Реферат основные положения специальной теории относительности. Основы специальной теории относительности

3.5. Специальная теория относительности (СТО)

Введение в СТО

С теорией относительности мы знакомимся еще в средней школе. Эта теория объясняет нам явления окружающего мира таким образом, что это противоречит «здравому смыслу». Правда, еще тот же А. Эйнштейн в свое время заметил: «Здравый смысл – это предрассудки, которые складываются в возрасте до восемнадцати лет».

Еще в XVIII в. ученые пытались ответить на вопросы о том, как передается гравитационное взаимодействие и как распространяется свет (позже вообще любые электромагнитные волны). Поиски ответов на эти вопросы и явились причиной разработки теории относительности.

В XIX в. физики были убеждены, что существует так называемый эфир (мировой эфир, светоносный эфир). По представлениям прошлых столетий, это некая всепроникающая всезаполняющая среда. Развитие физики во второй половине XIX в. требовало от ученых максимально конкретизировать представления об эфире. Если предположить, что эфир подобен газу, то в нем могли бы распространяться только продольные волны, а электромагнитные волны – поперечные. Непонятно, как в таком эфире могли бы двигаться небесные тела. Имелись и другие серьезные возражения против эфира. В то же время шотландский физик Джеймс Максвелл (1831–1879) создал теорию электромагнитного поля, из которой, в частности, следовала величина конечной скорости распространения этого поля в пространстве – 300 000 км/с. Немецкий физик Генрих Герц (1857–1894) доказал опытным путем идентичность света, тепловых лучей и электромагнитного «волнового движения». Он определил, что электромагнитная сила действует со скоростью 300 000 км/с. Больше того, Герц установил, что «электрические силы могут отделяться от весомых тел и существовать далее самостоятельно как состояние или изменение пространства». Однако ситуация с эфиром ставила много вопросов, и для отмены этого понятия требовался прямой эксперимент. Идею его сформулировал еще Максвелл, предложивший использовать в качестве движущегося тела Землю, которая перемещается по орбите со скоростью 30 км/с. Такой опыт требовал крайне высокой точности измерений. Эту труднейшую задачу в 1881 г. решили американские физики А. Майкельсон и Э. Морли. Согласно гипотезе «неподвижного эфира», можно наблюдать «эфирный ветер» при движении Земли сквозь «эфир», а скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления движения Земли в эфире (то есть свет направляется по движению Земли и против). Скорости при наличии эфира должны были быть различными. Но они оказались неизменными. Это показывало, что эфира нет. Этот отрицательный результат стал подтверждением теории относительности. Опыт Майкельсона и Морли по определению скорости света неоднократно повторялся позднее, в 1885–1887 гг., с тем же результатом.

В 1904 г. на научном конгрессе французский математик Анри Пуанкаре (1854–1912) высказал мнение, что в природе не может быть скоростей, больших скорости света. Тогда же А. Пуанкаре сформулировал принцип относительности как всеобщий закон природы. В 1905 г. он писал: «Невозможность доказать путем опытов абсолютное движение Земли является, очевидно, общим законом природы». Здесь же он указывает на преобразования Лоренца и на общую связь пространственных и временных координат.

Альберт Эйнштейн (1879–1955), создавая специальную теорию относительности, о результатах Пуанкаре еще не знал. Позже Эйнштейн напишет: «Я совершенно не понимаю, почему меня превозносят как создателя теории относительности. Не будь меня, через год это бы сделал Пуанкаре, через два года сделал бы Минковский, в конце концов, более половины в этом деле принадлежит Лоренцу. Мои заслуги преувеличены». Однако Лоренц со своей стороны в 1912 г. писал: «Заслуга Эйнштейна состоит в том, что он первым выразил принцип относительности в виде всеобщего, строгого закона».


Два постулата Эйнштейна в СТО

Для описания физических явлений Галилей ввел понятие инерциальной системы. В такой системе тело, на которое не действует какая-либо сила, находится в покое или в состоянии равномерного прямолинейного движения. Законы, описывающие механическое движение, в различных инерциальных системах одинаково справедливы, то есть не изменяются при переходе от одной системы координат к другой. Например, если пассажир идет в движущемся вагоне поезда в направлении его движения со скоростью v 1 = 4 км/ч, а поезд движется со скоростью v 2 = 46 км/ч, то скорость пассажира относительно железнодорожного полотна будет v = v 1 + v 2 = 50 км/ч, то есть здесь имеется сложение скоростей. По «здравому смыслу» это незыблемый факт:

v = v 1 + v 2

Однако в мире больших скоростей, соизмеримых со скоростью света, указанная формула сложения скоростей просто неверна. В природе свет распространяется со скоростью с = 300 000 км/с независимо от того, в какую сторону по отношению к наблюдателю движется источник света.

В 1905 г. в немецком научном журнале «Анналы физики» 26-летний Альберт Эйнштейн опубликовал статью «Об электродинамике движущихся тел». В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной, теории относительности (СТО), изменившей классические представления о пространстве и времени.

В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла – это принцип постоянства скорости света в вакууме, которая примерно равна 300 000 км/с.

Скорость света – это самая большая скорость в нашей Вселенной. Больше скорости 300 000 км/с в окружающем нас мире быть не может.

В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости v е = 0,9999999 С, где v е, С – скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:


Здесь m e0 – масса покоя электрона, m e – масса электрона на скорости v e .

Достичь скорости света электрон не может Однако существуют микрочастицы, которые имеют скорость света, их называют «люксоны».

К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.

Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях


где E = m 0 c 2 – энергия покоя частицы с массой покоя m 0 ,а E K – кинетическая энергия движущейся частицы.

Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m 0 c 2). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса – меру инерции.

При скоростях релятивистских, близких к скорости света:


где E – энергия, m – масса частицы, m – масса покоя частицы, с – скорость света в вакууме.

Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.


Релятивистские эффекты

Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.

В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:

1. Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc 2 ). Сообщить телу бесконечную энергию невозможно.

2. Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.

Эффект замедления времени сказался бы не только на часах внутри корабля, но и на всех процессах, протекающих на нем, а также на биологических ритмах космонавтов. Однако фотонную ракету нельзя рассматривать как инерциальную систему, ибо она во время разгона и торможения движется с ускорением (а не равномерно и прямолинейно).

В теории относительности предложены принципиально новые оценки пространственно-временных отношений между физическими объектами. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же – t 2 = t L а пространственная координата изменяется по уравнению x 2 = x 1 – vt. В теории относительности применяются так называемые преобразования Лоренца:


Из отношений видно, что пространственные и временные координаты зависят друг от друга. Что касается сокращения длины в направлении движения, то


а ход времени замедляется:


В 1971 г. в США был поставлен эксперимент по определению замедления времени. Изготовили двое совершенно одинаковых точных часов. Одни часы оставались на земле, а другие помещались в самолет, который летал вокруг Земли. Самолет, летящий по круговой траектории вокруг Земли, движется с некоторых ускорением, и значит, часы на борту самолета находятся в другой ситуации по сравнению с часами, покоящимися на земле. В соответствии с законами теории относительности часы-путешественники должны были отстать от покоящихся на 184 нс, а на самом деле отставание составило 203 нс. Были и другие эксперименты, в которых проверялся эффект замедления времени, и все они подтвердили факт замедления. Таким образом, разное течение времени в системах координат, движущихся относительно друг друга равномерно и прямолинейно, является непреложным экспериментально установленным фактом.


Общая теория относительности

После опубликования специальной теории относительности в 1905 г. А. Эйнштейн обратился к современному представлению тяготения. В 1916 г. он опубликовал общую теорию относительности (ОТО), которая с современных позиций объясняет теорию тяготения. Она основывается на двух постулатах специальной теории относительности и формулирует третий постулат – принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIX в. в трудах русского математика Н. И. Лобачевского, немецкого – Б. Римана, венгерского – Я. Больяйя.

Геометрия нашего пространства оказалась неевклидовой.

OОсновные понятия

Принцип относительности Галилея

Принцип относительности (первый постулат Эйнштейна): законы природы инвариантны относительно смены системы отсчёта

Инвариантность скорости света (второй постулат Эйнштейна)

Постулаты Эйнштейна как проявление симметрий пространства и времени

Основные релятивистские эффекты (следствия из постулатов Эйнштейна).

Соответствие СТО и классической механики: их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света)

& Краткое содержание

Принцип относительности - фундаментальный физический принцип. Различают:

    Принцип относительности классической механики -постулат Г.Галилея , согласно которому в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Законы механики одинаковы во всех инерциальных системах отсчёта.

    Принцип относительности релятивитской механики - постулат А.Эйнштейна , согласно которому в любых инерциальных системах отсчета все физические явления протекают одинаково. Т.е. все законы природы одинаковы во всех инерциальных системах отсчёта.

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: тело, на которое не действуют внешние силы, находится в состоянии покоя или равномерного прямолинейного движения.

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики в них действуют одинаково.

Предположение о существовании хотя бы двух ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга с постоянными скоростями.

Если скорости относительного движения ИСО могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея.

Если скорости относительного движения ИСО не могут превышать некоторой конечной скорости «с», связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Лоренца. Постулируя линейность этих преобразований, получают постоянство скорости «с» во всех инерциальных системах отсчета.

Отцом принципа относительности считается Галилео Галилей , который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. Идеи Галилея нашли развитие в механике Ньютона. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом. Эти противоречия привели к созданию Эйнштейном специальной теории относительности. После этого обобщённый принцип относительности стал называться «принципом относительности Эйнштейна», а его механическая формулировка - «принципом относительности Галилея».

А. Эйнштейн показал, что принцип относительности может быть сохранен, если радикально пересмотреть не подвергавшиеся на протяжении столетий сомнению фундаментальные понятия пространства и времени. Работа Эйнштейна стала частью системы образования нового блестящего поколения физиков, выросшего в 1920-х годах. Последующие годы не выявили в частной теории относительности каких-либо слабых мест.

Однако Эйнштейну не давало покоя то обстоятельство, ранее отмеченное Ньютоном, что вся идея относительности движения рушится, если ввести ускорение; в этом случае в игру вступают силы инерции, отсутствующие при равномерном и прямолинейном движении. Через десять лет после создания частной теории относительности Эйнштейн предложил новую, в высшей степени оригинальную теорию, в которой главную роль играет гипотеза искривленного пространства и которая дает единую картину явлений инерции и гравитации. В этой теории принцип относительности сохранен, но представлен в гораздо более общей форме, и Эйнштейну удалось показать, что его общая теория относительности с небольшими изменениями включает бóльшую часть ньютоновской теории тяготения, причем одно из этих изменений объясняет известную аномалию в движении Меркурия.

На протяжении более 50 лет после появления общей теории относительности в физике ей не придавалось особого значения. Дело в том, что расчеты, производимые на основе общей теории относительности, дают почти такие же ответы, как и вычисления в рамках теории Ньютона, а математический аппарат общей теории относительности намного сложнее. Проводить длинные и трудоемкие расчеты стоило лишь, чтобы разобраться в явлениях, возможных в гравитационных полях неслыханно высокой интенсивности. Но в 1960-х годах, с наступлением эры космических полетов, астрономы начали сознавать, что Вселенная гораздо разнообразнее, чем это представлялось вначале, и что могут существовать такие компактные объекты с высокой плотностью, как нейтронные звезды и черные дыры, в которых гравитационное поле действительно достигает необычайно высокой интенсивности. В то же время развитие вычислительной техники отчасти сняло бремя утомительных расчетов с плеч ученого. В результате общая теория относительности начала привлекать внимание многочисленных исследователей, и в этой области начался бурный прогресс. Были получены новые точные решения уравнений Эйнштейна и найдены новые способы интерпретации их необычных свойств. Более детально была разработана теория черных дыр. Граничащие с фантастикой приложения этой теории указывают на то, что топология нашей Вселенной гораздо сложнее, чем можно было думать, и что могут существовать другие вселенные, отстоящие от нашей на гигантские расстояния и соединенные с ней узкими мостиками искривленного пространства. Не исключено, конечно, что это предположение окажется неверным, но ясно одно: теория и феноменология гравитации – это математическая и физическая страна чудес, которую мы едва начали исследовать.

Два фундаментальных принципа СТО:

    Первый постулат Эйнштейна (принцип относительности ): законы природы инвариантны относительно смены системы отсчёта (все законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга. Иначе говоря, никакими опытами нельзя отличить движущуюся систему отсчета от покоящейся. Например, ощущения, которые испытывает человек в неподвижном автомобиле на перекрестке, когда ближайшая к нему машина начинает медленно трогаться с места, у человека возникает иллюзия, что его машина откатывается назад.)

    Второй постулат Эйнштейна :инвариантность скорости света (принцип постоянства скорости света : скорость света в вакууме одинакова во всех системах отсчета, движущихся прямолинейно и равномерно друг относительно друга (c=const=3 10 8 м/с). Скорость света в вакууме не зависит от движения или покоя источника света. Скорость света является предельно возможной скоростью распространения материальных объектов).

Соответствие СТО и классической механики : их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света).

Эйнштейн отказался от понятий пространства и времени Ньютона.

Пространства без материи, как чистого вместилища, не бывает, и геометрия (искривление) мира, и замедление течения времени определяются распределением и движением материи.

Основные релятивистские эффекты (следствия из постулатов Эйнштейна ):

    время относительно , т.е. скорость хода часов определяется скоростью самих часов относительно наблюдателя.

    пространство относительно , т.е. расстояние между точками пространства зависит от скорости наблюдателя.

    относительность одновременности (если для неподвижного наблюдателя два события одновременны, то для наблюдателя, который движется, – это не так)

    относительность расстояний (релятивистское сокращение длин : в движущейся системе отсчета пространственные масштабы укорочены вдоль направления движения)

    относительность промежутков времени (релятивистское замедление времени : в движущейся системе отсчета время идет медленнее). Этот эффект проявляется, к примеру, в необходимости корректировать часы на спутниках Земли.

    инвариантность пространственно-временного интервала между событиями (интервал между двумя событиями имеет в одной системе отсчета то же самое значение, что и в другой)

    инвариантность причинно-следственных связей

    единство пространства-времени (пространство и время представляют единую четырехмерную реальность – мы видим мир всегда пространственно-временным.)

    эквивалентность массы и энергии

Таким образом ,в теории Эйнштейна пространство и время относительны - результаты измерения длины и времени зависят от того, движется наблюдатель или нет.

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

В классической механике считалось само собой разумеющимся, что время течет одинаково во всех инерццальных системах, что пространственные масштабы и масса тел во всех инерциальных системах также остаются одинаковыми.

Ньютон ввел в физику постулаты об абсолютном времени и абсолютном пространстве. О времени он писал: «Абсолютное, истинное или математическое время само по себе и в силу своей внутренней природы течет одинаково». Далее Ньютон писал, что вместо истинного времени используются его меры, определяемые с помощью движения, - час, день, год. Однако дни в действительности не в точности равны друг другу. «Возможно, не существует такой вещи, как стандартное движение, посредством которого время можно точно измерить. Все движения могут быть ускоренными или замедленными, но истинный процесс течения времени не подвержен никаким изменениям». Таким образом, Ньютон считал, что ход времени никак не связан с системой отсчета и является абсолютным.

Как мы уже отмечали ранее, система отсчета, связанная с Землей, не всегда может быть принята за инерциальную систему. Еще в картине мироздания Коперника предполагалось, что в качестве системы отсчета, для которой выполняется закон инерции, берется не Земля, а система, каким-то образом фиксированная в астрономическом пространстве.

Ньютон сформулировал постулат абсолютного пространства следующим образом: «Абсолютное пространство в силу своей природы, безотносительно к чему-либо внешнему, всегда остается одинаковым и неподвижным». Вместо истинных, абсолютных положений конкретных тел и их движений, писал Ньютон, мы в своей практической деятельности используем относительные или кажущиеся, которые мы определяем через взаимное расположение тел. Само же «неподвижное пространство, в котором осуществляется движение, ни в коей мере не доступно наблюдению».

Постулат Ньютона об абсолютном пространстве содержит идею об абсолютно неподвижной системе отсчета. Считалось, что среди множества движущихся относительно друг друга инерциальных систем, каждую из которых, как мы знаем, можно принять за неподвижную, имеется одна, преимущественная, связанная с абсолютным пространством, которая действительно неподвижна. Движения всех тел относительно нее и являются истинными, абсолютными.

Движение инерциальных систем в ньютоновском абсолютном пространстве невозможно установить никакими опытами. Находясь в инерциальной системе и наблюдая за движением всех остальных тел во Вселенной, перемещающихся независимо от нашей системы, мы можем сделать вывод только о своем движении относительно этих

тел, но не об абсолютном движении. Пустое пространство, свободное от всякой материи, было бы вообще недоступно для наблюдения.

Если нельзя установить движение инерциальной системы с помощью механических явлений, то возникает вопрос, нельзя ли это сделать, например, с помощью оптических явлений. Такие попытки были сделаны в конце прошлого века.

Так как Земля движется по орбите в мировом пространстве (которое считалось абсолютно неподвижным, а скорость света в нем - одинаковой по всем направлениям и равной с), то на скорость света на Земле должно оказывать влияние движение самой Земли. Скорость распространения света по линии направления движения Земли и в перпендикулярном направлении не должна быть одинаковой.

А. Майкельсон и Э. Морли с помощью интерференции сравнивали скорости распространения света по этим двум направлениям. Однако обнаружить влияние движения Земли на скорость распространения света не удалось. Эти опыты много раз повторялись, но оказалось, что скорость света в системе отсчета, связанной с Землей, по всем направлениям одинакова Значит, движение Земли никак не сказывается на скорости распространения света, и закон сложения скоростей, принятый в классической механике, в данном случае не выполняется.

Далее появились сомнения в том, что масса тела всегда постоянна. При измерении отношения для электронов в катодных лучах (где - заряд электрона, его масса) оказалось, что при больших скоростях движения электронов уменьшается с увеличением скорости. С точки зрения механики Ньютона это было непонятно, поскольку заряд электрона и масса должны оставаться неизменными, так как от скорости его движения они не зависят.

Чтобы объяснить все эти противоречия, нужна была новая теория, основанная на предпосылках, отличных от принятых в механике Ньютона. Ее и создал в начале этого века А. Эйнштейн с помощью введения новых постулатов, согласующихся с опытом Майкельсона и со всеми другими опытами.

Из рассмотренного нельзя делать вывод, что механика Ньютона неверна. Противоречат ей только опыты, связанные с определением скорости света или с движением частиц со скоростью, близкой к скорости света с. Во всех остальных случаях, когда мы имеем дело со скоростями движения, которые намного меньше скорости света, классическая механика согласуется с опытом. Это означает, что при создании новой механики должен соблюдаться принцип соответствия, т. е. новая механика должна включать в себя старую классическую механику Ньютона как частный, предельный случай, т. е. законы новой механики должны переходить в законы Ньютона при скоростях движения малых по сравнению со скоростью света с. Эту новую механику стали называть релятивистской механикой. Таким образом, релятивистская механика не отменяет классическую механику, а лишь устанавливает границы ее применимости.

Теперь рассмотрим постулаты Эйнштейна.

1. Принцип постоянства скорости света! скорость света в вакууме (с) одинакова во всех инерциальных системах отсчета по всем направлениям. Она не зависит от движения источника света или наблюдателя.

2. Принцип относительности: никакими физическими опытами (механическими, электрическими, оптическими), произведенными в какой-либо инерциальной системе отсчета, невозможно установить, покоится эта система иди движется равномерно и прямолинейно. Физические законы совершенно одинаковы во всех инерциальных системах отсчета.

Таким образом, второй постулат Эйнштейна обобщает принцип относительности Галилея, сформулированный для механических явлений, на все явления природы. Принцип относительности Эйнштейна устанавливает полную равноправность всех инерциальных систем отсчета и отвергает идею абсолютного пространства Ньютона. Теорию, созданную Эйнштейном для описания явлений в инерциальных системах отсчета на основе приведенных выше постулатов, называют специальной теорией относительности. К разбору ее основ мы и переходим.

В специальной теории относительности пришлось отказаться от привычных для нашего мышления представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света, который был установлен экспериментально.

Потеряло свой смысл не только абсолютное пространство, свойства которого не зависят от системы отсчета и материи, но и абсолютное время. Оказалось, что время тоже относительно, что об определенных моментах времени или промежутках времени можно говорить только в связи с определенной системой отсчета. Далее выяснилось, что найденные с помощью измерений размеры тел также относительны и тоже должны быть связаны с конкретной системой отсчета.

Содержание статьи

ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ СПЕЦИАЛЬНАЯ – cовременная теория пространства и времени, в наиболее общем виде устанавливающая связь между событиями в пространстве-времени и определяющая форму записи физических законов, не меняющуюся при переходе от одной инерциальной системы отсчета к другой. Ключевым в теории является новое понимание понятия одновременности событий, сформулированное в основополагающей работе А.Эйнштейна К электродинамике движущихся сред (1905) и основанное на постулате о существовании максимальной скорости распространения сигналов – скорости света в вакууме. Специальная теория относительности обобщает представления классической механики Галилея – Ньютона на случай движения тел со скоростями, близкими к скорости света.

Споры об эфире.

С тех пор, как была установлена волновая природа света, физики были уверены, что должна существовать среда (ее назвали эфиром), в которой распространяются световые волны. Эта точка зрения подтверждалась всем опытом классической физики, примерами акустических волн, волн на поверхности воды и т.п. Когда Дж.К.Максвелл доказал, что должны существовать электромагнитные волны, распространяющиеся в пустом пространстве со скоростью света c , у него не вызывало сомнений, что эти волны должны распространяться в какой-то среде. Этой же точки зрения придерживался и Г.Герц , впервые зарегистрировавший излучение электромагнитных волн. Так как электромагнитные волны оказались поперечными (это следует из уравнений Максвелла), то Максвеллу пришлось построить хитроумную механическую модель такой среды, в которой могли бы распространяться поперечные волны (такое возможно только в очень упругих твердых телах) и которая в то же время была бы полностью проницаемой и не препятствовала движению тел сквозь нее. Эти два требования противоречат друг другу, однако вплоть до начала нынешнего столетия не удавалось предложить более разумной теории распространения света в пустоте.

Гипотеза о существовании эфира влечет за собой ряд очевидных следствий. Самое простое из них: если приемник световой волны движется навстречу источнику со скоростью v относительно эфира, то по законам классической физики скорость света относительно приемника должна равняться скорости света относительно эфира (которую естественно считать постоянной) плюс скорость приемника относительно эфира (закон сложения скоростей Галилея): с ў = c + v . Аналогично, если источник движется со скоростью v навстречу приемнику, то относительная скорость света должна равняться с ў = c - v . Таким образом, если эфир существует, то существует и некая абсолютная система отсчета, относительно которой (и только относительно нее) скорость света равна с , а во всех других системах отсчета, равномерно движущихся относительно эфира, скорость света не равна с . Так это или не так, можно решить только с помощью прямого эксперимента, заключающегося в измерении скорости света в различных системах отсчета. Ясно, что нужно найти такие системы отсчета, которые движутся с максимальной скоростью, тем более, что можно доказать, что все наблюдаемые эффекты отклонения скорости света от значения с , связанные с движением одной системы отсчета относительно другой, должны быть порядка v 2/c 2. Подходящим объектом представляется Земля, которая обращается вокруг Солнца с линейной скоростью v ~ 10 4 м/с, так что поправки должны иметь порядок (v /c ) 2 ~ 10 –8 . Эта величина кажется чрезвычайно малой, однако А.Майкельсон сумел создать прибор – интерферометр Майкельсона , который был способен зарегистрировать такие отклонения.

В 1887 А.Майкельсон вместе со своим коллегой Ю.Морли измерил скорость света в движущейся системе отсчета. Идея опыта напоминает измерение времени, которое тратит пловец, переплывая реку поперек течения и обратно и проплывая такое же расстояние вдоль и против течения. Ответ был ошеломительный: движение системы отсчета относительно эфира не оказывает никакого влияния на скорость света.

Из этого можно сделать, вообще говоря, два вывода. Возможно, эфир существует, но при движении тел сквозь него полностью увлекается движущимися телами, так что скорость тел по отношению к эфиру равна нулю. Эта гипотеза увлечения была проверена экспериментально в опытах Физо и самого Майкельсона и оказалась противоречащей эксперименту. Джон Бернал назвал знаменитый опыт Майкельсона – Морли самым выдающимся отрицательным опытом в истории науки. Оставалась вторая возможность: никакой эфир, который можно было бы экспериментально обнаружить, не существует, иными словами, нет никакой выделенной абсолютной системы отсчета, в которой скорость света равна с ; напротив, эта скорость одинакова во всех инерциальных системах отсчета. Именно эта точка зрения и стала фундаментом новой теории.

Специальная (частная) теория относительности (СТО), успешно разрешившая все противоречия, связанные с проблемой существования эфира, была создана А.Эйнштейном в 1905. Важный вклад в развитие СТО внесли Х.А. Лоренц , А.Пуанкаре и Г.Минковский.

Специальная теория относительности оказала революционное воздействие на физику, ознаменовав завершение классического этапа развития этой науки и переход к современной физике 20 в. Прежде всего, специальная теория относительности полностью изменила существовавшие до ее создания взгляды на пространство и время, показав неразрывную связь этих понятий. В рамках СТО впервые было четко сформулировано понятие об одновременности событий и показана относительность этого понятия, его зависимость от выбора конкретной системы отсчета. Во-вторых, СТО полностью разрешила все проблемы, связанные с гипотезой о существовании эфира, и позволила сформулировать стройную и непротиворечивую систему уравнений классической физики, которая пришла на смену ньютоновским уравнениям. В-третьих, СТО стала основой построения фундаментальных теорий взаимодействий элементарных частиц, прежде всего, квантовой электродинамики. Точность экспериментально проверяемых предсказаний квантовой электродинамики составляет 10 –12 , что характеризует точность, с которой можно говорить о справедливости СТО.

В-четвертых, СТО стала основой расчетов энерговыделения в ядерных реакциях распада и синтеза, т.е. основой создания как атомных электростанций, так и атомного оружия. Наконец, анализ данных, получаемых на ускорителях элементарных частиц, равно как и конструирование самих ускорителей основаны на формулах СТО. В этом смысле СТО давно стала инженерной дисциплиной.

Четырехмерный мир.

Человек существует не в трехмерном пространственном мире, а в четырехмерном мире событий (под событием понимается физическое явление в данной точке пространства в данный момент времени). Событие характеризуется заданием трех пространственных координат и одной временнóй. Таким образом, у всякого события – четыре координаты: (t ; x , y , z ). Здесь x , y , z – пространственные координаты (например, декартовы). Чтобы определить координаты события, следует задать (или иметь возможность задать): 1) начало отсчета координат; 2) заполняющую все пространство бесконечную жесткую решетку взаимно перпендикулярных стержней единичной длины; далее, следует: 3) поместить в каждом узле решетки тождественные часы (т.е. прибор, способный отсчитывать равные промежутки времени; конкретное устройство не имеет значения); 4) синхронизировать часы. Тогда любая точка в пространстве, находящаяся вблизи узла решетки, имеет в качестве пространственных координат число узлов по каждой из осей от начала координат и временную координату, равную показаниям часов в ближайшем узле. Все точки с четырьмя координатами заполняют четырехмерное пространство, называемое пространством-временем. Ключевым для физики является вопрос о геометрии этого пространства.

Для описания событий в пространстве-времени удобно использовать пространственно-временные диаграммы, на которых изображается последовательность событий для данного тела. Если (для иллюстрации) ограничиться двумерным (x ,t )-пространством, то типичная простпанственно- временнáя диаграмма событий в классической физике выглядит так, как показано на рис. 1.

Горизонтальная ось x соответствует всем трем пространственным координатам (x , y , z ), вертикальная – времени t , причем направление из «прошлого» в «будущее» отвечает движению снизу вверх по оси t .

Любая точка на горизонтальной прямой, пересекающей ось t ниже нуля, отвечает положению какого-то объекта в пространстве в момент времени (в прошлом относительно произвольно выбранного момента времени t = 0). Так, на рис. 1 тело находилось в точке А 1 пространства в момент времени t 1. Точки горизонтальной прямой, совпадающие с осью x , изображают пространственное положение тел в данный момент времени t = 0 (точка А 0). Прямая, проведенная выше оси x , соответствует положению тел в будущем (точка А 2 – положение, которое займет тело в момент времени t 2). Если соединить точки А 1, A 0, A 2, получится мировая линия тела. Очевидно, положение тела в пространстве не меняется (пространственные координаты остаются постоянными), так что эта мировая линия изображает покоящееся тело.

Если мировая линия – прямая, наклоненная под определенным углом (прямая В 1В 0В 2 на рис. 1), это означает, что тело движется с постоянной скоростью. Чем меньше угол между мировой линией и горизонтальной плоскостью, тем больше скорость движения тела. В рамках классической физики наклон мировой линии может быть любым, так как скорость тела ничем не ограничена.

Это утверждение об отсутствии предела скорости движения тел неявно содержится в механике Ньютона. Оно позволяет придать смысл понятию одновременности событий без ссылок на конкретного наблюдателя. Действительно, двигаясь с конечной скоростью, из любой точки С 0 на поверхности равного времени можно попасть в точку С 1, соответствующую более позднему времени. Можно из более ранней точки С 2 попасть в точку С 0. Однако невозможно, двигаясь с конечной скоростью, перейти из точки С 0 в любые точки А , В ,... на той же поверхности. Все события на этой поверхности одновременны (рис. 2). Можно выразиться иначе. Пусть в каждой точке трехмерного пространства находятся одинаковые часы. Возможность передавать сигналы с бесконечно большой скоростью означает, что можно одновременно синхронизовать все часы, на каком бы расстоянии друг от друга они ни находились и с какой бы скоростью при этом ни двигались (действительно, сигнал точного времени доходит до всех часов мгновенно). Иными словами, в рамках классической механики ход часов не зависит от того, движутся они или нет.

Понятие одновременности событий по Эйнштейну.

В рамках ньютоновской механики все одновременные события лежат в «плоскости» фиксированного времени t , полностью занимая трехмерное пространство (рис. 2). Геометрические соотношения между точками трехмерного пространства подчиняются законам обычной евклидовой геометрии. Таким образом, пространство-время классической механики разделяется на независимые друг от друга пространство и время.

Ключевым для понимания основ СТО является то, что в ней невозможно представить пространство-время независимыми друг от друга. Ход часов в разных точках единого пространства-времени разный и зависит от скорости наблюдателя. Этот удивительный факт основан на том, что сигналы не могут распространяться с бесконечной скоростью, (отказ от дальнодействия).

Следующий мысленный эксперимент позволяет лучше понять смысл понятия одновременности. Пусть у двух противоположных стенок вагона поезда, движущегося с постоянной скоростью v , одновременно произведены вспышки света. Для наблюдателя, находящегося посередине вагона, вспышки света от источников придут одновременно. С точки же зрения внешнего наблюдателя, стоящего на платформе, придет раньше вспышка от того источника, который приближается к наблюдателю. Все эти рассуждения подразумевают, что свет распространяется с конечной скоростью.

Таким образом, если отказаться от дальнодействия, иначе, от возможности передачи сигналов с бесконечно большой скоростью, то понятие одновременности событий становится относительным, зависимым от наблюдателя. В этом изменении взгляда на одновременность – самое фундаментальное отличие СТО от дорелятивистской физики.

Для определения понятия одновременности и синхронизации часов, находящихся в разных пространственных точках, Эйнштейн предложил следующую процедуру. Пусть из точки А посылается очень короткий световой сигнал в вакууме; при отправлении сигнала часы в точке А показывают время t 1 . Сигнал приходит в точку В в тот момент, когда часы в точке В показывают время t ". После отражения в точке В сигнал возвращается в точку А , так что в момент прихода часы в А показывают время t 2. По определению, часы в А и В синхронизованы, если в точке В часы установлены так, что t " = (t 1 + t 2)/2.

Постулаты специальной теории относительности.

1. Первый постулат – принцип относительности, утверждающий, что из всех мыслимых движений тел можно выделить (без ссылок на движение других тел) определенный класс движений, называемых неускоренными, или инерциальными. Системы отсчета, связанные с этими движениями, называются инерциальными системами отсчета. В классе инерциальных систем нет способа отличить движущуюся систему от покоящейся. Физическое содержание первого закона Ньютона – утверждение о существовании инерциальных систем отсчета.

Если есть одна инерциальная система, это значит, что их бесконечно много. Любая система отсчета, движущаяся относительно первой с постоянной скоростью, также инерциальна.

Принцип относительности гласит, что все уравнения всех физических законов имеют одинаковый вид во всех инерциальных системах отсчета, т.е. физические законы инвариантны относительно перехода из одной инерциальной системы отсчета в другую. Важно установить, какими формулами определяется преобразование координат и времени события при таком переходе.

В классической ньютоновской физике вторым постулатом является неявное утверждение о возможности распространения сигналов с бесконечно большой скоростью. Это приводит к возможности одновременной синхронизации всех часов в пространстве и к независимости хода часов от скорости их движения. Иными словами, при переходе от одной инерциальной системы к другой время не меняется: t ў = t . Тогда становятся очевидными формулы преобразования координат при переходе от одной инерциальной системы отсчета к другой (преобразования Галилея):

x ў = x vt , y ў = y , z ў = z , t ў = t .

Уравнения, выражающие законы классической механики, инвариантны относительно преобразований Галилея, т.е. не изменяют свою форму при переходе от одной инерциальной системы отсчета к другой.

В специальной теории относительности принцип относительности распространяется на все физические явления и может быть выражен так: никакие эксперименты (механические, электрические, оптические, тепловые и т.п.) не позволяют отличить одну инерциальную систему отсчета от другой, т.е. не существует абсолютного (не зависящего от наблюдателя) способа узнать скорость инерциальной системы отсчета.

2. Второй постулат классической механики о неограниченности скорости распространения сигналов или движения тел заменяется в СТО постулатом о существовании предельной скорости распространения физических сигналов, численно равной скорости распространения света в вакууме

с = 2,99792458·10 8 м/с.

Более точно, в СТО постулируется независимость скорости света от скорости движения источника или приемника этого света. После этого можно доказать, что с является максимально возможной скоростью распространения сигналов, причем эта скорость одинакова во всех инерциальных системах отсчета.

Как будут теперь выглядеть пространственно-временные диаграммы? Чтобы понять это, следует обратиться к уравнению, описывающему распространение фронта сферической световой волны в пустоте. Пусть в момент t = 0 произошла вспышка света от источника, расположенного в начале координат (x , y , z ) = 0. В любой последующий момент времени t > 0 фронт световой волны будет представлять собой сферу радиусом l = ct , равномерно расширяющуюся во все стороны. Уравнение такой сферы в трехмерном пространстве имеет вид:

x 2 + y 2 + z 2 = c 2t 2 .

На пространственно-временной диаграмме мировая линия световой волны изобразится в виде прямых, наклоненных под углом 45° к оси x . Если учесть, что координате x на диаграмме соответствует на самом деле совокупность всех трех пространственных координат, то уравнение фронта световой волны определяет некоторую поверхность в четырехмерном пространстве событий, которую принято называть световым конусом.

Каждая точка на пространственно-временной диаграмме – это некоторое событие, произошедшее в определенном месте в определенный момент времени. Пусть точка О на рис. 3 отвечает некоторому событию. По отношению к этому событию все другие события (все другие точки на диаграмме) разделяются на три области, условно называемые конусами прошлого и будущего и пространственно-подобной областью. Все события внутри конуса прошлого (например, событие А на диаграмме) происходят в такие моменты времени и на таком расстоянии от О , чтобы можно было успеть достичь точки О , двигаясь со скоростью, не превышающей скорости света (из геометрических соображений ясно, что если v > c , то наклон мировой линии к оси x уменьшается, т. е. угол наклона становится меньше 45°; и наоборот, если v c, то угол наклона к оси x становится больше 45°). Аналогично, событие В лежит в конусе будущего, так как до этой точки можно добраться, двигаясь со скоростью v c.

Иное положение с событиями в пространственно-подобной области (например, событие С ). Для этих событий соотношение между пространственным расстоянием до точки О и временем таково, что добраться до О можно, только двигаясь со сверхсветовой скоростью (пунктирная линия на диаграмме изображает мировую линию такого запрещенного движения; видно, что наклон этой мировой линии к оси x меньше 45°, т.е. v > c ).

Итак, все события по отношению к данному делятся на два неэквивалентных класса: лежащие внутри светового конуса и вне него. Первые события могут быть реализованы реальными телами, движущимися со скоростью v c, вторые – нет.

Преобразования Лоренца.

Формула, описывающая распространение фронта сферической световой волны, может быть переписана в виде:

c 2t 2 – x 2 – y 2 – z 2 = 0.

Пусть s 2 = c 2t 2 – x 2 – y 2 – z 2. Величина s называется интервалом. Тогда уравнение распространения световой волны (уравнение светового конуса на пространственно-временной диаграмме) примет вид:

Из геометрических соображений в областях абсолютного прошлого и абсолютного будущего (иначе их называют временно-подобными областями) s 2 > 0, а в пространственно-подобной области s 2 s инвариантен относительно перехода из одной инерциальной системы отсчета в другую. Согласно принципу относительности, уравнение s 2 = 0, выражающее физический закон распространения света, обязано иметь один и тот же вид во всех инерциальных системах отсчета.

Величина s 2 не инвариантна относительно преобразований Галилея (проверяется подстановкой) и можно сделать вывод, что должны существовать иные преобразования координат и времени при переходе от одной инерциальной системы к другой. При этом, учитывая относительный характер одновременности, уже нельзя считать t ў = t , т.е. считать время абсолютным, идущим независимо от наблюдателя, и вообще отделить время от пространства, как это можно было сделать в ньютоновской механике.

Преобразования координат и времени события при переходе от одной инерциальной системы отсчета к другой, не изменяющие величины интервала s 2, носят название преобразований Лоренца. В случае, когда одна инерциальная система отсчета движется относительно другой вдоль оси x со скоростью v , эти преобразования имеют вид:

Здесь выписаны как преобразования Лоренца от нештрихованной системы координат К (условно ее принято считать неподвижной, или лабораторной системой) к штрихованной системе К ў и обратно. Эти формулы отличаются знаком скорости v , что соответствует принципу относительности Эйнштейна: если К ў движется относительно К со скоростью v вдоль оси x , то К движется относительно К ў со скоростью –v , а в остальном обе системы полностью равноправны.

Интервал в новых обозначениях принимает вид:

Прямой подстановкой можно проверить, что это выражение не меняет вид при преобразованиях Лоренца, т. е. s ў 2 = s 2.

Часы и линейки.

Наиболее удивительными (с точки зрения классической физики) следствиями преобразований Лоренца являются утверждения, что наблюдатели в двух разных инерциальных системах отсчета будут получать разные результаты при измерении длины какого-то стержня или интервала времени между двумя событиями, произошедшими в одном месте.

Сокращение длины стержня.

Пусть стержень расположен вдоль оси x ў системы отсчета S ў и покоится в этой системе. Его длина L ў = x ў 2 – x ў 1 фиксируется наблюдателем в этой системе. Переходя в произвольную систему S , можно записать выражения для координат конца и начала стержня, измеренных в один и тот же момент времени по часам наблюдателя в этой системе:

x ў 1 = g (x 1 – b x 0), x ў 2 = g (x 2 – b x 0).

L ў = x ў 2 – x ў 1 = g (x 2 – x 1) = g L .

Эту формулу обычно записывают в виде:

L = L ў /g .

Так как g > 1, то это означает, что длина стержня L в системе отсчета S оказывается меньше длины этого же стержня L ў в системе S ў , в которой стержень покоится (лоренцовское сокращение длины).

Замедление темпа хода времени.

Пусть два события происходят в одном и том же месте в системе S ў , и интервал времени между этими событиями по часам наблюдателя, покоящегося в этой системе, равен

Dt = t ў 2 – t ў 1.

Собственным временем принято называть время t , измеренное по часам наблюдателя, покоящегося в данной системе отсчета. ует Собственное время и время, измеренное по часам движущегося наблюдателя, связаны. Так как

где x ў – пространственная координата события, то вычитая одно равенство из другого, находим:

D t = g Dt .

Из этой формулы следует, что часы в системе S показывают бóльший интервал времени между двумя событиями, чем часы в системе S ў , движущейся относительно S . Иными словами, интервал собственного времени между двумя событиями, который показывают часы, движущиеся вместе с наблюдателем, всегда меньше интервала времени между этими же событиями, который показывают часы неподвижного наблюдателя.

Эффект замедления времени непосредственно наблюдается в экспериментах с элементарными частицами. Большинство этих частиц нестабильно и распадается через определенный интервал времени t (точнее, известны период полураспада или среднее время жизни частицы). Ясно, что это время измеряется по покоящимся относительно частицы часам, т.е. это собственное время жизни частицы. Но частица пролетает мимо наблюдателя с большой скоростью, иногда близкой к скорости света. Поэтому время ее жизни по часам в лаборатории становится равным t = gt , и при g >> 1 время t >> t . Впервые с этим эффектом исследователи столкнулись при изучении мюонов, рождавшихся в верхних слоях атмосферы Земли в результате взаимодействия частиц космического излучения с ядрами атомов в атмосфере. Были установлены следующие факты:

мюоны рождаются на высоте порядка 100 км над поверхностью Земли;

собственное время жизни мюона t @ 2Ч 10 –6 с;

поток мюонов, рожденных в верхних слоях атмосферы, доходит до поверхности Земли.

Но это кажется невозможным. Ведь даже если бы мюоны двигались со скоростью, равной скорости света, они все равно могли бы за время своей жизни пролететь расстояние, равное всего c t » 3Ч 10 8 Ч 2Ч 10 –6 м = 600 м. Таким образом, тот факт, что мюоны, не распавшись, пролетают 100 км, т. е. расстояние, в 200 раз большее, и регистрируются вблизи поверхности Земли, может быть объяснен только одним: с точки зрения земного наблюдателя, время жизни мюона возросло. Расчеты полностью подтверждают релятивистскую формулу. Тот же эффект экспериментально наблюдается в ускорителях элементарных частиц.

Следует подчеркнуть, что не в выводах о сокращении длины и замедлении времени главная суть СТО. Самым существенным в специальной теории относительности является не относительность понятий пространственных координат и времени, а неизменность (инвариантность) некоторых комбинаций этих величин (например, интервала) в едином пространстве-времени, поэтому в определенном смысле СТО следовало бы именовать не теорией относительности, а теорией абсолютности (инвариантности) законов природы и физических величин по отношению к преобразованиям перехода из одной инерциальной системы отсчета в другую.

Сложение скоростей.

Пусть системы отсчета S и S ў движутся относительно друг друга со скоростью, направленной вдоль оси x (x ў ). Преобразования Лоренца для изменения координат тела D x , D y V есть только одна компонента вдоль оси x , так что скалярное произведение Vv ў = Vv ў x ):

В предельном случае, когда все скорости много меньше скорости света, V c и v ў c (нерелятивистский случай), можно пренебречь в знаменателе вторым слагаемым и это приводит к закону сложения скоростей классической механики

v = v ў + V .

В противоположном, релятивистском случае (скорости близки к скорости света) легко убедиться, что вопреки наивному представлению, при сложении скоростей невозможно получить скорость, превышающую скорость света в вакууме. Пусть, например, все скорости направлены вдоль оси x и v ў = c, тогда видно, что и v = c .

Не следует думать, что при сложении скоростей в рамках СТО вообще никогда не могут получиться скорости, большие скорости света. Вот простой пример: два звездолета сближаются со скоростью 0,8с каждый относительно земного наблюдателя. Тогда скорость сближения звездолетов относительно того же наблюдателя будет равна 1,6с . И это никак не противоречит принципам СТО, т. к. речь не идет о скорости передачи сигнала (информации). Однако, если задать вопрос, какова скорость приближения одного звездолета к другому с точки зрения наблюдателя в звездолете, то правильный ответ получается применением релятивистской формулы сложения скоростей: скорость звездолета относительно Земли (0,8с ) складывается со скоростью движения Земли относительно второго звездолета (тоже 0,8с ), и в результате v = 1,6/(1+0,64)c = 1,6/1,64c = 0,96c .

Соотношение Эйнштейна.

Главной прикладной формулой СТО является соотношение Эйнштейна между энергией E , импульсом p и массой m свободно движущейся частицы:

Эта формула заменяет ньютоновскую формулу, связывающую кинетическую энергию с импульсом:

E кин = p 2/(2m ).

Из формулы Эйнштейна следует, что при p = 0

E 0 = mc 2.

Смысл этой знаменитой формулы в том, что массивная частица в сопутствующей системе отсчета (т. е. в инерциальной системе отсчета, движущейся вместе с частицей, так что относительно нее частица покоится) обладает определенной энергией покоя Е 0, однозначно связанной с массой этой частицы. Эйнштейн постулировал, ято эта энергия вполне реальна и при изменении массы частицы может переходить в другие виды энергии и это является основой ядерных реакций.

Можно показать, что с точки зрения наблюдателя, относительно которого частица движется со скоростью v , энергия и импульс частицы изменяются:

Таким образом, значения энергии и импульса частицы зависят от той системы отсчета, в которой измеряются эти величины. Соотношение Эйнштейна выражает всеобщий закон эквивалентности и взаимопревращаемости массы и энергии. Открытие Эйнштейна стало основой не только многих технических достижений 20 в., но и понимания рождения и эволюции Вселенной.

Александр Берков