/images/image116_7.gif" width="138" height="25 src=">.gif" width="19" height="25 src=">.gif" width="69" height="25 src=">.gif" width="235" height="48 src=">..gif" width="143" height="25 src="> (5..gif" width="77" height="25 src=">. Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер..gif" width="25" height="26 src=">, получим алгебраическое уравнение, которое называется характеристическим:

https://pandia.ru/text/78/516/images/image124_5.gif" width="59" height="26 src="> будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2)..gif" width="49" height="25 src=">..gif" width="76" height="28 src=">.gif" width="205" height="47 src="> и общее решение (5..gif" width="45" height="25 src=">..gif" width="74" height="26 src=">..gif" width="83" height="26 src=">. Проверим, что эта функция удовлетворяет уравнению (5.1)..gif" width="190" height="26 src=">. Подставляя эти выражения в уравнение (5.1), получим

https://pandia.ru/text/78/516/images/image141_6.gif" width="328" height="26 src=">, т. к..gif" width="137" height="26 src=">.

Частные решения https://pandia.ru/text/78/516/images/image145_6.gif" width="86" height="28 src="> линейно независимы, т. к..gif" width="166" height="26 src=">.gif" width="45" height="25 src=">..gif" width="65" height="33 src=">.gif" width="134" height="25 src=">.gif" width="267" height="25 src=">.gif" width="474" height="25 src=">.

Обе скобки в левой части этого равенства тождественно равны нулю..gif" width="174" height="25 src=">..gif" width="132" height="25 src="> есть решение уравнения (5.1)..gif" width="129" height="25 src="> будет иметь вид:

https://pandia.ru/text/78/516/images/image162_6.gif" width="179" height="25 src="> f(x) (6.1)

представляется в виде суммы общего решения https://pandia.ru/text/78/516/images/image164_6.gif" width="195" height="25 src="> (6.2)

и любого частного решения https://pandia.ru/text/78/516/images/image166_6.gif" width="87" height="25 src="> будет решением уравнения (6.1)..gif" width="272" height="25 src="> f(x). Это равенство является тождеством, т. к..gif" width="128" height="25 src="> f(x). Следовательно.gif" width="85" height="25 src=">.gif" width="138" height="25 src=">.gif" width="18" height="25 src="> – линейно независимые решения этого уравнения. Таким образом:

https://pandia.ru/text/78/516/images/image173_5.gif" width="289" height="48 src=">

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="11" height="25 src=">.gif" width="51" height="25 src=">, а такой определитель, как мы видели выше, отличен от нуля..gif" width="19" height="25 src="> из системы уравнений (6..gif" width="76" height="25 src=">.gif" width="76" height="25 src=">.gif" width="140" height="25 src="> будет решением уравнения

https://pandia.ru/text/78/516/images/image179_5.gif" width="91" height="25 src="> в уравнение (6.5), получим

https://pandia.ru/text/78/516/images/image181_5.gif" width="140" height="25 src=">.gif" width="128" height="25 src="> f(x) (7.1)

где https://pandia.ru/text/78/516/images/image185_5.gif" width="34" height="25 src="> уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1..gif" width="282" height="25 src=">.gif" width="53" height="25 src=">, могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image191_5.gif" width="393" height="25 src=">.gif" width="157" height="25 src=">.

Решение.

Для уравнения https://pandia.ru/text/78/516/images/image195_4.gif" width="86" height="25 src=">..gif" width="62" height="25 src=">..gif" width="101" height="25 src=">.gif" width="153" height="25 src=">.gif" width="383" height="25 src=">.

Обе части сокращаем на https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src="> в левой и правой частях равенства

https://pandia.ru/text/78/516/images/image206_5.gif" width="111" height="40 src=">

Из полученной системы уравнений находим: https://pandia.ru/text/78/516/images/image208_5.gif" width="189" height="25 src=">, а общее решение заданного уравнения есть:

https://pandia.ru/text/78/516/images/image190_5.gif" width="11" height="25 src=">.gif" width="423" height="25 src=">,

где https://pandia.ru/text/78/516/images/image212_5.gif" width="158" height="25 src=">.

Решение.

Соответствующее характеристическое уравнение имеет вид:

https://pandia.ru/text/78/516/images/image214_6.gif" width="53" height="25 src=">.gif" width="85" height="25 src=">.gif" width="45" height="25 src=">.gif" width="219" height="25 src=">..gif" width="184" height="35 src=">. Окончательно имеем следующее выражение для общего решения:

https://pandia.ru/text/78/516/images/image223_4.gif" width="170" height="25 src=">.gif" width="13" height="25 src="> отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image227_5.gif" width="204" height="25 src=">,

где https://pandia.ru/text/78/516/images/image226_5.gif" width="16" height="25 src="> является корнем характеристического уравнения для уравнения (5..gif" width="229" height="25 src=">,

где https://pandia.ru/text/78/516/images/image229_5.gif" width="147" height="25 src=">.

Решение.

Корни характеристического уравнения для уравнения https://pandia.ru/text/78/516/images/image231_4.gif" width="58" height="25 src=">.gif" width="203" height="25 src=">.

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) https://pandia.ru/text/78/516/images/image235_3.gif" width="50" height="25 src=">.gif" width="55" height="25 src=">.gif" width="229" height="25 src=">.

Для определения https://pandia.ru/text/78/516/images/image240_2.gif" width="11" height="25 src=">.gif" width="43" height="25 src="> и подставляем в заданное уравнение:

Приводя подобные члены, приравнивая коэффициенты при https://pandia.ru/text/78/516/images/image245_2.gif" width="46" height="25 src=">.gif" width="100" height="25 src=">.

Окончательно общее решение заданного уравнения имеет вид: https://pandia.ru/text/78/516/images/image249_2.gif" width="281" height="25 src=">.gif" width="47" height="25 src=">.gif" width="10" height="25 src="> соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число https://pandia.ru/text/78/516/images/image255_2.gif" width="605" height="51">, (7.2)

где https://pandia.ru/text/78/516/images/image257_2.gif" width="121" height="25 src=">.

б) Если число https://pandia.ru/text/78/516/images/image210_5.gif" width="80" height="25 src=">, то частное решение лнду будет иметь вид:

https://pandia.ru/text/78/516/images/image259_2.gif" width="17" height="25 src=">. В выражении (7..gif" width="121" height="25 src=">.

Пример 4. Указать вид частного решения для уравнения

https://pandia.ru/text/78/516/images/image262_2.gif" width="129" height="25 src=">..gif" width="95" height="25 src=">. Общее решение лоду имеет вид:

https://pandia.ru/text/78/516/images/image266_2.gif" width="183" height="25 src=">..gif" width="42" height="25 src=">..gif" width="36" height="25 src=">.gif" width="351" height="25 src=">.

Далее коэффициенты https://pandia.ru/text/78/516/images/image273_2.gif" width="34" height="25 src=">.gif" width="42" height="28 src="> есть частное решение для уравнения с правой частью f1(x), а Вариация" href="/text/category/variatciya/" rel="bookmark">вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

https://pandia.ru/text/78/516/images/image278_2.gif" width="46" height="25 src=">.gif" width="51" height="25 src="> – не постоянные, а некоторые, пока неизвестные, функции от f(x). . нужно брать из интервала. В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала, т. е. во всем пространстве – комплексный корень характеристического уравнения..gif" width="20" height="25 src="> линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида.

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений.

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений . Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка .

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка . А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка . В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка . Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами . Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение .

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует . Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Пример 9

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.