Сущность и последствия автокорреляции. Автокорреляция регрессионных остатков

С автокорреляцией остатков

Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то это означает их попарную независимость.

Однако регрессионные модели в экономике часто содержат стохастические зависимости между значениями случайных ошибок – автокорреляцию ошибок . Ее причинами являются: во-первых, влияние некоторых случайных факторов или опущенных в уравнении регрессии важных объясняющих переменных, которое не является однократным, а действует в разные периоды времени; во-вторых, случайный член может содержать составляющую, учитывающую ошибку измерения объясняющей переменной.

Применение к модели с автокорреляцией остатков обыкновенного МНК приведет к следующим последствиям :

1. Выборочные дисперсии полученных оценок коэффициентов будут больше по сравнению с дисперсиями по альтернативным методам оценивания, т.е. оценки коэффициентов будут неэффективны.

2. Стандартные ошибки коэффициентов будут оценены неправильно, чаще всего занижены, иногда настолько, что нет возможности воспользоваться для проверки гипотез соответствующими точными критериями – мы будем чаще отвергать гипотезу о незначимости регрессии, чем это следовало бы делать в действительности.

3. Прогнозы по модели получаются неэффективными.

На практике исследователь в этом случае поставлен перед проблемой тестирования наличия в модели автокорреляции, а также выявления причины автокорреляции при ее обнаружении: или в модели опущена существенная переменная, или структура ошибок зависит от времени. То есть, исследование остатков позволяет судить о правильности модели и ее пригодности для прогнозирования.

Простейшим способом проверки наличия автокорреляции является графическое изображение остатков e i . Возможно построение:

· графика временной последовательности, если остатки получены в разные моменты времени;

· графика зависимости остатков от значений , полученных по регрессии;

· графиков зависимости остатков от объясняющих переменных.

Если изображение остатков представляет собой горизонтальную полосу, это указывает на отсутствие каких-либо проблем, связанных с моделью. В противном случае в зависимости от вида и типа графика можно получить информацию о: неадекватности модели, ошибочности расчетов, необходимости включения в модель линейного или квадратичного члена от времени; наконец о непостоянстве дисперсии.

Ясно, что ошибки могут коррелировать по-разному, однако без нарушения общности можно рассматривать так называемую сериальную корреляцию (автокорреляцию), когда зависимость между ошибками, отстоящими на некоторое количество шагов s , называемое порядком корреляции (в частности, на один шаг, s =1), остается одинаковой, что хорошо проявляется визуально на графике в системе координат (e i ; e i - s ). Например, для s =1 на рис. 4.2 показаны отрицательная (слева) и положительная (справа) автокорреляция остатков. В экономических исследованиях чаще всего встречается положительная автокорреляция.


Рис. 4.2. Автокорреляция остатков

Более достоверным способом проверки существования автокорреляции является применение статистических критериев. Хорошо известны два – критерий знаков (относится к непараметрическим критериям) и критерий Дарбина-Уотсона .

Для проведения проверки по критерию знаков необходимо расположить остатки e i во временной последовательности, выписать их знаки, подсчитать число образующихся при этом серий n u из одинаковых знаков, а также n 1 – число остатков со знаком плюс и n 2 – число остатков со знаком минус. Далее определяется вероятность Pr (n u ) появления n u групп при нулевой гипотезе – последовательность остатков полностью случайна (автокорреляция отсутствует). Если Pr (n u ) < 1–a , где a – уровень доверия, то нулевая гипотеза отвергается.

Для ускорения расчетов для выборок с n 1 , n 2 не больше 20 составлены таблицы с критическими значениями n u при уровне доверия a =0,05.

Для больших выборок истинное распределение ошибок достаточно точно аппроксимируется нормальным со средним m =2n 1 n 2 /(n 1 +n 2)+1 и дисперсией s 2 =2n 1 n 2 (2n 1 n 2 – n 1 – n 2)/(n 1 + n 2) 2 /(n 1 + n 2 – 1), а величина z =(u m + 0,5)/s подчиняется нормированному нормальному распределению, следовательно, критические значения n u могут быть вычислены по формулам (m + z a s ) и (m z a s ), где z a определяется из условия F 0 (z a )=(1–a )/2 (значения даны в справочниках).

Пример . Получены остатки 0,6; 1,9; –1,8; –2,7; –2,9; 1,4; 3,3; 0,3; 0,8; 2,3; –1,4; –1,1, которые обнаруживают следующую последовательность знаков + + – – – + + + + + – –. Имеем n u =4, n 1 =7, n 2 =5. По таблице находим критические значения для n u : 3 и 11. Так как 3 < n u < 11, то нулевая гипотеза принимается, то есть остатки независимы и автокорреляция отсутствует.Ñ

Критерий знаков достаточно прост и не использует информацию о величине e i , и поэтому недостаточно эффективен.

Для проверки гипотезы о существовании линейной автокорреляции первого порядка, которая чаще всего имеет место на практике, предпочтителен критерий Дарбина-Уотсона , основанный на статистике:

(4.9)

Значения первых разностей ошибки в (4.9) будут обнаруживать тенденцию к уменьшению по абсолютной величине по сравнению с абсолютными значениями e i при положительной автокорреляции и к увеличению при отрицательной автокорреляции.

Для статистики d имеются верхний d U и нижний d L пределы уровня значимости. Различные статистические решения для нулевой гипотезы H 0: автокорреляция равна нулю, даны в табл. 4.3. При этом появляются области неопределенности, так как величина e i зависит не только от значений u , но и от значений последовательных X .

Следует отметить, что критерий Дарбина-Уотсона предназначен для моделей с детерминированными (нестохастическими) регрессорами X и не применим, например, в случаях, когда среди объясняющих переменных есть лаговые значения переменной Y .

Таблица 4.3

Области статистических решений для критерия Дарбина-Уотсона



Пример . Для примера 1 из п. 3.2 n =20, k =2 имеем табл. 4.4.

Значения d L и d U при уровне значимости 5% получим из справочника при n =20 и k =2: d L =1,10, d U =1,54.

Так как d >2, то вычисляем 4–d U =2,46 и 4–d L =2,90 и 2<d <4–d U .

Согласно табл. 4.3 гипотеза о равенстве нулю автокорреляции принимается. Ñ

Какой бы тест на автокорреляцию не использовался, необходимо помнить, что рекомендуется в случаях неопределенности (см. табл. 4.3) принимать гипотезу о наличии автокорреляции, поскольку это гарантирует от отрицательных последствий автокорреляции. В случаях же некорректного принятия гипотезы о равенстве нулю автокорреляции получаем модель, которая не может иметь удовлетворительного применения, хотя формально проходит все проверки.

Таблица 4.4

Вычисление значения статистики d

Ошибка e i e i 2 e i-1 ( e i -e i-1 ) 2 Ошибка e i e i 2 e i -1 (e i -e i -1) 2
-2,49 6,20 -0,68 0,46 -8,72 64,64
-1,86 3,46 -2,49 0,40 5,27 27,72 -0,68 35,40
31,93 1019,21 -1,86 1141,76 -5,29 27,93 5,27 111,51
-3,18 10,11 31,93 1232,71 -16,74 280,23 -5,29 131,10
-2,17 4,71 -3,18 1,02 8,94 79,87 -16,74 659,46
-18,38 337,64 -2,17 262,76 -3,57 12,74 8,94 156,50
-3,45 11,90 -18,38 222,90 5,18 26,79 -3,57 76,56
5,58 31,14 -3,45 81,54 7,72 59,60 5,18 6,45
-3,11 9,67 5,58 75,52 -0,85 0,72 7,72 73,44
-8,72 76,04 -3,11 31,47 4,85 23,47 -0,85 32,49
Сумма 2050,37 4397,66

Рассмотрим методы оценивания уравнения регрессии при наличии автокорреляции остатков.

Пусть имеем обобщенную линейную модель множественной регрессии в виде (4.3)-(4.7) с гомоскедастичными остатками .

Предположим, что остатки u i удовлетворяют следующему уравнению:

u i =ru i -1 +e i , i =2,...,n , (4.10)

E (e i )=0; (4.11)

Тогда несложно показать, что будет выполняться:

. (4.12)

Условие (4.12) является аналогом (4.5) и фактически означает гомоскедастичность дисперсии случайного члена (первая строчка) и автокорреляцию первого порядка (вторая строчка). Ясно, что если бы было известно значение r в (4.10) и затем в (4.12), то можно было бы применить ОМНК (элементы матрицы W в этом случае вычисляются согласно (4.12)) и получить эффективные оценки коэффициентов регрессии. Однако на практике значение r в большинстве случаев не известно, поэтому используются следующие методы оценивания регрессионной модели.

Метод 1 . Отказавшись от определения величины r , являющейся узким местом модели, статистически, можно положить r =0,5; 1 или -1. Однако даже грубая статистическая оценка будет, видимо, более эффективной, поэтому другой способ определения r с помощью статистики Дарбина-Уотсона r»1–0,5d . Применяя затем непосредственно ОМНК, получим оценки коэффициентов.

Метод 2 . Если значение r в (4.12) задано, то альтернативная схема отыскания оценок коэффициентов модели множественной регрессии суть (в целях упрощения, не нарушая общности, иллюстрация метода дана для случая парной регрессии):

а) Запишем уравнение модели для случая i и i –1:

Вычтем из обеих частей первого уравнения умноженное на r второе уравнение:

или переобозначив:

с учетом (4.10) , получим модель

, (4.13)

для случайного члена которой выполняется условие (4.11), т.е. автокорреляция отсутствует. При указанном преобразовании первое наблюдение умножается на , т.е. , .

б) Применяем обыкновенный МНК к модели (4.13).

В общем случае мы не располагаем информацией о порядке автокорреляции и значениях параметров в авторегрессионном уравнении, а значит, и методы 1 и 2 не дадут искомого результата.

Тем не менее, оценки коэффициентов можно найти приближенно с помощью следующих методов (опять в целях упрощения, не нарушая общности, иллюстрация методов дана для случая парной регрессии).

Метод 3 . Итеративная процедура Кохрейна-Оркатта.

а) Оценивается регрессия с исходными не преобразованными данными с помощью обыкновенного МНК.

б) Вычисляются остатки e i .

в) Оценивается регрессия e i =re i -1 +e i , и коэффициент при e i -1 дает оценку r .

г) С учетом полученной оценки r уравнение преобразовывается к виду (4.13), оценивание которого позволяет получить пересмотренные оценки коэффициентов b 0 и b 1 .

д) Вычисляются остатки регрессии (4.13) и процесс выполняется снова, начиная с этапа в).

Итерации заканчиваются, когда абсолютные разности последовательных значений оценок коэффициентов b 0 , b 1 и r будут меньше заданного числа (точности).

Подобная процедура оценивания порождает проблемы, касающиеся сходимости итерационного процесса и характера найденного минимума: локальный или глобальный.

Метод 4. Метод Хилдрета-Лу основан на тех же принципах, что и рассмотренный метод 3, но использует другой алгоритм вычислений. Здесь регрессия (4.13) оценивается МНК для каждого значения r из диапазона [-1, 1] с некоторым шагом внутри него. Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения (4.13), принимается в качестве оценки r , а коэффициенты регрессии определяются при оценивании уравнения (4.13) с использованием этого значения.

Метод 5. Дарбиным была предложена простая схема, дающая эффективные оценки коэффициентов:

а). Подставляя (4.10) в модель Y i =b 0 +b 1 X i +u i , получим с учетом u i - 1 = Y i -1 - b 0 - b 1 X i -1:

Y i =b 0 (1-r )+rY i -1 +b 1 (X i - rX i -1) + e i ,

где ошибка e i удовлетворяет (4.11). Применяя обыкновенный МНК к последней модели, получаем оценку r как коэффициента при Y i -1 .

б). Вычисляем значения преобразованных переменных и применяем к ним обыкновенный МНК. Получаем искомые оценки коэффициентов регрессии.

Достоинством метода является простота его распространения на случай автокорреляции более высокого порядка.

Как показывают эксперименты, проведенные для малых выборок, лучшим является двухшаговый метод 2, использующий оценку r , полученную по методу, предложенному Дарбиным (метод 5 шаг а)).

Задание . Приведены данные за 15 лет по темпам прироста заработной платы Y(%), производительности труда X 1 (%), а также по уровню инфляции X 1 (%).
Постройте уравнение линейной регрессии прироста заработной платы от производительности труда и уровня инфляции. Проверьте качество построенного уравнения регрессии с надежностью 0,95. Проведите проверку наличия в модели автокорреляции на уровне значимости 0,05.

Решение находим с помощью калькулятора .
Уравнение множественной регрессии может быть представлено в виде:
Y = f(β , X) + ε
где X = X(X 1 , X 2 , ..., X m) - вектор независимых (объясняющих) переменных; β - вектор параметров (подлежащих определению); ε - случайная ошибка (отклонение); Y - зависимая (объясняемая) переменная.
теоретическое линейное уравнение множественной регрессии имеет вид:
Y = β 0 + β 1 X 1 + β 2 X 2 + ... + β m X m + ε
β 0 - свободный член, определяющий значение Y, в случае, когда все объясняющие переменные X j равны 0.

Прежде чем перейти к определению нахождения оценок коэффициентов регрессии, необходимо проверить ряд предпосылок МНК.
Предпосылки МНК.
1. Математическое ожидание случайного отклонения ε i равно 0 для всех наблюдений (M(ε i) = 0).
2. Гомоскедастичность (постоянство дисперсий отклонений). Дисперсия случайных отклонений ε i постоянна: D(ε i) = D(ε j) = S 2 для любых i и j.
3. отсутствие автокорреляции.
4. Случайное отклонение должно быть независимо от объясняющих переменных: Y eixi = 0.
5. Модель является линейное относительно параметров.
6. отсутствие мультиколлинеарности. Между объясняющими переменными отсутствует строгая (сильная) линейная зависимость.
7. Ошибки ε i имеют нормальное распределение. Выполнимость данной предпосылки важна для проверки статистических гипотез и построения доверительных интервалов.

Эмпирическое уравнение множественной регрессии представим в виде:
Y = b 0 + b 1 X 1 + b 1 X 1 + ... + b m X m + e
Здесь b 0 , b 1 , ..., b m - оценки теоретических значений β 0 , β 1 , β 2 , ..., β m коэффициентов регрессии (эмпирические коэффициенты регрессии); e - оценка отклонения ε.
При выполнении предпосылок МНК относительно ошибок ε i , оценки b 0 , b 1 , ..., b m параметров β 0 , β 1 , β 2 , ..., β m множественной линейной регрессии по МНК являются несмещенными, эффективными и состоятельными (т.е. BLUE-оценками).

Для оценки параметров уравнения множественной регрессии применяют МНК.
1. Оценка уравнения регрессии .
Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор s получается из выражения:
s = (X T X) -1 X T Y
Матрица X

1 3.5 4.5
1 2.8 3
1 6.3 3.1
1 4.5 3.8
1 3.1 3.8
1 1.5 1.1
1 7.6 2.3
1 6.7 3.6
1 4.2 7.5
1 2.7 8
1 4.5 3.9
1 3.5 4.7
1 5 6.1
1 2.3 6.9
1 2.8 3.5

Матрица Y

9
6
8.9
9
7.1
3.2
6.5
9.1
14.6
11.9
9.2
8.8
12
12.5
5.7

Матрица X T

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.5 2.8 6.3 4.5 3.1 1.5 7.6 6.7 4.2 2.7 4.5 3.5 5 2.3 2.8
4.5 3 3.1 3.8 3.8 1.1 2.3 3.6 7.5 8 3.9 4.7 6.1 6.9 3.5

Умножаем матрицы, (X T X)


Находим обратную матрицу (X T X) -1
0.99 -0.12 -0.1
-0.12 0.0246 0.00393
-0.1 0.00393 0.0194

Вектор оценок коэффициентов регрессии равен
s = (X T X) -1 X T Y =

y(x) =
0,99 -0,12 -0,1
-0,12 0,0246 0,00393
-0,1 0,00393 0,0194
*
133,5
552,41
659,84
=
0,27
0,53
1,48

Уравнение регрессии (оценка уравнения регрессии)
Y = 0.27 + 0.53X 1 + 1.48X 2
Проверка на наличие автокорреляции остатков .
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция , нежели отрицательная автокорреляция . В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию , можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности : выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.
Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ε i с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ε i (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ε i от ε i-1
2. Коэффициент автокорреляции .

Если коэффициент автокорреляции r ei 3. Критерий Дарбина-Уотсона .
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин e i .

y y(x) e i = y-y(x) e 2 (e i - e i-1) 2
9 8.77 0.23 0.053 0
6 6.18 -0.18 0.0332 0.17
8.9 8.17 0.73 0.53 0.83
9 8.26 0.74 0.55 0.000109
7.1 7.52 -0.42 0.18 1.35
3.2 2.69 0.51 0.26 0.88
6.5 7.67 -1.17 1.37 2.83
9.1 9.12 -0.0203 0.000412 1.32
14.6 13.58 1.02 1.05 1.09
11.9 13.53 -1.63 2.65 7.03
9.2 8.41 0.79 0.63 5.86
8.8 9.07 -0.27 0.0706 1.12
12 11.93 0.0739 0.00546 0.12
12.5 11.69 0.81 0.66 0.54
5.7 6.92 -1.22 1.49 4.13
9.53 27.27

Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона :

DW = 27.27/9.53 = 2.86
Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 15 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d 1 Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 2.5, то автокорреляция остатков присутствует .
Для более надежного вывода целесообразно обращаться к табличным значениям.
По таблице Дарбина-Уотсона для n=15 и k=1 (уровень значимости 5%) находим: d 1 = 1.08; d 2 = 1.36.
Поскольку 1.08 присутствует.

Введение

1. Суть и причины автокорреляции

2. Обнаружение автокорреляции

3. Последствия автокорреляции

4. Методы устранения

4.1 Определение

на основе статистики Дарбина-Уотсона

Заключение

Список использованной литературы

Введение

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно-следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E). Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна. Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков

за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».

1.Суть и причины автокорреляции

Автокорреляция - это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.

Автокорреляция остатков чаще всего наблюдается тогда, когда эконометрическая модель строится на основе временных рядов. Если существует корреляция между последовательными значениями некоторой независимой переменной, то будет наблюдаться и корреляция последовательных значений остатков. Автокорреляция может быть также следствием ошибочной спецификации эконометрической модели. Кроме того, наличие автокорреляции остатков может означать, что необходимо ввести в модель новую независимую переменную.

Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК.

Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении экономических показателей, эффект паутины, сглаживание данных.

Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводит к системным отклонениям точек наблюдений от линии регрессии, что может обусловить автокорреляцию.

Инерция. Многие экономические показатели (например, инфляция, безработица, ВНП и т.п.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Действительно, экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей. В любом случае эта трансформация происходит не мгновенно, а обладает определенной инертностью.

Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом). Например, предложение сельскохозяйственной продукции реагирует на изменение цены с запаздыванием (равным периоду созревания урожая). Большая цена сельскохозяйственной продукции в прошедшем году вызовет (скорее всего) ее перепроизводство в текущем году, а следовательно, цена на нее снизится и т.д.

Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может послужить причиной автокорреляции.

2.Обнаружение автокорреляции

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений

,t=1,2…T. Поэтому выводы об их независимости осуществляются на основе оценок ,t=1,2…T, полученные из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

2.1.Графический метод

Существует несколько вариантов графического определения автокорреляции. Один из них, указывающий отклонения

с моментами t их получении (их порядковыми номерами i), приведен на рис. 2.1.Это так называемые последовательно-временные графики. В этом случае по оси абсцисс обычно откладывают либо время (момент) получения статистических данных, либо порядковый номер наблюдения, а по оси ординат- отклонения (либо оценки отклонений )
Рис.2.1.

Естественно предположить, что на рис 2.1. а-г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 2.1.б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости.

2.2. Метод рядов

Этот метод достаточно прост: последовательно определяются знаки отклонений

,t=1,2…T. Например,

(-----)(+++++++)(---)(++++)(-),

Т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда.

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если же рядов слишком много, то вероятна отрицательная автокорреляция.

2.3 Критерий Дарбина-Уотсона

Наиболее известным критерием обнаружения автокорреляции первого порядка является критерий Дарбина- Уотсона и расчет величины

(2.3.1)

Согласно (2.3.1) величина d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Значение критерия Дарбина – Уотсона указывается наряду с коэффициентом детерминации, значениями t- и F- критериев.

Автокорреляция остатков

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями .

Автокорреляция (последовательная корреляция ) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных. В экономических задачах значительно чаще встречается положительная автокорреляция , чем отрицательная автокорреляция .

Чаще всего положительная автокорреляция вызывается направленным постоянным воздействием некоторых не учтенных в регрессии факторов. Например, при исследовании спроса у на прохладительные напитки в зависимости от дохода х на трендовую зависимость накладываются изменения спроса в летние и зимние периоды. Аналогичная картина может иметь место в макроэкономическом анализе с учетом циклов деловой активности.


Применение МНК к данным, имеющим автокорреляцию в остатках, приводит к таким последствиям:

1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. Они перестают быть наилучшими линейными несмещенными оценками.

2. Дисперсии оценок являются смещенными. Часто дисперсии, вычисляемые по стандартным формулам, являются заниженными, что влечет за собой увеличение t – статистик. Это может привести к признанию статистически значимыми факторов, которые в действительности таковыми не являются.

3. Оценка дисперсии регрессии является смещенной оценкой истинного значения σ 2 , во многих случаях занижая его.

4. Выводы по t – и F – статистикам, возможно, будут неверными, что ухудшает прогнозные качества модели.

Для обнаружения автокорреляции используют либо графический метод, либо статистические тесты. Рассмотрим два наиболее популярных теста.

Метод рядов . По этому методу последовательно определяются знаки отклонений от регрессионной зависимости. Например, имеем при 20 наблюдениях

(-----)(+++++++)(---)(++++)(-)

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда . Если рядов слишком мало по сравнению с количеством наблюдений n , то вполне вероятна положительная автокорреляция. Если же рядов слишком много, то вероятна отрицательная автокорреляция.

Пусть n – объём выборки, n 1 – общее количество положительных отклонений; n 2 – общее количество отрицательных отклонений; k – количество рядов. В приведенном примере n =20, n 1 =11, n 2 =5.

При достаточно большом количестве наблюдений (n 1 >10, n 2 >10) и отсутствии автокорреляции СВ k имеет асимптотически нормальное распределение, в котором

Тогда, если

то гипотеза об отсутствии автокорреляции не отклоняется. Если , то констатируется положительная автокорреляция; в случае признается наличие отрицательной автокорреляции.

Для небольшого числа наблюдений (n 1 <20, n 2 <20) были разработаны таблицы критических значений количества рядов при n наблюдениях. В одной таблице в зависимости от n 1 и n 2 определяется нижняя граница k 1 количества рядов, в другой – верхняя граница k 2 . Если k 1 , то говорят об отсутствии автокорреляции. Если , то говорят о положительной автокорреляции. Если ,то говорят об отрицательной автокорреляции. Например, для приведенных выше данных k 1 =6, k 2 =16 при уровне значимости 0,05. Поскольку k=5, определяем положительную автокорреляцию.

Критерий Дарбина-Уотсона . Это наиболее известный критерий обнаружения автокорреляции первого порядка. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.

Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . Рассчитывается статистика

- положительная автокорреляция;

- зона неопределенности;

- автокорреляция отсутствует;

Зона неопределенности;

- отрицательная автокорреляция.

Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой:

Отсюда вытекает смысл статистического анализа автокорреляции. Поскольку значения r изменяются от –1 до +1, DW изменяется от 0 до 4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW равна 2. DW =0 соответствует положительной автокорреляции, когда выражение в скобках равно нулю (r =1). При отрицательной автокорреляции (r =-1) DW =4, и выражение в скобках равна двум.

Ограничения критерия Дарбина – Уотсона:

1. Критерий DW применяется лишь для тех моделей, которые содержат свободный член.

2. Предполагается, что случайные отклонения определяются по итерационной схеме

(1)

3. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).

4. Критерий Дарбина – Уотсона не применим к авторегрессионным моделям вида:

,

где - оценка коэффициента автокорреляции первого порядка (66), D(c) – выборочная дисперсия коэффициента при лаговой переменной y t -1 , n – число наблюдений.

При большом n и справедливости нуль – гипотезы H 0: ρ=0 h~N(0,1) . Поэтому при заданном уровне значимости определяется критическая точка из условия

,

и h- статистика сравнивается с u α /2 . Если |h |>u α /2 , то нуль – гипотеза об отсутствии автокорреляции должна быть отклонена. В противном случае она не отклоняется.

Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки m c оценки коэффициента с . Cледует отметить, что вычисление h – статистики невозможно при nD(c)> 1.

Автокорреляция чаще всего вызывается неправильной спецификацией модели. Поэтому следует попытаться скорректировать саму модель, в частности, ввести какой – нибудь неучтенный фактор или изменить форму модели (например, с линейной на полулогарифмическую или гиперболическую). Если все эти способы не помогают и автокорреляция вызвана какими – то внутренними свойствами ряда {e t }, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1 ).

Рассмотрим AR(1) на примере парной регрессии.

Автокорреляция остатков может возникать по нескольким причинам:

Во-первых, иногда автокорреляция связана с исходными данными и наличием ошибок измерения в значениях Y.

Во-вторых, иногда причину автокорреляции остатков следует искать в формулировке модели. В модель может быть не включен фактор, оказывающий существенное воздействие на результат, но влияние у которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Зачастую этим фактором является фактор времени t.

Иногда, в качестве существенных факторов могут выступать лаговые значения переменных , включенных в модель. Либо в модели не учтено несколько второстепенных факторов, совместное влияние которых на результат существенно ввиду совпадения тенденций их изменения или циклических колебаний.

Автокорреляция бывает явной и неявной.

Явная наблюдается в случае, когда известна точная зависимость между уровнями шоковой переменной, полученными в различные моменты времени.

Неявная – когда такая зависимость является стохастической:

Зависимость такого вида достаточно часто встречается при анализе временных рядов и носит название модели авторегрессии первого порядка AP (1).

К последствиям наличия в модели автокорреляции относятся:

а) увеличение дисперсий оценок параметров модели;

б) смещение оценок, полученных по МНК;

в) снижение значимости оценок параметров.

Если ρ >0, то автокорреляция будет положительной, а если ρ < 0 – отрицательной.

Наиболее популярным критерием диагностики эконометрической модели на наличие автокорреляции является тест Дарбина-Уотсона.

Кроме точечной проверки наличия автокорреляции шоковой переменной на практике проверяют статистические гипотезы следующих видов:

Критерии проверки гипотез 1) и 2) основаны на специальных таблицах Дарбина-Уотсона, в которых по уровню надежности содержаться доверительные границы статистики .

Однако, существуют особые ограничения при использовании теста Дарбина-Уотсона.



1) Модель должна содержать свободный член ;

2) Модель не должна содержать лаговых переменных.

В других учебниках существует деление автокорреляции на чистую и ложную .

Чистая вызывается зависимостью случайного члена от прошлых значений. Она, в свою очередь, делится на автокорреляцию первого порядка, второго порядка и высших порядков.

Ложная автокорреляция вызывается неправильной спецификацией модели.

Причинами чистой автокорреляции могут быть:

1. Инерция. Трансформация и изменение многих экономических показателей обладает инерционностью.

2. Эффект паутины. Многие экономические показатели реагируют на изменение экономических условий с временным лагом (запаздыванием).

3. Сглаживание данных. Усреднение данных по некоторому продолжительному интервалу времени.

Последствия автокорреляции:

1. Истинная автокорреляция не приводит к смещению оценок регрессии, но оценки перестают быть эффективными.

2. Автокорреляция (особенно положительная) часто приводит к уменьшению стандартных ошибок коэффициентов, что влечет за собой увеличение t -статистик.

3. Оценка дисперсии остатков S e 2 является смещенной оценкой истинного значения σ e 2 , во многих случаях занижая его.

4. В силу вышесказанного выводы по оценке качества коэффициентов и модели в целом, возможно, будут неверными. Это приводит к ухудшению прогнозных качеств модели.