Следствия ото. Создание эйнштейном теории относительности

Сто лет назад, в 1915 году, молодой швейцарский учёный, который на тот момент уже сделал революционные открытия в физике, предложил принципиально новое понимание гравитации.

В 1915 году Эйнштейн опубликовал общую теорию относительности , которая характеризует гравитацию как основное свойство пространства-времени. Он представил серию уравнений, описывающих влияние кривизны пространства-времени на энергию и движение присутствующей в нём материи и излучения.

Сто лет спустя общая теория относительности (ОТО) стала основой для построения современной науки, она выдержала все тесты, с которыми на неё набросились учёные.

Но до недавнего времени было невозможно проводить эксперименты в экстремальных условиях, чтобы проверить устойчивость теории.

Удивительно, насколько сильной показала себя теория относительности за 100 лет. Мы всё ещё пользуемся тем, что написал Эйнштейн!

Клиффорд Уилл, физик-теоретик, Флоридский университет

Теперь у учёных есть технология, с помощью которой можно искать физику за пределами ОТО.

Новый взгляд на гравитацию

Общая теория относительности описывает гравитацию не как силу (так она предстаёт в ньютоновской физике), а как искривление пространства-времени за счёт массы объектов. Земля вращается вокруг Солнца не потому, что звезда её притягивает, а потому, что Солнце деформирует пространство-время. Если на растянутое одеяло положить тяжёлый шар для боулинга, оделяло изменит форму - гравитация влияет на пространство примерно так же.

Теория Эйнштейна предсказала несколько безумных открытий. Например, возможность существования чёрных дыр, которые искривляют пространство-время до такой степени, что ничего не может вырваться изнутри, даже свет. На основе теории были найдены доказательства общепринятому сегодня мнению, что Вселенная расширяется и ускоряется.

Общая теория относительности была подтверждена многочисленными наблюдениями . Сам Эйнштейн использовал ОТО, чтобы рассчитать орбиту Меркурия, чьё движение не может быть описано законами Ньютона. Эйнштейн предсказал существование объектов настолько массивных, что они искривляют свет. Это явление гравитационного линзирования, с которым часто сталкиваются астрономы. Например, поиск экзопланет основан на эффекте едва заметных изменений в излучении, искривлённом гравитационным полем звезды, вокруг которой вращается планета.

Проверка теории Эйнштейна

Общая теория относительности хорошо работает для гравитации обычной силы, как показывают опыты, проведённые на Земле, и наблюдения за планетами Солнечной системы. Но её никогда не проверяли в условиях экстремально сильного воздействия полей в пространствах, лежащих на границах физики.

Наиболее перспективный способ тестирования теории в таких условиях - наблюдение за изменениями в пространстве-времени, которые называются гравитационными волнами . Они появляются как итог крупных событий, при слиянии двух массивных тел, таких как чёрные дыры, или особенно плотных объектов - нейтронных звёзд.

Космический фейерверк такого масштаба отразится на пространстве-времени только мельчайшей рябью. Например, если бы две чёрные дыры столкнулись и слились где-то в нашей Галактике, гравитационные волны могли бы растянуть и сжать расстояние между объектами, находящимися на Земле в метре друг от друга, на одну тысячную диаметра атомного ядра.

Появились эксперименты, которые могут зафиксировать изменения пространства-времени вследствие таких событий.

Есть неплохой шанс зафиксировать гравитационные волны в ближайшие два года.

Клиффорд Уилл

Лазерно-интерферометрическая обсерватория гравитационных волн (LIGO) с обсерваториями в окрестностях Ричленда (Вашингтон) и Ливингстона (Луизиана) использует лазер для определения мельчайших искажений в двойных Г-образных детекторах. Когда рябь пространства-времени проходит через детекторы, она растягивает и сжимает пространство, вследствие чего детектор изменяет размеры. А LIGO может их измерить.

LIGO начала серию запусков в 2002 году, но не достигла результата. В 2010-м была проведена работа по улучшению, и преемник организации, обсерватория Advanced LIGO, снова должна заработать в этом году. Многие из запланированных экспериментов нацелены на поиск гравитационных волн.

Ещё один способ протестировать теорию относительности - посмотреть на свойства гравитационных волн. Например, они могут быть поляризованы, как свет, прошедший через поляризационные очки. Теория относительности предсказывает особенности такого эффекта, и любые отклонения от расчётов могут стать поводом усомниться в теории.

Единая теория

Клиффорд Уилл считает, что открытие гравитационных волн только укрепит теорию Эйнштейна:

Думаю, мы должны продолжать поиск доказательств общей теории относительности, чтобы быть уверенными в её правоте.

А зачем вообще нужны эти эксперименты?

Одна из важнейших и труднодостижимых задач современной физики - поиск теории, которая свяжет воедино исследования Эйнштейна, то есть науку о макромире, и квантовую механику , реальность мельчайших объектов.

Успехи этого направления, квантовой гравитации , могут потребовать внести изменения в общую теорию относительности. Возможно, что эксперименты в области квантовой гравитации потребуют столько энергии, что их будет невозможно провести. «Но кто знает, - говорит Уилл, - может, в квантовой вселенной существует эффект, незначительный, но доступный для поиска».

Еще в начале 20-го века была сформулирована теория относительности. Что это такое и кто ее создатель, знает сегодня каждый школьник. Она настолько увлекательна, что ею интересуются даже люди, далекие от науки. В этой статье доступным языком описывается теория относительности: что это такое, каковы ее постулаты и применение.

Говорят, что к Альберту Эйнштейну, ее создателю, прозрение пришло в один миг. Ученый будто бы ехал на трамвае по швейцарскому Берну. Он посмотрел на уличные часы и вдруг осознал, что эти часы остановятся, если трамвай разгонится до скорости света. В этом случае времени бы не стало. Время в теории относительности играет очень важную роль. Один из постулатов, сформулированных Эйнштейном, - разные наблюдатели воспринимают действительность по-разному. Это относится в частности ко времени и расстоянию.

Учет положения наблюдателя

В тот день Альберт понял, что, выражаясь языком науки, описание любого физического явления или события зависит от того, в какой системе отсчета находится наблюдатель. К примеру, если какая-нибудь пассажирка трамвая уронит очки, они упадут по отношению к ней вертикально вниз. Если же посмотреть с позиции стоящего на улице пешехода, то траектория их падения будет соответствовать параболе, так как трамвай движется и одновременно падают очки. Таким образом, система отсчета у каждого своя. Предлагаем подробнее рассмотреть основные постулаты теории относительности.

Закон распределенного движения и принцип относительности

Несмотря на то что при смене систем отсчета описания событий меняются, существуют и универсальные вещи, которые остаются неизменными. Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от того, в движущейся или неподвижной системе координат он находится, ответ на него остается неизменным. Этот закон называется законом распределенного движения. Он одинаково действует как в трамвае, так и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Они являются, как принято выражаться на научном языке, инвариантными. Вот в этом и состоит принцип относительности.

Две теории Эйнштейна

Данный принцип, как и любую другую гипотезу, необходимо было сначала проверить, соотнеся его с природными явлениями, действующими в нашей реальности. Эйнштейн вывел 2 теории из принципа относительности. Хотя они и родственные, но считаются отдельными.

Частная, или специальная, теория относительности (СТО) основывается на положении о том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Общая теория относительности (ОТО) данный принцип распространяет на любые системы отсчета, в том числе и те, которые движутся с ускорением. В 1905 году А. Эйнштейн опубликовал первую теорию. Вторую, более сложную в плане математического аппарата, завершил к 1916 году. Создание теории относительности, как СТО, так и ОТО, стало важным этапом в развитии физики. Остановимся подробнее на каждой из них.

Специальная теория относительности

Что это такое, в чем ее суть? Давайте ответим на этот вопрос. Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям о том, как устроен мир. Речь идет о тех эффектах, которые наблюдаются тогда, когда скорость движения приближается к скорости света. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

В системе координат при движении со скоростью, приближенной к скорости света, время растягивается относительно наблюдателя, а длина объектов (пространственная протяженность), напротив, сжимается вдоль оси направления этого движения. Данный эффект ученые называют сокращением Лоренца-Фицджеральда. Еще в 1889 году его описал Джордж Фицджеральд, итальянский физик. А в 1892 году Хендрик Лоренц, нидерландец, дополнил его. Этот эффект объясняет отрицательный результат, который дает опыт Майкельсона-Морли, в котором скорость движения нашей планеты в космическом пространстве определяется замером "эфирного ветра". Таковы основные постулаты теории относительности (специальной). Эйнштейн дополнил эти преобразования массы, сделанной по аналогии. Согласно ей, по мере того, как скорость тела приближается к скорости света, масса тела увеличивается. Например, если скорость составит 260 тыс. км/с, то есть 87% от скорости света, с точки зрения наблюдателя, который находится в покоящейся системе отсчета, масса объекта удвоится.

Подтверждения СТО

Все эти положения, как бы они ни противоречили здравому смыслу, со времени Эйнштейна находят прямое и полное подтверждение во множестве экспериментов. Один из них провели ученые Мичиганского университета. Этим любопытным опытом подтверждается теория относительности в физике. Исследователи поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Последние полвека исследователи изучают элементарные частицы на ускорителях - огромных аппаратных комплексах. В них пучки электронов или протонов, то есть заряженных разгоняются до тех пор, пока их скорости не приближаются к скорости света. После этого ими обстреливаются ядерные мишени. В данных опытах нужно учитывать то, что масса частиц увеличивается, в противном случае результаты эксперимента не поддаются интерпретации. В этом отношении СТО уже давно не просто гипотетическая теория. Она стала одним из инструментов, которые используются в прикладной инженерии, наравне с ньютоновскими законами механики. Принципы теории относительности нашли большое практическое применение в наши дни.

СТО и законы Ньютона

Кстати, говоря о (портрет этого ученого представлен выше), следует сказать, что специальная теория относительности, которая, казалось бы, им противоречит, в действительности воспроизводит уравнения законов Ньютона практически в точности, если ее использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется специальная теория относительности, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Скорость света - универсальная константа

Используя принцип относительности, можно понять, почему в данной модели строения мира очень важную роль играет именно скорость света, а не что-то еще. Этим вопросом задаются те, кто только начинает знакомство с физикой. Скорость света является универсальной константой благодаря тому, что она определена в качестве таковой естественнонаучным законом (подробнее об этом можно узнать, изучив уравнения Максвелла). Скорость света в вакууме, в силу действия принципа относительности, в любой системе отсчета является одинаковой. Можно подумать, что это противоречит здравому смыслу. Выходит, что до наблюдателя одновременно доходит свет как от неподвижного источника, так и от движущегося (независимо от того, с какой скоростью он движется). Однако это не так. Скорости света, благодаря особой ее роли, отводится центральное место не только в специальной, но и в ОТО. Расскажем и о ней.

Общая теория относительности

Она используется, как мы уже говорили, для всех систем отсчета, не обязательно тех, скорость движения которых относительно друг друга является постоянной. Математически эта теория выглядит намного сложнее, нежели специальная. Этим и объясняется то, что между их публикациями прошло 11 лет. ОТО включает в себя специальную в качестве частного случая. Следовательно, законы Ньютона также входят в нее. Однако ОТО идет намного дальше ее предшественниц. К примеру, в ней по-новому объясняется гравитация.

Четвертое измерение

Благодаря ОТО мир становится четырехмерным: время добавляется к трем пространственным измерениям. Все они неразрывны, следовательно, нужно говорить уже не о пространственном расстоянии, существующем в трехмерном мире между двумя объектами. Речь теперь идет о простанственно-временных интервалах между различными событиями, объединяющими как пространственную, так и временную удаленность их друг от друга. Другими словами, время и пространство в теории относительности рассматриваются как некий четырехмерный континуум. Его можно определить как пространство-время. В данном континууме те наблюдатели, которые движутся относительно друг друга, будут иметь разные мнения даже о том, одновременно ли произошли два каких-либо события, или же одно из них предшествовало другому. Однако причинно-следственные связи при этом не нарушаются. Другими словами, существования такой системы координат, где два события происходят в разной последовательности и не одновременно, не допускает даже ОТО.

ОТО и закон всемирного тяготения

Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля с этой позиции вращается вокруг Солнца, так как между ними имеются силы взаимного притяжения. Тем не менее, ОТО заставляет взглянуть с другой стороны на это явление. Гравитация, согласно данной теории, - следствие "искривления" (деформации) пространства-времени, которое наблюдается под воздействием массы. Чем тело тяжелее (в нашем примере, Солнце), тем больше "прогибается" под ним пространство-время. Соответственно, его гравитационное поле тем сильнее.

Для того чтобы лучше понять суть теории относительности, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате "продавливания" Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Способы проверки ОТО

Отметим, что ОТО проверить непросто, так как ее результаты в лабораторных условиях почти соответствуют закону всемирного тяготения. Однако ученые все-таки провели ряд важных экспериментов. Их результаты позволяют сделать вывод о том, что теория Эйнштейна является подтвержденной. ОТО, кроме того, помогает объяснить различные явления, наблюдаемые в космосе. Это, например, небольшие отклонения Меркурия от своей стационарной орбиты. С точки зрения ньютоновской классической механики их нельзя объяснить. Это также то, почему электромагнитное излучение, исходящее от далеких звезд, искривляется при прохождении его вблизи от Солнца.

Результаты, предсказанные ОТО, на самом деле существенно отличаются от тех, которые дают законы Ньютона (портрет его представлен выше), лишь тогда, когда присутствуют сверхсильные гравитационные поля. Следовательно, для полноценной проверки ОТО необходимы либо очень точные измерения объектов огромной массы, либо черные дыры, поскольку наши привычные представления по отношению к ним неприменимы. Поэтому разработка экспериментальных способов проверки этой теории является одной из главных задач современной экспериментальной физики.

Умы многих ученых, да и далеких от науки людей занимает созданная Эйнштейном теория относительности. Что это такое, мы вкратце рассказали. Эта теория переворачивает наши привычные представления о мире, поэтому интерес к ней до сих пор не угасает.

Про эту теорию говорили, что её понимают только три человека в мире, а когда математики попытались цифрами выразить то, что из неё следует, сам автор - Альберт Эйнштейн - шутил, что теперь и он перестал её понимать.

Специальная и общая теория относительности - неразрывные части учения, на котором строятся современные научные взгляды на устройство мира.

«Год чудес»

В 1905 году ведущий научный печатный орган Германии «Annalen der Physik» («Анналы физики») опубликовал одну за другой четыре статьи 26-летнего Альберта Эйнштейна, работавшего экспертом 3-го класса - мелким клерком - Федерального бюро патентования изобретений в Берне. Он и раньше сотрудничал с журналом, но публикация такого количества работ за один год была экстраординарным событием. Оно стало еще более выдающимся, когда стала ясна ценность идей, которые содержались в каждой из них.

В первой из статей высказывались мысли о квантовой природе света, рассмотрены процессы поглощения и выделения электромагнитного излучения. На этой основе был впервые объяснен фотоэффект - испускание веществом электронов, выбиваемых фотонами света, предложены формулы для расчета количества выделяемой при этом энергии. Именно за теоретические разработки фотоэлектрического эффекта, ставшие началом квантовой механики, а не за постулаты теории относительности Эйнштейну будет присуждена в 1922 году Нобелевская премия по физике.

В другой статье было положено начало прикладным направлениям физической статистики на основе исследования броуновского движения мельчайших, взвешенных в жидкости частиц. Эйнштейн предложил методы поиска закономерности флуктуаций - беспорядочных и случайных отклонений физических величин от их наиболее вероятных значений.

И наконец, в статьях «К электродинамике движущихся тел» и «Зависит ли инерция тела от содержания в нем энергии?» содержались зародыши того, что будет обозначено в истории физики как теория относительности Альберта Эйнштейна, вернее её первая часть - СТО, - специальная теория относительности.

Источники и предшественники

В конце XIX века многим физикам казалось, что большинство глобальных проблем мироздания решено, главные открытия сделаны, и человечеству предстоит лишь использовать накопленные знания для мощного ускорения технического прогресса. Лишь некоторые теоретические неувязки портили гармоническую картину Вселенной, заполненной эфиром и живущей по незыблемым ньютоновским законам.

Гармонию портили теоретические изыскания Максвелла. Его уравнения, которые описывали взаимодействия электромагнитных полей, противоречили общепринятым законам классической механики. Это касалось измерения скорости света в динамических системах отсчета, когда переставал работать принцип относительности Галилея, - математическая модель взаимодействия таких систем при движении со световой скоростью приводила к исчезновению электромагнитных волн.

Кроме того, не поддавался обнаружению эфир, который должен был примирить одновременное существование частиц и волн, макро и микрокосмоса. Эксперимент, который провели в 1887 году Альберт Майкельсон и Эдвард Морли имел целью обнаружение “эфирного ветра”, который неизбежно должен был быть зафиксирован уникальным прибором - интерферометром. Опыт длился целый год - время полного обращения Земли вокруг Солнца. Планета должна была полгода двигаться против эфирного потока, полгода эфир должен был «дуть в паруса» Земли, но результат был нулевым: смещения световых волн под воздействием эфира не обнаружили, что ставило под сомнение сам факт существования эфира.

Лоренц и Пуанкаре

Физики попытались найти объяснение результатам экспериментов по обнаружению эфира. Свою математическую модель предложил Хендрик Лоренц (1853-1928). Она возвращала к жизни эфирное заполнение пространства, но лишь при очень условном и искусственном предположении, что при движении сквозь эфир объекты могут сокращаться в направлении движения. Эту модель доработал великий Анри Пуанкаре (1854-1912).

В работах этих двух ученых впервые появились понятия, во многом составившие главные постулаты теории относительности, и это не дает утихнуть обвинениям Эйнштейна в плагиате. К ним относятся условность понятия об одновременности, гипотеза о постоянности скорости света. Пуанкаре допускал, что при больших скоростях законы механики Ньютона требуют переработки, делал вывод об относительности движения, но в приложении к эфирной теории.

Специальная теория относительности - СТО

Проблемы корректного описания электромагнитных процессов стали побудительной причиной для выбора темы для теоретических разработок, и опубликованные в 1905 году статьи Эйнштейна содержали интерпретацию частного случая - равномерного и прямолинейного движения. К 1915году была сформирована общая теория относительности, которая объясняла и взаимодействия гравитационные взаимодействия, но первой стала теория, получившая название специальной.

Специальная теория относительности Эйнштейна кратко может быть изложена в виде двух основных постулатов. Первый распространяет действие принципа относительности Галилея на все физические явления, а не только на механические процессы. В более общей форме он гласит: Все физические законы одинаковы для всех инерциальных (движущихся равномерно прямолинейно или находящихся в покое) систем отсчета.

Второе утверждение, которое содержит специальная теория относительности: скорость распространения света в вакууме для всех инерциальных систем отсчета одинакова. Далее делается более глобальный вывод: световая скорость - максимально большая величина скорости передачи взаимодействий в природе.

В математических выкладках СТО приводится формула E=mc², которая и раньше появлялась в физических публикациях, но именно благодаря Эйнштейну она стала самой знаменитой и популярной в истории науки. Вывод об эквивалентности массы и энергии - это самая революционная формула теории относительности. Понятие того что любой объект, обладающий массой, содержит огромное количество энергии стало основой для разработок по использованию ядерной энергии и, прежде всего, привело к появлению атомной бомбы.

Эффекты специальной теории относительности

Из СТО вытекает несколько следствий, получивших название релятивистских (relativity англ. -относительность) эффектов. Замедление времени - один из самых ярких. Суть его в том, что в движущейся системе отсчета время идет медленнее. Расчеты показывают, что на космическом корабле, совершившем гипотетический полет до звездной системы Альфа-Центавра и обратно при скорости 0,95 c (c -скорость света) пройдет 7,3 года, а на Земле - 12 лет. Такие примеры часто приводят, когда объясняется теория относительности для чайников, как и связанный с этим эффектом парадокс близнецов.

Еще один эффект - сокращение линейных размеров, - то есть с точки зрения наблюдателя, движущиеся относительно него со скоростью, близкой к c, предметы, будут иметь меньшие линейные размеры в направлении движения, чем их собственная длина. Этот предсказываемый релятивистской физикой эффект называется лоренцевым сокращением.

По законам релятивистской кинематики масса движущегося объекта больше массы покоя. Этот эффект становится особенно значим при разработке приборов для исследования элементарных частиц - без учета его трудно представить себе работу БАКа (Большого андронного коллайдера).

Пространство-время

Одним из важнейших компонентов СТО является графическое отображение релятивистской кинематики, особое понятие единого пространства-времени, которое предложил немецкий математик Герман Минковский, бывший одно время преподавателем математики у студента Альберта Эйнштейна.

Суть модели Минковского заключается в совершенно новом подходе к определению положения вступающих во взаимодействие объектов. Специальная теория относительности времени уделяет особое внимание. Время становится не просто четвертой координатой классической трехмерной системы координат, время - не абсолютная величина, а неотделимая характеристика пространства, которое принимает вид пространственно-временного континуума, графически выраженного в виде конуса, в котором и происходят все взаимодействия.

Такое пространство в теории относительности, с её развитием до более обобщающего характера, в дальнейшем было подвергнуто ещё и искривлению, что сделало такую модель подходящей для описания и гравитационных взаимодействий.

Дальнейшее развитие теории

СТО не сразу нашла понимание у физиков, но постепенно она стала основным инструментом описания мира, особенно мира элементарных частиц, который становился главным предметом изучения физической науки. Но задача дополнения СТО объяснением сил тяготения была очень актуальной, и Эйнштейн не прекращал работу, оттачивая принципы общей теории относительности - ОТО. Математическая обработка этих принципов заняла довольно много времени - около 11 лет, и в ней приняли участие специалисты смежных с физикой областей точных наук.

Так, огромный вклад внес ведущий математик того времени Давид Гильберт (1862-1943), ставший одним из соавторов уравнений гравитационного поля. Они явились последним камнем в построении прекрасного здания, получившего наименование - общая теория относительности, или ОТО.

Общая теория относительности - ОТО

Современная теория гравитационного поля, теория структуры «пространство-время», геометрия «пространства-времени», закон физических взаимодействий в неинерциальных системах отчета - всё это различные наименования, которыми наделена общая теория относительности Альберта Эйнштейна.

Теория всемирного тяготения, которая в течении долгого времени определяла взгляды физической науки на гравитацию, на взаимодействия объектов и полей различного размера. Парадоксально, но основным её недостатком была нематериальность, иллюзорность, математичность её сути. Между звездами и планетами находилась пустота, притяжение между небесными телами объяснялось дальнодействием неких сил, причем мгновенным. Общая теория относительности Альберта Эйнштейна наполнила гравитацию физическим содержанием, представила её как непосредственный контакт различных материальных объектов.

Геометрия гравитации

Главная идея, с помощью которой Эйнштейн объяснил гравитационные взаимодействия очень проста. Физическим выражением сил тяготения он объявляет пространство-время, наделенное вполне ощутимыми признаками - метрикой и деформациями, на которые влияет масса объекта, вокруг которого образуются такие искривления. Одно время Эйнштейну даже приписывали призывы вернуть в теорию мироздания понятие эфира, как упругой материальной среды, заполняющей пространство. Он же разъяснял, что ему трудно называть вауумом субстанцию, обладающую множеством качеств, поддающихся описанию.

Таким образом, гравитация - проявление геометрических свойств четырехмерного пространства-времени, которое было обозначено в СТО как неискривлённое, но в более общих случаях ото наделяется кривизной, определяющей движение материальных объектов, которым придается одинаковое ускорение в соответствии с декларируемым Эйнштейном принципом эквивалентности.

Этот основополагающий принцип теории относительности объясняет многие «узкие места» ньютоновской теории всемирного тяготения: искривление света, наблюдаемое при прохождении его около массивных космических объектов при некоторых астрономических явлениях и, отмеченное еще древними одинаковое ускорение падения тел, независимо от их массы.

Моделирование кривизны пространства

Обычным примером, с помощью которого объясняется общая теория относительности для чайников, является представление пространства-времени в виде батута - упругой тонкой мембраны, на которую выкладывают предметы (чаще всего шары), имитирующие взаимодействующие объекты. Тяжелые шары прогибают мембрану, образуя вокруг себя воронку. Более мелкий шар, запущенный по поверхности, двигается в полном соответствии с законами гравитации, постепенно скатываясь в углубления, образованные более массивными объектами.

Но такой пример достаточно условен. Реальное пространство-время многомерно, кривизна его тоже не выглядит так элементарно, но принцип формирования гравитационного взаимодействия и суть теории относительности становятся понятны. В любом случае, гипотезы, которая более логично и связно объяснила бы теорию гравитации, пока не существует.

Доказательства истинности

ОТО быстро стала восприниматься как мощное основание, на котором может строиться современная физика. Теория относительности с самого начала поражала своей стройностью и гармонией, и не только специалистов, и вскоре после своего появления стала подтверждаться наблюдениями.

Самая близкая к Солнцу точка - перигелий - орбиты Меркурия постепенно смещается относительно орбит других планет Солнечной системы, что было обнаружено еще в середине XIX века. Такое перемещение - прецессия - не находило разумного объяснения в рамках Ньютоновской теории всемирного тяготения, но было с точностью рассчитано на основе общей теории относительности.

Затмение Солнца, которое произошло в 1919 году предоставило возможность для очередного доказательства ОТО. Артур Эддингтон, который в шутку называл себя вторым человеком из трех, что понимают основы теории относительности, подтвердил предсказанные Эйнштейном отклонения при прохождении фотонов света вблизи светила: в момент затмения стало заметно смещение видимого положения некоторых звезд.

Эксперимент по обнаружению замедления хода часов или гравитационного красного смещения был предложен самим Эйнштейном в числе других доказательств ОТО. Лишь спустя долгие годы удалось подготовить необходимое экспериментальное оборудование и провести этот опыт. Гравитационное смещение частот излучения от излучателя и приёмника, разнесенных по высоте оказалось в пределах, предсказанных ОТО, а физики из Гарварда Роберт Паунд и Глен Ребка, которые провели этот эксперимент, в дальнейшем только повысили точность измерений, и формула теории относительности снова оказалась верной.

В обосновании самых значимых проектов исследования космического пространства обязательно присутствует теория относительности Эйнштейна. Кратко можно сказать, что она стала инженерным инструментом специалистов, в частности тех, кто занимается спутниковыми системами навигации - GPS, ГЛОНАСС и т.д. Рассчитать координаты объекта с нужной точностью, даже в относительно небольшом пространстве, без учета замедлений сигналов, предсказанных ОТО, невозможно. Тем более если речь идет об объектах, разнесенных на космические расстояния, где ошибка в навигации может быть огромной.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.

Написание "формулы всего сущего" - единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.

Долгое время ни один ученый в мире не мог сравниться с Исааком Ньютоном по тому влиянию, которое тот оказал на представления человечества о природе. Такой человек появился на свет в 1879 г. в немецком городе Ульм, и звали его Альберт Эйнштейн.

Эйнштейн родился в семье торговца электротехническими товарами, учился в обычной гимназии в Мюнхене, не отличался особым прилежанием, затем не смог сдать вступительные экзамены в цюрихский Политехникум и заканчивал кантональную школу в городе Аарау. Только со второй попытки он поступил в Политехникум. Молодому человеку с трудом давались языки и история, зато он рано проявил большие способности к математике, физике и музыке, став неплохим скрипачом.

Летом 1900 г. Эйнштейн получил диплом преподавателя физики. Только через два года по рекомендации друзей он устроился на постоянную работу экспертом федерального патентного бюро в Берне. Эйнштейн проработал там с 1902 по 1909 г. Служебные обязанности оставляли ему достаточно времени для размышлений над научными проблемами. Наиболее удачным оказался для Эйнштейна 1905 г. – 26‑летний физик опубликовал пять статей, которые впоследствии были признаны шедеврами научной мысли. Работа «Об одной эвристической точке зрения на возникновение и превращение света» содержала гипотезу о световых квантах – элементарных частицах электромагнитного излучения. Гипотеза Эйнштейна позволила объяснить фотоэлектрический эффект: появление тока при освещении вещества коротковолновым излучением. Эффект был открыт в 1886 г. Герцем и не укладывался в рамки волновой теории света. За эту работу позднее Эйнштейн был удостоен Нобелевской премии. Открытие Эйнштейна создало идейную основу для модели атома Резерфорда – Бора, согласно которой свет излучается и поглощается порциями (квантами), и концепции «волн материи» Луи де Бройля. Незадолго до того Макс Планк установил, что тепло также излучается квантами. Был осуществлен синтез двух, казалось, несовместимых точек зрения на природу света, высказанных в свое время Гюйгенсом и Ньютоном.

Опубликованную в том же 1905 г. статью Эйнштейна «К электродинамике движущихся тел» можно рассматривать как введение в специальную теорию относительности, которая произвела переворот в представлениях о пространстве и времени.

Естественнонаучные представления о пространстве и времени прошли длинный путь развития. Долгое время основными были обыденные представления о пространстве и времени, как о каких‑то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. Такой взгляд позволил сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе Ньютона «Математические начала натуральной философии».

Специальная теория относительности, созданная в 1905 г. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая оказывается ее частным случаем. Исходным пунктом этой теории стал принцип относительности, из которого следует, что между покоем и движением – если оно равномерно и прямолинейно – нет никакой принципиальной разницы. Понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета. В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно‑временной континуум, пространственно‑временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 тысяч км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, т. е. двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Теория Эйнштейна использовала в качестве базового положение, что во Вселенной ничто не может двигаться быстрее света в вакууме и скорость света остается постоянной для всех наблюдателей, независимо от скорости их собственного перемещения в пространстве.

Статья «Зависит ли инерция тела от содержания в нем энергии?» завершала создание релятивистской (от лат. relativus – «относительный») теории. Здесь впервые была доказана связь между массой и энергией, в современных обозначениях – E = mc2. Эйнштейн писал: «…если тело отдает энергию E в виде излучения, то его масса уменьшается на E/c2… Масса тела есть мера содержащейся в нем энергии». Это открытие вышло за пределы физики, техники и философии и до сегодняшнего дня косвенно определяет судьбу человечества. Так, атомная энергия – это, собственно говоря, превратившаяся в энергию масса.

Появление столь эпохальных работ не принесло Эйнштейну немедленного признания, он все еще вынужден был продолжать работать в патентном бюро. Только весной 1909 г. Эйнштейна избрали профессором теоретической физики в цюрихском Политехникуме и он смог уйти из бюро. В 1913 г. ученый был избран членом Прусской академии наук. В Берлине Эйнштейн получил благоприятные условия для продолжения своей научной работы. В 1916 г. он опубликовал «Основы общей теории относительности». Идеи Эйнштейна имели в глазах ученых‑теоретиков, а еще больше в его собственных глазах, не столько узкопрактический, сколько философский смысл. Он создал гармоничную картину Вселенной.

В 1921 г. Эйнштейн получил Нобелевскую премию за «заслуги в области теоретической физики и в особенности за открытие закона фотоэлектрического эффекта». Присуждение этой премии еврею привело к резкому росту антисемитских настроений в Германии. Нападки на Эйнштейна усилились, однако он продолжал активную научную работу, читал много публичных лекций.

В 1932 г. физик отправился в очередную поездку в США и домой уже не вернулся – там к власти пришел Гитлер, и ничего хорошего всемирно признанный гений от него не ожидал. С этих пор Эйнштейн работал в Америке. В 1939 г. он направил письмо президенту Рузвельту с призывом как можно быстрее создать атомную бомбу, чтобы исключить монополию со стороны Германии. Последняя так и не получила это страшное оружие, зато проект, поддержанный правительством США, как известно, завершился «успешно», и в этом есть немалая заслуга и Эйнштейна. Впрочем, он решительно осудил бомбардировку Хиросимы и Нагасаки. Скончался ученый в Принстоне в 1955 г. Он запомнился современникам не только теорией относительности, которую, по правде говоря, хотя бы приблизительно понимает ничтожный процент населения Земли, но и чудаковатостью и неподражаемым юмором.

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Теория относительности - физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введен в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности
в специальной теории относительности (и, позже, общей теории относительности).

В узком смысле теория относительности включает в себя специальную и общую теорию относительности. Специальная теория относительности (далее - СТО) относится к процессам, при исследовании которых полями тяготения можно пренебречь; общая теория относительности (далее - ОТО) - это теория тяготения, обобщающая ньютоновскую.

Специальная , или частная теория относительности - это теория структуры пространства-времени. Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики, а также пространственно-временные отношения, определяющие их, при любых скоростях движения,
в том числе и близких к скорости света. Классическая механика Ньютона
в рамках СТО является приближением для малых скоростей.

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру. Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.


СТО объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу. Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета. Так что, если два космонавта летят на двух космических кораблях и хотят сравнить свои наблюдения, единственное, что им нужно знать – это скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.

Исходя из невозможности обнаружить абсолютное движение, Альберт Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея (утверждает то же самое, но не для всех законов природы, а только для законов классической механики, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике) на любые физические. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково . Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света . Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е=mc 2 (где С - скорость света), которая показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения и подтвержденная данными современной физики. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы». Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Общая теория относительности - теория гравитации, опубликованная Эйнштейном в 1916 году, над которой работал в течение 10 лет. Является дальнейшим развитием специальной теории относительности. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает ОТО, которая объясняет движения материальных тел в общем случае.

В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

ОТО в настоящее время - самая успешная теория гравитации, хорошо подтверждённая наблюдениями. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

- ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь (там, где гравитация велика, скорость света замедляется);

- распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

В ОТО, или теории тяготе­ния он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Из ОТО был получен ряд важных выводов:

1. Свойства пространства-времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

Долгое время экспериментальных подтверждений ОТО было мало. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX века были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны);
с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

Итак, специальная теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс.

Наиболее значительным результатом общей теории относительности с философской точки зрения является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс. Именно благодаря воздействию тел
с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира.

В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства – времени. Кардинальное отличие общей теории относительности от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Стоит сказать, что общая теория относительности произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной.