Переход к стандартной форме злп. Стандартный вид числа

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Мы отметили, что любой одночлен можно привести к стандартному виду . В этой статье мы разберемся, что называют приведением одночлена к стандартному виду, какие действия позволяют осуществить этот процесс, и рассмотрим решения примеров с подробными пояснениями.

Навигация по странице.

Что значит привести одночлен к стандартному виду?

С одночленами удобно работать, когда они записаны в стандартном виде . Однако достаточно часто одночлены задаются в виде, отличном от стандартного. В этих случаях всегда можно перейти от исходного одночлена к одночлену стандартного вида, выполнив тождественные преобразования . Процесс проведения таких преобразований называют приведением одночлена к стандартному виду.

Обобщим приведенные рассуждения. Привести одночлен к стандартному виду – это значит выполнить с ним такие тождественные преобразования, чтобы он принял стандартный вид.

Как привести одночлен к стандартному виду?

Пришло время разобраться с тем, как приводить одночлены к стандартному виду.

Как известно из определения, одночлены нестандартного вида представляют собой произведения чисел, переменных и их степеней, причем, возможно, повторяющихся. А одночлен стандартного вида может содержать в своей записи только одно число и неповторяющиеся переменные или их степени. Теперь осталось понять, как произведения первого вида привести к виду вторых?

Для этого нужно воспользоваться следующим правилом приведения одночлена к стандартному виду , состоящим из двух шагов:

  • Во-первых, выполняется группировка числовых множителей, а также одинаковых переменных и их степеней;
  • Во-вторых, вычисляется произведение чисел и применяется .

В результате применения озвученного правила любой одночлен будет приведен к стандартному виду.

Примеры, решения

Осталось научиться применять правило из предыдущего пункта при решении примеров.

Пример.

Приведите одночлен 3·x·2·x 2 к стандартному виду.

Решение.

Сгруппируем числовые множители и множители с переменной x . После группировки исходный одночлен примет вид (3·2)·(x·x 2) . Произведение чисел в первых скобках равно 6 , а правило умножения степеней с одинаковыми основаниями позволяет выражение во вторых скобках представить как x 1 +2=x 3 . В итоге получаем многочлен стандартного вида 6·x 3 .

Приведем краткую запись решения: 3·x·2·x 2 =(3·2)·(x·x 2)=6·x 3 .

Ответ:

3·x·2·x 2 =6·x 3 .

Итак, для приведения одночлена к стандартному виду необходимо уметь проводить группировку множителей, выполнять умножение чисел, и работать со степенями.

Для закрепления материала решим еще один пример.

Пример.

Представьте одночлен в стандартном виде и укажите его коэффициент.

Решение.

Исходный одночлен имеет в своей записи единственный числовой множитель −1 , перенесем его в начало. После этого отдельно сгруппируем множители с переменной a , отдельно – с переменно b , а переменную m группировать не с чем, оставим ее как есть, имеем . После выполнения действий со степенями в скобках одночлен примет нужный нам стандартный вид , откуда виден коэффициент одночлена , равный −1 . Минус единицу можно заменить знаком минус: .

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.