Значение стратосферы для земли. Земная атмосфера

Строение атмосферы Земли

Атмосфера – это газовая оболочка Земли с содержащимися в ней аэрозольными частицами, движущимися вместе с Землей в мировом пространстве как единое целое и одновременно принимающая участие во вращении Земли. На дне атмосферы в основном протекает наша жизнь.

Своими атмосферами обладают почти все планеты нашей солнечной системы, но только земная атмосфера способна поддерживать жизнь.

Когда 4,5 миллиарда лет назад формировалась наша планета, то, по всей видимости, она была лишена атмосферы. Атмосфера была сформирована в результате вулканических выбросов водяного пара с примесями диоксида углерода, азота и других химических веществ из недр молодой планеты. Но атмосфера может содержать в себе ограниченное количество влаги, поэтому ее избыток в результате конденсации дал начало океанам. Но тогда атмосфера была лишена кислорода. Первые живые организмы, зародившиеся и развившиеся в океане, в результате реакции фотосинтеза (H 2 O + CO 2 = CH 2 O + O 2) стали выделять небольшие порции кислорода, который стал попадать в атмосферу.

Формирование кислорода в атмосфере Земли привело к образованию озонового слоя на высотах примерно 8 – 30 км. И, тем самым, наша планета приобрела защиту от губительного воздействия ультрафиолетового изучения. Это обстоятельство послужило толчком для дальнейшей эволюции жизненных форм на Земле, т.к. в результате усиления фотосинтеза количество кислорода в атмосфере стало стремительно расти, что способствовало формированию и поддержанию жизненных форм в том числе и на суше.

Сегодня наша атмосфера на 78,1% состоит из азота, на 21% из кислорода, на 0,9% из аргона, на 0,04% из диоксида углерода. Совсем малые доли по сравнению с основными газами составляют неон, гелий, метан, криптон.

На частицы газа, содержащиеся в атмосфере, действует сила притяжения Земли. А, учитывая то, что воздух сжимаем, то его плотность с высотой постепенно убывает, переходя в космическое пространство без четкой границы. Половина всей массы земной атмосферы сосредоточена в нижних 5 км, три четверти – в нижних 10 км, девять десятых – в нижних 20 км. 99% массы атмосферы Земли сосредоточено ниже высоты 30 км, а это всего 0,5% экваториального радиуса нашей планеты.

На уровне моря число атомов и молекул на кубический сантиметр воздуха составляет около 2 * 10 19 , на высоте 600 км всего 2 * 10 7 . На уровне моря атом или молекула пролетает примерно 7 * 10 -6 см, прежде чем столкнуться с другой частицей. На высоте 600 км это расстояние составляет около 10 км. И на уровне моря каждую секунду происходит около 7 * 10 9 таких столкновений, на высоте 600 км – всего около одного в минуту!

Но не только давление меняется с высотой. Меняется и температура. Так, например, у подножия высокой горы может быть достаточно жарко, в то время как вершина горы покрыта снегом и температура там в то же время ниже нуля. А стоит подняться на самолете на высоту примерно 10–11 км, как можно услышать сообщение о том, что за бортом –50 градусов, в то время как у поверхности земли градусов на 60–70 теплее…

Изначально ученые предполагали, что температура с высотой убывает до тех пор, пока не достигает абсолютного нуля (-273,16°C). Но это не так.

Атмосфера Земли состоит из четырех слоев: тропосфера, стратосфера, мезосфера, ионосфера (термосфера). Такое деление на слои принято исходя и из данных об изменении температуры с высотой. Самый нижний слой, где температура воздуха падает с высотой, назвали тропосферой. Слой над тропосферой, где падение температуры прекращается, сменяется изотермией и, наконец, температура начинает повышаться, назвали стратосферой. Слой над стратосферой, в котором температура снова стремительно падает – это мезосфера. И, наконец, тот слой, где снова начинается рост температуры, назвали ионосферой или термосферой.

Тропосфера простирается в среднем в нижних 12 км. Именно в ней происходит формирование нашей погоды. Самые высокие облака (перистые) образуются в самых верхних слоях тропосферы. Температура в тропосфере с высотой понижается адиабатически, т.е. изменение температуры происходит вследствие убывания давления с высотой. Температурный профиль тропосферы во многом обусловлен поступающей к поверхности Земли солнечной радиацией. В результате нагрева поверхности Земли Солнцем формируются конвективные и турбулентные потоки, направленные верх, которые формируют погоду. Стоит заметить, что влияние подстилающей поверхности на нижние слои тропосферы распространяется до высоты примерно 1,5 км. Конечно, исключая горные районы.

Верхней границей тропосферы является тропопауза – изотермический слой. Вспомните характерный вид грозовых облаков, вершина которых представляет собой «выброс» перистых облаков, называемых «наковальней». Эта «наковальня» как раз и «растекается» под тропопаузой, т.к. из-за изотермии восходящие потоки воздуха значительно ослабевают, и облако перестает развиваться по вертикали. Но в особых, редких случаях, вершины кучево-дождевых облаков могут вторгаться в нижние слои стратосферы, преодолевая тропопаузу.

Высота тропопаузы зависит от географической широты. Так, на экваторе она находится на высоте примерно 16 км, и ее температура составляет около –80°C. На полюсах тропопауза расположена ниже – примерно на высоте 8 км. Летом ее температура здесь составляет –40°C, и –60°C зимой. Т.о., несмотря на более высокие температуры у поверхности Земли, тропическая тропопауза намного холоднее, чем у полюсов.

Атмосфера - газовая оболочка нашей планеты, которая вращается вместе с Землей. Газ, находящийся в атмосфере, называют воздухом. Атмосфера соприкасается с гидросферой и частично покрывает литосферу. А вот верхние границы определить трудно. Условно принято считать, что атмосфера простирается вверх приблизительно на три тысячи километров. Там она плавно перетекает в безвоздушное пространство.

Химический состав атмосферы Земли

Формирование химического состава атмосферы началось около четырех миллиардов лет назад. Изначально атмосфера состояла лишь из легких газов - гелия и водорода. По мнению ученых исходными предпосылками создания газовой оболочки вокруг Земли стали извержения вулканов, которые вместе с лавой выбрасывали огромное количество газов. В дальнейшем начался газообмен с водными пространствами, с живыми организмами, с продуктами их деятельности. Состав воздуха постепенно менялся и в современном виде зафиксировался несколько миллионов лет назад.

Главные же составляющие атмосферы это азот (около 79%) и кислород (20%). Оставшийся процент (1%) приходится на следующие газы: аргон, неон, гелий, метан, углекислый газ, водород, криптон, ксенон, озон, аммиак, двуокиси серы и азота, закись азота и окись углерода, входящих в этот один процент.

Кроме того, в воздухе содержится водяной пар и твердые частицы (пыльца растений, пыль, кристаллики соли, примеси аэрозолей).

В последнее время ученые отмечают не качественное, а количественное изменение некоторых ингредиентов воздуха. И причина тому - человек и его деятельность. Только за последние 100 лет содержание углекислого газа значительно возросло! Это чревато многими проблемами, самая глобальная из которых - изменение климата.

Формирование погоды и климата

Атмосфера играет важнейшую роль в формировании климата и погоды на Земле. Очень многое зависит от количества солнечных лучей, от характера подстилающей поверхности и атмосферной циркуляции.

Рассмотрим факторы по порядку.

1. Атмосфера пропускает тепло солнечных лучей и поглощает вредную радиацию. О том, что лучи Солнца падают на разные участки Земли под разными углами, знали еще древние греки. Само слово "климат" в переводе с древнегреческого означает "наклон". Так, на экваторе солнечные лучи падают практически отвесно, потому здесь очень жарко. Чем ближе к полюсам, тем больше угол наклона. И температура понижается.

2. Из-за неравномерного нагревания Земли в атмосфере формируются воздушные течения. Они классифицируются по своим размерам. Самые маленькие (десятки и сотни метров) - это местные ветра. Далее следуют муссоны и пассаты, циклоны и антициклоны, планетарные фронтальные зоны.

Все эти воздушные массы постоянно перемещаются. Некоторые из них довольно статичны. Например, пассаты, которые дуют от субтропиков по направлению к экватору. Движение других во многом зависит от атмосферного давления.

3. Атмосферное давление - еще один фактор, влияющий на формирование климата. Это давление воздуха на поверхность земли. Как известно, воздушные массы перемещаются с области с повышенным атмосферным давлением в сторону области, где это давление ниже.

Всего выделено 7 зон. Экватор - зона низкого давления. Далее, по обе стороны от экватора вплоть до тридцатых широт - область высокого давления. От 30° до 60° - опять низкое давление. А от 60° до полюсов - зона высокого давления. Между этими зонами и циркулируют воздушные массы. Те, что идут с моря на сушу, несут дожди и ненастье, а те, что дуют с континентов - ясную и сухую погоду. В местах, где воздушные течения сталкиваются, образуются зоны атмосферного фронта, которые характеризуются осадками и ненастной, ветреной погодой.

Ученые доказали, что от атмосферного давления зависит даже самочувствие человека. По международным стандартам нормальное атмосферное давление - 760 мм рт. столба при температуре 0°C. Этот показатель рассчитан на те участки суши, которые находятся практически вровень с уровнем моря. С высотой давление понижается. Поэтому, например, для Санкт-Петербурга 760 мм рт.ст. - это норма. А вот для Москвы, которая расположена выше, нормальное давление - 748 мм рт.ст.

Давление меняется не только по вертикали, но и по горизонтали. Особенно это чувствуется при прохождении циклонов.

Строение атмосферы

Атмосфера напоминает слоеный пирог. И каждый слой имеет свои особенности.

. Тропосфера - самый близкий к Земле слой. "Толщина" этого слоя изменяется по мере удаления от экватора. Над экватором слой простирается ввысь на 16-18 км, в умеренных зонах - на 10-12км, на полюсах - на 8-10 км.

Именно здесь содержится 80% всей массы воздуха и 90% водяного пара. Здесь образуются облака, возникают циклоны и антициклоны. Температура воздуха зависит от высоты местности. В среднем она понижается на 0,65° C на каждые 100 метров.

. Тропопауза - переходный слой атмосферы. Его высота - от нескольких сотен метров до 1-2 км. Температура воздуха летом выше, чем зимой. Так, например, над полюсами зимой -65° C. А над экватором в любое время года держится -70° C.

. Стратосфера - это слой, верхняя граница которого проходит на высоте 50-55 километров. Турбулентность здесь низкая, содержание водяного пара в воздухе - ничтожное. Зато очень много озона. Максимальная его концентрация - на высоте 20-25 км. В стратосфере температура воздуха начинает повышаться и достигает отметки +0,8° C. Это обусловлено тем, что озоновый слой взаимодействует с ультрафиолетовым излучением.

. Стратопауза - невысокий промежуточный слой между стратосферой и следующей за ней мезосферой.

. Мезосфера - верхняя граница этого слоя - 80-85 километров. Здесь происходят сложные фотохимические процессы с участием свободных радикалов. Именно они обеспечивают то нежное голубое сияние нашей планеты, которое видится из космоса.

В мезосфере сгорает большинство комет и метеоритов.

. Мезопауза - следующий промежуточный слой, температура воздуха в котором минимум -90°.

. Термосфера - нижняя граница начинается на высоте 80 - 90 км, а верхняя граница слоя проходит приблизительно по отметке 800 км. Температура воздуха возрастает. Она может варьироваться от +500° C до +1000° C. В течение суток температурные колебания составляют сотни градусов! Но воздух здесь настолько разрежен, что понимание термина "температура" как мы его представляем, здесь не уместно.

. Ионосфера - объединяет мезосферу, мезопаузу и термосферу. Воздух здесь состоит в основном из молекул кислорода и азота, а также из квазинейтральной плазмы. Солнечные лучи, попадая в ионосферу сильно ионизируют молекулы воздуха. В нижнем слое (до 90 км) степень ионизация низкая. Чем выше, тем больше ионизация. Так, на высоте 100-110 км электроны концентрируются. Это способствует отражению коротких и средних радиоволн.

Самый важный слой ионосферы - верхний, который находится на высоте 150-400 км. Его особенность в том, что он отражает радиоволны, а это способствует передаче радиосигналов на значительные расстояния.

Именно в ионосфере происходят такое явление, как полярное сияние.

. Экзосфера - состоит из атомов кислорода, гелия и водорода. Газ в этом слое очень разрежен и нередко атомы водорода ускользают в космическое пространство. Поэтому этот слой и называют "зоной рассеивания".

Первым ученым, который предположил, что наша атмосфера имеет вес, был итальянец Э. Торричелли. Остап Бендер, например, в романе "Золотой теленок" сокрушался, что на каждого человека давит воздушный столб весом в 14 кг! Но великий комбинатор немного ошибался. Взрослый человек испытывает на себя давление в 13-15 тонн! Но мы не чувствуем этой тяжести, потому что атмосферное давление уравновешивается внутренним давлением человека. Вес нашей атмосферы составляет 5 300 000 000 000 000 тонн. Цифра колоссальная, хотя это всего лишь миллионная часть веса нашей планеты.

Атмосфера простирается вверх на много сотен километров. Верхняя ее граница, на высоте около 2000-3000 км, в известной мере условна, так как газы, ее составляющие, постепенно разрежаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие ее физические свойства. Как говорилось ранее, химический состав воздуха до высоты 100 км существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100-110 км, под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110-120км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км газы, составляющие атмосферу, также находятся в атомарном состоянии.

Давление и плотность воздуха с высотой быстро уменьшаются. Хотя атмосфера простирается вверх на сотни километров, основная масса ее размещается в довольно тонком слое, прилегающем к поверхности земли в самых нижних ее частях. Так, в слое между уровнем моря и высотами 5-6 км сосредоточена половина массы атмосферы, в слое 0-16 км -90%, а в слое 0-30 км - 99%. Такое же быстрое уменьшение массы воздуха происходит выше 30 км. Если вес 1 м 3 воздуха у поверхности земли равен 1033 г, то на высоте 20 км он равен 43 г, а на высоте 40 км лишь 4 г.

На высоте 300-400 км и выше воздух настолько разрежен, что в течение суток плотность его изменяется во много раз. Исследования показали, что это изменение плотности связано с положением Солнца. Наибольшая плотность воздуха около полудня, наименьшая - ночью. Объясняется это отчасти тем, что верхние слои атмосферы реагируют на изменение электромагнитного излучения Солнца.

Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.

Здесь приведены наименования и главные характеристики сфер и переходных слоев.

Приведем основные данные о физических свойствах этих сфер.

Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности, которая является ее нижней границей. Наибольшая высота тропосферы наблюдается в экваториальной и тропической зонах. Здесь она достигает 16-18 км и сравнительно мало подвергается суточным и сезонным изменениям. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 8- 10 км. В средних широтах она колеблется от 6-8 до 14-16 км.

Вертикальная мощность тропосферы значительно зависит от характера атмосферных процессов. Нередко в течение суток верхняя граница тропосферы над данным пунктом или районом опускается или поднимается на несколько километров. Это связано главным образом с изменениями температуры воздуха.

В тропосфере сосредоточено более 4 / 5 массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от поверхности земли до верхней границы тропосферы температура понижается в среднем на 0,6° на каждые 100 м, или 6° на 1 км поднятия. Это объясняется тем, что воздух в тропосфере нагревается и охлаждается преимущественно от поверхности земли.

В соответствии с притоком солнечной энергии температура понижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает +26°, над полярными областями зимой -34°, -36°, а летом около 0°. Таким образом, разность температур экватор - полюс зимой составляет 60°, а летом лишь 26°. Правда, такие низкие температуры в Арктике зимой наблюдаются только вблизи поверхности земли вследствие охлаждения воздуха над ледяными просторами.

Зимой в Центральной Антарктиде температура воздуха на поверхности ледяного щита еще ниже. На станции Восток в августе 1960 г. зарегистрирована самая низкая температура на земном шаре -88,3°, а наиболее часто в Центральной Антарктиде она бывает равна -45°, -50°.

С высоты разность температур экватор - полюс уменьшается. Например на высоте 5 км на экваторе температура достигает - 2°, -4°, а на этой же высоте в Центральной Арктике -37°, -39° зимой и -19°, -20° летом; следовательно, разность температуры зимой равна 35-36°, а летом 16-17°. В южном полушарии эти разности несколько больше.

Энергию атмосферной циркуляции можно определить контрактами температуры экватор-полюс. Так как зимой величина контрастов температуры больше, то атмосферные процессы протекают более интенсивно, чем летом. Этим же объясняется тот факт, что преобладающие западные ветры зимой в тропосфере имеют большие скорости, чем летом. При этом скорость ветра, как правило, с высотой возрастает, доходя до максимума на верхней границе тропосферы. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным (неупорядоченным) движением. Вследствие подъема и опускания больших объемов воздуха образуются и рассеиваются облака, возникают и прекращаются осадки. Переходным слоем между тропосферой и вышележащей сферой является тропопауза. Выше нее лежит стратосфера.

Стратосфера простирается от высот 8-17 до 50-55 км. Она была открыта в начале нашего века. По физическим свойствам стратосфера резко отличается от тропосферы уже тем, что температура воздуха здесь, как правило, повышается в среднем на 1 - 2° на километр поднятия и на верхней границе, на высоте 50-55 км, становится даже положительной. Повышение температуры в этой сфере вызвано наличием здесь озона (О 3), который образуется под влиянием ультрафиолетовой радиации Солнца. Слой озона занимает почти всю стратосферу. Стратосфера очень бедна водяным паром. Здесь не происходит бурных процессов облакообразования и не выпадают осадки.

Еще совсем недавно предполагали, что стратосфера является сравнительно спокойной средой, где не происходит перемешивания воздуха, как в тропосфере. Поэтому считали, что газы в стратосфере разделены по слоям, в соответствии со своими удельными весами. Отсюда и название стратосферы («стратус» - слоистый). Полагали также, что температура в стратосфере формируется под действием лучистого равновесия, т. е. при равенстве поглощенной и отраженной солнечной радиации.

Новые данные, полученные с помощью радиозондов и метеорологических ракет, показали, что в стратосфере, как и в верхней тропосфере, осуществляется интенсивная циркуляция воздуха с большими изменениями температуры и ветра. Здесь, как и в тропосфере, воздух испытывает значительные вертикальные перемещения, турбулентные движения при сильных горизонтальных воздушных течениях. Все это - результат неоднородного распределения температуры.

Переходным слоем между стратосферой и вышележащей сферой является стратопауза. Однако, прежде чем перейти к характеристике более высоких слоев атмосферы, ознакомимся с так называемой озоносферой, границы которой приблизительно соответствуют границам стратосферы.

Озон в атмосфере. Озон играет большую роль в создании режима температуры и воздушных течений в стратосфере. Озон (О 3) ощущается нами после грозы при вдыхании чистого воздуха с приятным привкусом. Однако здесь речь пойдет не об этом озоне, образующемся после грозы, а об озоне, содержащемся в слое 10-60 км с максимумом на высоте 22-25 км. Озон образуется под действием ультрафиолетовых лучей Солнца и, хотя общее количество его незначительно, играет важную роль в атмосфере. Озон обладает способностью поглощать ультрафиолетовую радиацию Солнца и тем самым предохраняет животный и растительный мир от ее губительного действия. Даже та ничтожная доля ультрафиолетовых лучей, которая достигает поверхности земли, сильно обжигает тело, когда человек чрезмерно увлекается приемом солнечных ванн.

Количество озона неодинаково над различными частями Земли. Озона больше в высоких широтах, меньше в средних и низких широтах и изменяется это количество в зависимости от смены сезонов года. Весной озона больше, осенью меньше. Кроме того, происходят непериодические его колебания в зависимости от горизонтальной и вертикальной циркуляции атмосферы. Многие атмосферные процессы тесно связаны с содержанием озона, так как он оказывает непосредственное влияние на поле температуры.

Зимой, в условиях полярной ночи, в высоких широтах в слое озона происходит излучение и охлаждение воздуха. В результате в стратосфере высоких широт (в Арктике и Антарктике) зимой формируется область холода, стратосферный циклонический вихрь с большими горизонтальными градиентами температуры и давления, обусловливающий западные ветры над средними широтами земного шара.

Летом, в условиях полярного дня, в высоких широтах в слое озона происходит поглощение солнечного тепла и прогревание воздуха. В результате повышения температуры в стратосфере высоких широт формируется область тепла и стратосферный антициклонический вихрь. Поэтому над средними широтами земного шара выше 20 км летом в стратосфере преобладают восточные ветры.

Мезосфера. Наблюдениями с помощью метеорологических ракет и другими способами установлено, что общее повышение температуры, наблюдающееся в стратосфере, заканчивается на высотах 50-55 км. Выше этого слоя температура вновь понижается и у верхней границы мезосферы (около 80 км) достигает -75°, -90°. Далее вновь происходит повышение температуры с высотой.

Интересно отметить, что характерное для мезосферы понижение температуры с высотой происходит неодинаково на различных широтах и в течение года. В низких широтах падение температуры происходит более медленно, чем в высоких: средний для мезосферы вертикальный градиент температуры равен соответственно 0,23° - 0,31° на 100 м или 2,3°-3,1° на 1 км. Летом он значительно больше, чем зимой. Как показали новейшие исследования в высоких широтах, температура на верхней границе мезосферы летом на несколько десятков градусов ниже, чем зимой. В верхней мезосфере на высоте около 80 км в слое мезопаузы понижение температуры с высотой прекращается и начинается ее повышение. Здесь под инверсионным слоем в сумерки или перед восходом солнца при ясной погоде наблюдаются блестящие тонкие облака, освещенные солнцем, находящимся за горизонтом. На темном фоне неба они светятся серебристо-синим светом. Поэтому эти облака названы серебристыми.

Природа серебристых облаков еще недостаточно изучена. Долгое время полагали, что они состоят из вулканической пыли. Однако отсутствие оптических явлений, свойственных настоящим вулканическим облакам, привело к отказу от этой гипотезы. Затем было высказано предположение, что серебристые облака состоят из космической пыли. В последние годы предложена гипотеза, согласно которой эти облака состоят из ледяных кристаллов, подобно обычным перистым облакам. Уровень расположения серебристых облаков определяется задерживающим слоем в связи с инверсией температуры при переходе из мезосферы в термосферу на высоте около 80 км. Так как в подынверсионном слое температура достигает -80° и ниже, то здесь создаются наиболее благоприятные условия для конденсации водяного пара, который попадает сюда из стратосферы в результате вертикального движения или путем турбулентной диффузии. Серебристые облака обычно наблюдаются в летний период, иногда в очень большом количестве и в течение нескольких месяцев.

Наблюдениями за серебристыми облаками установлено, что летом на их уровне ветры обладают большой изменчивостью. Скорости ветра колеблются в больших пределах: от 50-100 до нескольких сотен километров в час.

Температура на высотах. Наглядное представление о характере распределения температуры с высотой, между поверхностью земли и высотами 90-100 км, зимой и летом в северном полушарии дает рисунок 5. Поверхности, разделяющие сферы, здесь изображены жирными штриховыми линиями. В самом низу хорошо выделяется тропосфера с характерным понижением температуры с высотой. Выше тропопаузы, в стратосфере, наоборот, температура с высотой в общем повышается и на высотах 50-55 км достигает + 10°, -10°. Обратим внимание на важную деталь. Зимой в стратосфере высоких широт температура выше тропопаузы понижается от -60 до -75° и лишь выше 30 км вновь возрастает до -15°. Летом, начиная от тропопаузы, температура с высотой повышается и на 50 км достигает + 10°. Выше стратопаузы вновь начинается понижение температуры с высотой, и на уровне 80 км она не превышает -70°, -90°.

Из рисунка 5 следует, что в слое 10-40 км температура воздуха зимой и летом в высоких широтах резко различна. Зимой, в условиях полярной ночи, температура здесь достигает -60°, -75°, а летом минимум -45° находится вблизи тропопаузы. Выше тропопаузы температура возрастает и на высотах 30-35 км составляет лишь -30°, -20°, что вызвано прогреванием воздуха в слое озона в условиях полярного дня. Из рисунка следует также, что даже в одном сезоне и на одном и том же уровне температура неодинакова. Разность их между различными широтами превышает 20-30°. При этом неоднородность особенно значительна в слое низких температур (18-30 км) и в слое максимальных температур (50-60 км) в стратосфере, а также в слое низких температур в верхней мезосфере (75-85 км).


Средние величины температуры, приведенные на рисунке 5, получены по данным наблюдений в северном полушарий, однако, судя по имеющимся сведениям, они могут быть отнесены и к южному полушарию. Некоторые различия имеются главным образом в высоких широтах. Над Антарктидой зимой температура воздуха в тропосфере и нижней стратосфере заметно ниже, чем над Центральной Арктикой.

Ветры на высотах. Сезонным распределением температуры обусловлена довольно сложная система воздушных течений в стратосфере и мезосфере.

На рисунке 6 представлен вертикальный разрез поля ветра в атмосфере между поверхностью земли и высотой 90 км зимой и летом над северным полушарием. Изолиниями изображены средние скорости преобладающего ветра (в м/сек). Из рисунка следует, что режим ветра зимой и летом в стратосфере резко различен. Зимой как в тропосфере, так и в стратосфере преобладают западные ветры с максимальными скоростями, равными около


100 м/сек на высоте 60-65 км. Летом западные ветры преобладают лишь до высот 18-20 км. Выше они становятся восточными, с максимальными скоростями до 70 м/сек на высоте 55-60 км.

Летом выше мезосферы ветры становятся западными, а зимой - восточными.

Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По полученным данным, преимущественно с помощью ракет, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220-240°, а на уровне 200 км более 500°. Выше температура продолжает повышаться и на уровне 500-600 км превышает 1500°. На основе данных, полученных при запусках искусственных спутников Земли, найдено, что в верхней термосфере температура достигает около 2000° и в течение суток значительно колеблется. Возникает вопрос, чем объяснить такую высокую температуру в высоких слоях атмосферы. Напомним, что температура газа - это мера средней скорости движения молекул. В нижней, наиболее плотной части атмосферы молекулы газов, составляющих воздух, при движении часто сталкиваются между собой и мгновенно передают друг другу кинетическую энергию. Поэтому кинетическая энергия в плотной среде в среднем одна и та же. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энергии скорость молекул в промежутке между столкновениями сильно изменяется; к тому же молекулы более легких газов движутся с большей скоростью, чем молекулы тяжелых газов. Вследствие этого температура газов может быть различной.

В разреженных газах сравнительно немного молекул весьма малых размеров (легких газов). Если они движутся с большими скоростями, то и температура в данном объеме воздуха будет велика. В термосфере в каждом кубическом сантиметре воздуха содержатся десятки и сотни тысяч молекул различных газов, в то время как у поверхности земли их около сотни миллионов миллиардов. Поэтому чрезмерно высокие значения температуры в высоких слоях атмосферы, показывая скорость перемещения молекул в этой весьма неплотной среде, не могут вызвать даже небольшого нагревания находящегося здесь тела. Подобно тому, как человек не чувствует высокой температуры при ослепительном освещении электрических ламп, хотя нити накала в разреженной среде мгновенно раскаляются до нескольких тысяч градусов.

В нижней термосфере и мезосфере сгорает, не долетая до поверхности земли, основная часть метеорных потоков.

Имеющиеся сведения о слоях атмосферы выше 60-80 км еще недостаточны для окончательных выводов о строении, режиме и процессах, развивающихся в них. Однако известно, что в верхней мезосфере и нижней термосфере режим температуры создается в результате превращения молекулярного кислорода (О 2) в атомарный (О), которое происходит под действием ультрафиолетовой солнечной радиации. В термосфере на режим температуры большое влияние оказывает корпускулярная, рентгеновская и. ультрафиолетовая радиация Солнца. Здесь даже в течение суток происходят резкие изменения температуры и ветра.

Ионизация атмосферы. Наиболее интересной особенностью атмосферы выше 60-80 км является ее ионизация, т. е. процесс образования огромного количества электрически заряженных частиц - ионов. Так как ионизация газов является характерной для нижней термосферы, то ее называют также и ионосферой.

Газы в ионосфере находятся большей частью в атомарном состоянии. Под действием ультрафиолетового и корпускулярного излучений Солнца, обладающих большой энергией, происходит процесс отщепления электронов от нейтральных атомов и молекул воздуха. Такие атомы и молекулы, потерявшие один или несколько электронов, становятся положительно заряженными, а свободный электрон может присоединиться снова к нейтральному атому или молекуле и наделить их своим отрицательным зарядом. Такие положительно и отрицательно заряженные атомы и молекулы называются ионами, а газы - ионизированными, т. е. получившими электрический заряд. При большей концентрации ионов газы становятся электропроводными.

Процесс ионизации наиболее интенсивно происходит в мощных слоях, ограниченных высотами 60-80 и 220-400 км. В этих слоях существуют оптимальные условия для ионизации. Здесь плотность воздуха заметно больше, чем в верхней атмосфере, а поступление ультрафиолетовой и корпускулярной радиации Солнца достаточно для процесса ионизации.

Открытие ионосферы является одним из важных и блестящих достижений науки. Ведь отличительной особенностью ионосферы является ее влияние на распространение радиоволн. В ионизированных слоях радиоволны отражаются, и поэтому становится возможной дальняя радиосвязь. Заряженные атомы-ионы отражают короткие радиоволны, и они вновь возвращаются на земную поверхность, но уже в значительном отдалении от места радиопередачи. Очевидно, этот путь короткие радиоволны совершают несколько раз, и таким образом обеспечивается дальняя радиосвязь. Если бы не ионосфера, то для передач сигналов радиостанций на большие расстояния было бы необходимо строить дорогостоящие радиорелейные линии.

Однако известно, что иногда радиосвязь на коротких волнах нарушается. Это происходит в результате хромосферных вспышек на Солнце, благодаря которым резко усиливается ультрафиолетовое излучение Солнца, приводящее к сильным возмущениям ионосферы и магнитного поля Земли - магнитным бурям. При магнитных бурях нарушается радиосвязь, так как движение заряженных частиц зависит от магнитного поля. Во время магнитных бурь ионосфера хуже отражает радиоволны или пропускает их в космос. Главным образом с изменением солнечной активности, сопровождающейся усилением ультрафиолетового излучения, увеличивается электронная плотность ионосферы и поглощение радиоволн в дневные часы, приводящее к нарушению работы радиосвязи на коротких волнах.

Согласно новым исследованиям в мощном ионизированном слое имеются зоны, где концентрация свободных электронов достигает несколько большей концентрации, чем в соседних слоях. Известны четыре такие зоны, которые располагаются на высотах около 60-80, 100-120, 180-200 и 300-400 км и обозначаются буквами D , E , F 1 и F 2 . При усиливающемся излучении Солнца заряженные частицы (корпускулы) под влиянием магнитного поля Земли отклоняются в сторону высоких широт. Войдя в атмосферу, корпускулы усиливают ионизацию газов настолько, что начинается их свечение. Так возникают полярные сияния - в виде красивых многокрасочных дуг, загорающихся в ночном небе преимущественно в высоких широтах Земли. Полярные сияния сопровождаются сильными магнитными бурями. В таких случаях полярные сияния становятся видимыми в средних широтах, а в редких случаях даже в тропической зоне. Так, например, интенсивное сияние, наблюдавшееся 21 - 22 января 1957 г., было видно почти во всех южных районах нашей страны.

С помощью фотографирования полярных сияний из двух пунктов, находящихся на расстоянии нескольких десятков километров, с большой точностью определяется высота сияния. Обычно полярные сияния располагаются на высоте около 100 км, нередко они обнаруживаются на высоте нескольких сотен километров, а иногда на уровне около 1000 км. Хотя природа полярных сияний выяснена, однако остается еще много нерешенных вопросов, связанных с этим явлением. До сих пор неизвестны причины многообразия форм полярных сияний.

По данным третьего советского спутника, между высотами 200 и 1000 км днем преобладают положительные ионы расщепленного молекулярного кислорода, т. е. атомарного кислорода (О). Советские ученые исследуют ионосферу с помощью искусственных спутников серии «Космос». Американские ученые изучают ионосферу также с помощью спутников.

Поверхность, разделяющая термосферу от экзосферы, испытывает колебания в зависимости от изменения солнечной активности и других факторов. По вертикали эти колебания достигают 100-200 км и более.

Экзосфера (сфера рассеяния) - самая верхняя часть атмосферы, расположена выше 800 км. Она мало изучена. По данным наблюдений и теоретических расчетов температура в экзосфере с высотой возрастает предположительно до 2000°. В отличие от нижней ионосферы, в экзосфере газы настолько разрежены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.

Еще сравнительно недавно предполагали, что условная граница атмосферы находится на высоте около 1000 км. Однако на основе торможения искусственных спутников Земли установлено, что на высотах 700-800 км в 1 см 3 содержится до 160 тыс. положительных ионов атомного кислорода и азота. Это дает основание предполагать, что заряженные слои атмосферы простираются в космос на значительно большее расстояние.

При высоких температурах на условной границе атмосферы скорости частиц газов достигают приблизительно 12 км/сек. При данных скоростях газы постепенно уходят из области действия земного притяжения в межпланетное пространство. Это происходит в течение длительного времени. Например, частицы водорода и гелия удаляются в межпланетное пространство в течение нескольких лет.

В исследовании высоких слоев атмосферы богатые данные получены как со спутников серии «Космос» и «Электрон», так и геофизических ракет и космических станций «Марс-1», «Луна-4» и др. Ценными оказались и непосредственные наблюдения космонавтов. Так, по фотографиям, сделанным в космосе В. Николаевой-Терешковой, было установлено, что на высоте 19 км от Земли существует пылевой слой. Это подтвердилось и данными, полученными экипажем космического корабля «Восход». По-видимому, существует тесная связь между пылевым слоем и так называемыми перламутровыми облаками, иногда наблюдаемыми на высотах около 20-30 км.

Из атмосферы в космическое пространство. Прежние предположения, что за пределами атмосферы Земли, в межпланетном

пространстве, газы очень разрежены и концентрация частиц не превышает нескольких единиц в 1 см 3 , не оправдались. Исследования показали, что околоземное пространство заполнено заряженными частицами. На этой основе была выдвинута гипотеза о существовании зон вокруг Земли с заметно повышенным содержанием заряженных частиц, т. е. поясов радиации - внутреннего и внешнего. Новые данные помогли внести уточнения. Оказалось, что между внутренним и внешним поясами радиации также имеются заряженные частицы. Число их меняется в зависимости от геомагнитной и солнечной активности. Таким образом, по новому предположению вместо поясов радиации существуют зоны радиации без четко выраженных границ. Границы радиационных зон изменяются в зависимости от солнечной активности. При ее усилении, т. е. когда на Солнце появляются пятна и струи газа, выбрасывающиеся на сотни тысяч километров, возрастает поток космических частиц, которые и питают радиационные зоны Земли.

Радиационные зоны опасны для людей, совершающих полеты на космических кораблях. Поэтому перед полетом в космос определяется состояние и положение радиационных зон, а орбита космического корабля выбирается с таким расчетом, чтобы она проходила вне областей повышенной радиации. Однако высокие слои атмосферы, как и близкое к Земле космическое пространство, еще мало исследованы.

В исследовании высоких слоев атмосферы и околоземного пространства используются богатые данные, получаемые со спутников серии «Космос» и космических станций.

Высокие слои атмосферы менее всего изучены. Однако современные методы ее исследования позволяют надеяться, что в ближайшие годы человек будет знать многие детали строения атмосферы, на дне которой он живет.

В заключение приведем схематический вертикальный разрез атмосферы (рис. 7). Здесь по вертикали отложены высоты в километрах и давление воздуха в миллиметрах, а по горизонтали - температура. Сплошной кривой изображено изменение температуры воздуха с высотой. На соответствующих высотах отмечены и главнейшие явления, наблюдающиеся в атмосфере, а также максимальные высоты, достигнутые радиозондами и другими средствами зондирования атмосферы.

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность. Планета – упорядоченная система, с максимальной плотностью вещества в центре и с постепенным уменьшением концентрации к периферии. Силы взаимодействия определяют состояние материи, форму, в которой она существует. Физика описывает агрегатное состояние веществ: твердое тело, жидкость, газ и так далее.

Атмосфера - это газовая среда окружающая планету. Атмосфера Земли обеспечивает свободное перемещение и пропускает свет, формирует простор, в котором процветает жизнь.


Участок от поверхности земли до высоты приблизительно 16 километров (от экватора к полюсам меньшее значение, также зависит от сезона) называют тропосферой. Тропосфера слой, в котором сосредоточено около 80% всего воздуха атмосферы и почти весь водяной пар. Именно здесь протекают процессы формирующие погоду. Давление и температура падают с высотой. Причиной понижения температуры воздуха является адиабатический процесс, при расширении газ охлаждается. У верхней границы тропосферы значения могут достигать -50, -60 градусов Цельсия.

Далее начинается Стратосфера. Она распространяется вверх на 50 километров. В этом слое атмосферы температура с высотой увеличивается, приобретая значение в верхней точке около 0 С. Повышение температуры вызвано процессом поглощения озоновым слоем ультрафиолетовых лучей. Излучение вызывает химическую реакцию. Молекулы кислорода распадаются на одиночные атомы, которые могут объединяться с нормальными молекулами кислорода, в итоге появляется озон.

Излучение солнца с длинами волн от 10 до 400 нанометров классифицируется как ультрафиолетовое. Чем короче длина волны УФ излучения, тем большую опасность оно представляет для живых организмов. Только малая доля излучения доходит до поверхности Земли, к тому же менее активная часть её спектра. Такая особенность природы, позволяет человеку получать здоровый солнечный загар.

Следующий слой атмосферы называется Мезосфера. Пределы приблизительно с 50 км до 85 км. В мезосфере концентрация озона, который бы мог задерживать УФ энергию низкая, поэтому температура снова начинает падать с высотой. В пиковой точке температура опускается до -90 С, некоторые источники указывают величину -130 С. В этом слое атмосферы сгорает большинство метеорных тел.

Слой атмосферы, растянувшийся с высоты 85 км на расстояние 600 км от Земли, называется Термосфера. Термосфера первой встречает солнечное излучение, в том числе, так называемый вакуумный ультрафиолет.

Вакуумный УФ задерживается воздушной средой, тем самым нагревает этот слой атмосферы до огромных температур. Однако поскольку давление здесь крайне мало, этот, казалось бы, раскаленный газ не оказывает на объекты такого воздействия как при условиях на поверхности земли. Наоборот предметы, помещенные в такую среду, будут остывать.

На высоте 100 км проходит условная черта «линия Кармана», которую принято считать началом космоса.

В термосфере происходят полярные сияния. В этом слое атмосферы солнечный ветер взаимодействует с магнитным полем планеты.

Последним слоем атмосферы является Экзосфера, внешняя оболочка, простирающаяся на тысячи километров. Экзосфера практически пустое место, тем не менее, количество атомов блуждающих здесь на порядок больше чем в межпланетном пространстве.

Человек дышит воздухом. Нормальное давление – 760 миллиметров ртутного столба. На высоте 10 000 м давление составляет около 200 мм. рт. ст. На такой высоте человек вероятно может дышать, хотя бы не продолжительное время, но для этого нужна подготовка. Состояние явно будет неработоспособное.

Газовый состав атмосферы: 78 % азот, 21 % кислород, около процента аргон всё остальное – смесь газов представляющих мельчайшую долю от общего количества.


АТМОСФЕРА Земли (греческий atmos пар + sphaira шар) - газовая оболочка, окружающая Землю. Масса атмосферы составляет около 5,15·10 15 Биологическое значение атмосферы огромно. В атмосфере осуществляется массо-энергообмен между живой и неживой природой, между растительным и животным миром. Азот атмосферы усваивают микроорганизмы; из углекислого газа и воды за счет энергии Солнца растения синтезируют органические вещества и выделяют кислород. Наличие атмосферы обеспечивает сохранение на Земле воды, также являющейся важным условием существования живых организмов.

Исследования, проведенные с помощью высотных геофизических ракет, искусственных спутников Земли и межпланетных автоматических станций, установили, что земная атмосфера простирается на тысячи километров. Границы атмосферы непостоянны, на них влияют гравитационное поле Луны и давление потока солнечных лучей. Над экватором в области земной тени атмосфера достигает высот около 10 000км, а над полюсами границы ее удалены от поверхности земли на 3000 км. Основная масса атмосферы (80-90%) находится в пределах высот до 12-16 км, что объясняется экспоненциальным (нелинейным) характером уменьшения плотности (разрежением) ее газовой среды по мере увеличения высоты над уровнем моря.

Существование большинства живых организмов в естественных условиях возможно в еще более узких границах атмосферы, до 7-8 км, где имеет место необходимое для активного протекания биологических процессов сочетание таких атмосферных факторов, как газовый состав, температура, давление, влажность. Гигиеническое значение имеют также движение и ионизация воздуха, атмосферные осадки, электрическое состояние атмосферы.

Газовый состав

Атмосфера представляет собой физическую смесь газов (табл. 1), преимущественно азота и кислорода (78,08 и 20,95 об. %). Соотношение газов атмосферы практически одинаково до высот 80-100 км. Постоянство основной части газового состава атмосеры обусловливается относительным уравновешиванием процессов газообмена между живой и неживой природой и непрерывным перемешиванием масс воздуха в горизонтальном и вертикальном направлениях.

Таблица 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА СУХОГО АТМОСФЕРНОГО ВОЗДУХА У ЗЕМНОЙ ПОВЕРХНОСТИ

Состав газовый

Объемная концентрация, %

Кислород

Углекислый газ

Закись азота

Двуокись серы

От 0 до 0,0001

От 0 до 0,000007 летом, от 0 до 0,000002 зимой

Двуокись азота

От 0 до 0,000002

Окись углерода

На высотах более 100 км происходит изменение процентного содержания отдельных газов, связанное с их диффузным расслоением под влиянием гравитации и температуры. Кроме того, под действием коротковолновой части ультрафиолетовых и рентгеновских лучей на высоте 100 км и более происходит диссоциация молекул кислорода, азота и углекислого газа на атомы. На больших высотах эти газы находятся в виде сильно ионизированных атомов.

Содержание углекислого газа в атмосфере различных районов Земли менее постоянно, что связано отчасти с неравномерным рассредоточением крупных промышленных предприятий, загрязняющих воздух, а также неравномерностью распределения на Земле растительности, водных бассейнов, поглощающих углекислый газ. Также изменчиво в атмосфере и содержание аэрозолей (см.) - взвешенных в воздухе частиц размером от нескольких миллимикрон до нескольких десятков микрон, - образующихся в результате вулканических извержений, мощных искусственных взрывов, загрязнений индустриальными предприятиями. Концентрация аэрозолей быстро убывает с высотой.

Самая непостоянная и важная из переменных компонентов атмосферы - водяной пар, концентрация которого у земной поверхности может колебаться от 3% (в тропиках) до 2×10 -10 % (в Антарктиде). Чем выше температура воздуха, тем больше влаги при прочих равных условиях может находиться в атмосфере и наоборот. Основная масса паров воды сосредоточена в атмосфере до высот 8-10 км. Содержание водяного пара в атмосфере зависит от сочетанного влияния процессов испарения, конденсации и горизонтального переноса. На больших высотах в связи с понижением температуры и конденсации паров воздух практически сухой.

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон (см.), концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода).

Наличие в атмосфере группы так называемых инертных газов (гелия, неона, аргона, криптона, ксенона) связано с непрерывным протеканием процессов естественного радиоактивного распада.

Биологическое значение газов атмосферы очень велико. Для большинства многоклеточных организмов определенное содержание молекулярного кислорода в газовой или водной среде является непременным фактором их существования, обусловливающим при дыхании высвобождение энергии из органических веществ, созданных первоначально в ходе фотосинтеза. Не случайно, что верхние границы биосферы (часть поверхности земного шара и нижняя часть атмосферы, где существует жизнь) определяются наличием достаточного количества кислорода. В процессе эволюции организмы приспособились к определенному уровню содержания кислорода в атмосфере; изменение содержания кислорода в сторону уменьшения или увеличения оказывает неблагоприятный эффект (см. Высотная болезнь , Гипероксия , Гипоксия).

Выраженным биологическим действием обладает и озон-аллотропная форма кислорода. При концентрациях, не превышающих 0,0001 мг/л, что характерно для курортных местностей и морских побережий, озон оказывает целебное действие - стимулирует дыхание и сердечно-сосудистую деятельность, улучшает сон. С увеличением концентрации озона проявляется его токсическое действие: раздражение глаз, некротическое воспаление слизистых оболочек дыхательных путей, обострение легочных заболеваний, вегетативные неврозы. Вступая в соединение с гемоглобином, озон образует метгемоглобин, что приводит к нарушению дыхательной функции крови; затрудняется перенос кислорода из легких к тканям, развиваются явления удушья. Сходное неблагоприятное влияние на организм оказывает и атомарный кислород. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие чрезвычайно сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 нм почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным «озоновым экраном», защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца, Азот атмосферного воздуха имеет важное биологическое значение прежде всего как источник так наз. фиксированного азота - ресурса растительной (а в конечном счете и животной) пищи. Физиологическая значимость азота определяется его участием в создании необходимого для жизненных процессов уровня атмосферного давления. При определенных условиях изменения давления азот играет основную роль в развитии ряда нарушений в организме (см. Декомпрессионная болезнь). Предположения о том, что азот ослабляет токсическое действие на организм кислорода и усваивается из атмосферы не только микроорганизмами, но и высшими животными, являются спорными.

Инертные газы атмосферы (ксенон, криптон, аргон, неон, гелий) при создаваемом ими в обычных условиях парциальном давлении могут быть отнесены к числу биологически индифферентных газов. При значительном повышении парциального давления эти газы оказывают наркотическое действие.

Наличие углекислого газа в атмосфере обеспечивает накопление солнечной энергии в биосфере за счет фотосинтеза сложных соединений углерода, которые в процессе жизни непрерывно возникают, изменяются и разлагаются. Эта динамическая система поддерживается в результате деятельности водорослей и наземных растений, улавливающих энергию солнечного света и использующих ее для превращения углекислого газа (см.) и воды в разнообразные органические соединения с выделением кислорода. Протяженность биосферы вверх ограничена частично и тем, что на высотах более 6-7 км хлорофиллсодержащие растения не могут жить из-за низкого парциального давления углекислого газа. Углекислый газ является весьма активным и в физиологическом отношении, так как играет важную роль в регуляции обменных процессов, деятельности центральной нервной системы, дыхания, кровообращения, кислородного режима организма. Однако эта регуляция опосредована влиянием углекислого газа, образуемого самим организмом, а не поступающего из атмосферы. В тканях и крови животных и человека парциальное давление углекислого газа примерно в 200 раз превышает величину его давления в атмосфере. И лишь при значительном увеличении содержания углекислого газа в атмосфере (более 0,6-1%) наблюдаются нарушения в организме, обозначаемые термином гиперкапния (см.). Полное устранение углекислого газа из вдыхаемого воздуха не может непосредственно оказать неблагоприятного влияния на организм человека и животных.

Углекислый газ играет определенную роль в поглощении длинноволнового излучения и поддержании «оранжерейного эффекта», повышающего температуру у поверхности Земли. Изучается также проблема влияния на термические и другие режимы атмосферы углекислого газа, поступающего в громадных количествах в воздух как отход промышленности.

Водяные пары атмосферы (влажность воздуха) также оказывают влияние на организм человека, в частности на теплообмен с окружающей средой.

В результате конденсации водяного пара в атмосфере образуются облака и выпадают атмосферные осадки (дождь, град, снег). Водяные пары, рассеивая солнечное излучение, участвуют в создании теплового режима Земли и нижних слоев атмосферы, в формировании метеорологических условий.

Атмосферное давление

Атмосферное давление (барометрическое) - давление, оказываемое атмосферой под влиянием гравитации на поверхность Земли. Величина этого давления в каждой точке атмосферы равна весу вышележащего столба воздуха с единичным основанием, простирающегося над местом измерения до границ атмосферы. Измеряют атмосферное давление барометром (см.) и выражают в миллибарах, в ньютонах на квадратный метр или высотой столба ртути в барометре в миллиметрах, приведенной к 0° и нормальной величине ускорения силы тяжести. В табл. 2 приведены наиболее употребительные единицы измерения атмосферного давления.

Изменение давления происходит вследствие неравномерного нагревания масс воздуха, расположенных над сушей и водой в различных географических широтах. При повышении температуры плотность воздуха и создаваемое им давление уменьшаются. Огромное скопление быстродвижущегося воздуха с пониженным давлением (с уменьшением давления от периферии к центру вихря) называют циклоном, с повышенным давлением (с повышением давления к центру вихря) - антициклоном. Для прогноза погоды важны непериодические изменения атмосферного давления, происходящие в движущихся обширных массах и связанные с возникновением, развитием и разрушением антициклонов и циклонов. Особенно большие изменения атмосферного давления связаны с быстрым перемещением тропических циклонов. При этом атмосферное давление может изменяться на 30-40 мбар за сутки.

Падение атмосферного давления в миллибарах на расстоянии, равном 100 км, называется горизонтальным барометрическим градиентом. Обычно величины горизонтального барометрического градиента составляют 1-3 мбар, но в тропических циклонах иногда возрастают до десятков миллибар на 100 км.

С подъемом на высоту атмосферное давление понижается в логарифмической зависимости: вначале очень резко, а затем все менее заметно (рис. 1). Поэтому кривая изменения барометрического давления носит экспоненциальный характер.

Убывание давления на единицу расстояния по вертикали называется вертикальным барометрическим градиентом. Часто пользуются обратной ему величиной - барометрической ступенью.

Так как барометрическое давление есть сумма парциальных давлений газов, образующих воздух, то очевидно, что с подъемом на высоту наряду с уменьшением общего давления атмосферы снижается и парциальное давление газов, составляющих воздух. Величина парциального давления любого газа в атмосфере вычисляется по формуле

где Р х - парциальное давление газа, Ρ z - атмосферное давление на высоте Ζ, Х% - процентное содержание газа, парциальное давление которого следует определить.

Рис. 1. Изменение барометрического давления в зависимости от высоты над уровнем моря.

Рис. 2. Изменение парциального давления кислорода в альвеолярном воздухе и насыщения артериальной крови кислородом в зависимости от изменения высоты при дыхании воздухом и кислородом. Дыхание кислородом начинается с высоты 8,5 км (эксперимент в барокамере).

Рис. 3. Сравнительные кривые средних величин активного сознания у человека в минутах на разных высотах после быстрого подъема при дыхании воздухом (I) я кислородом (II). На высотах более 15 км активное сознание нарушается одинаково при дыхании кислородом и воздухом. На высотах до 15 км дыхание кислородом значительно продлевает период активного сознания (эксперимент в барокамере).

Поскольку процентный состав газов атмосферы относительно постоянен, то для определения парциального давления любого газа требуется лишь знать общее барометрическое давление на данной высоте (рис. 1 и табл. 3).

Таблица 3. ТАБЛИЦА СТАНДАРТНОЙ АТМОСФЕРЫ (ГОСТ 4401-64) 1

Геометрическая высота (м)

Температура

Барометрическое давление

Парциальное давление кислорода (мм рт. ст.)

мм рт. ст.

1 Дана в сокращенном виде и дополнена графой «Парциальное давление кислорода» .

При определении парциального давления газа во влажном воздухе нужно вычесть из величины барометрического давления давление (упругость) насыщенных паров.

Формула для определения парциального давления газа во влажном воздухе будет несколько иной, чем для сухого воздуха:

где рH 2 O - упругость водяных паров. При t° 37° упругость насыщенного водяного пара равна 47 мм рт. ст. Эта величина используется при вычислении парциальных давлений газов альвеолярного воздуха в наземных и высотных условиях.

Влияние на организм повышенного и пониженного давления. Изменения барометрического давления в сторону повышения или понижения оказывают разнообразное действие на организм животных и человека. Влияние повышенного давления связано с механическим и проникающим физико-химическим действием газовой среды (так наз. компрессионный и проникающий эффекты).

Компрессионный эффект проявляется: общим объемным сжатием, обусловленным равномерным повышением сил механического давления на органы и ткани; механонаркозом, обусловленным равномерной объемной компрессией при очень высоком барометрическом давлении; местным неравномерным давлением на ткани, которые ограничивают газосодержащие полости при нарушенной связи наружного воздуха с воздухом, находящимся в полости, например, среднего уха, придаточных полостях носа (см. Баротравма); увеличением плотности газа в системе внешнего дыхания, что вызывает возрастание сопротивления дыхательным движениям, особенно при форсированном дыхании (физическая нагрузка, гиперкапния).

Проникающий эффект может привести к токсическому действию кислорода и индифферентных газов, повышение содержания которых в крови и тканях вызывает наркотическую реакцию, первые признаки к-рой при использовании азото-кислородной смеси у человека возникают при давлении 4-8 ата. Увеличение парциального давления кислорода вначале снижает уровень функционирования сердечно-сосудистой и дыхательной систем вследствие выключения регулирующего влияния физиологической гипоксемии. При увеличении парциального давления кислорода в легких более 0,8-1 ата проявляется его токсическое действие (поражение легочной ткани, судороги, коллапс).

Проникающий и компрессионный эффекты повышенного давления газовой среды используются в клинической медицине при лечении различных болезней с общим и местным нарушением кислородного обеспечения (см. Баротерапия , Кислородная терапия).

Понижение давления оказывает на организм еще более выраженное действие. В условиях крайне разреженной атмосферы основным патогенетическим фактором, приводящим за несколько секунд к потере сознания, а за 4-5 мин.- к гибели, является уменьшение парциального давления кислорода во вдыхаемом воздухе, а затем в альвеолярном воздухе, крови и тканях (рис. 2 и 3). Умеренная гипоксия вызывает развитие приспособительных реакций системы дыхания и гемодинамики, направленных на поддержание кислородного снабжения в первую очередь жизненно важных органов (мозга, сердца). При выраженном недостатке кислорода угнетаются окислительные процессы (за счет дыхательных ферментов), нарушаются аэробные процессы выработки энергии в митохондриях. Это приводит вначале к расстройству функций жизненно важных органов, а затем к необратимым структурным повреждениям и гибели организма. Развитие приспособительных и патологических реакций, изменение функционального состояния организма и работоспособности человека при понижении атмосферного давления определяется степенью и скоростью уменьшения парциального давления кислорода во вдыхаемом воздухе, длительностью пребывания на высоте, интенсивностью выполняемой работы, исходным состоянием организма (см. Высотная болезнь).

Понижение давления на высотах (даже при исключении недостатка кислорода) вызывает в организме серьезные нарушения, объединяемые понятием «декомпрессионные расстройства», к которым относятся: высотный метеоризм, баротит и баросинусит, высотная декомпрессионная болезнь и высотная тканевая эмфизема.

Высотный метеоризм развивается вследствие расширения газов в желудочно-кишечном тракте при уменьшении барометрического давления на брюшную стенку при подъеме на высоты от 7-12 км и более. Определенное значение имеет и выход газов, растворенных в кишечном содержимом.

Расширение газов приводит к растяжению желудка и кишечника, поднятию диафрагмы, изменению положения сердца, раздражению рецепторного аппарата этих органов и возникновению патологических рефлексов, нарушающих дыхание и кровообращение. Нередко возникают резкие боли в области живота. Сходные явления иногда возникают и у водолазов при подъеме с глубины на поверхность.

Механизм развития баротита и баросинусита, проявляющихся чувством заложенности и боли соответственно в среднем ухе или придаточных полостях носа, подобен развитию высотного метеоризма.

Снижение давления, помимо расширения газов, содержащихся в полостях тела, обусловливает также и выход газов из жидкостей и тканей, в которых они были растворены в условиях давления на уровне моря или на глубине, и образование пузырьков газа в организме.

Этот процесс выхода растворенных газов (прежде всего азота) вызывает развитие декомпрессионной болезни (см.).

Рис. 4. Зависимость температуры кипения воды от высоты над уровнем моря и барометрического давления. Цифры давления расположены под соответствующими цифрами высоты.

При уменьшении атмосферного давления понижается температура кипения жидкостей (рис. 4). На высоте более 19 км, где барометрическое давление равно (или меньше) упругости насыщенных паров при температуре тела (37°), может произойти «закипание» межтканевой и межклеточной жидкости организма, в результате чего в крупных венах, в полости плевры, желудка, перикарда, в рыхлой жировой клетчатке, то есть в участках с низким гидростатическим и внутритканевым давлением, образуются пузыри водяного пара, развивается высотная тканевая эмфизема. Высотное «кипение» не затрагивает клеточные структуры, локализуясь только в межклеточной жидкости и крови.

Массивные пузыри пара могут блокировать работу сердца и циркуляцию крови и нарушать работу жизненно важных систем и органов. Это является серьезным осложнением острого кислородного голодания, развивающегося на больших высотах. Профилактика высотной тканевой эмфиземы может быть обеспечена созданием внешнего противодавления на тело высотным снаряжением.

Сам процесс понижения барометрического давления (декомпрессия) при определенных параметрах может стать повреждающим фактором. В зависимости от скорости декомпрессию разделяют на плавную (медленную) и взрывную. Последняя протекает за время менее 1 секунды и сопровождается сильным хлопком (как при выстреле), образованием тумана (конденсация паров воды из-за охлаждения расширяющегося воздуха). Обычно взрывная декомпрессия происходит на высотах при разрушении остекления герметичной кабины или скафандра с избыточным давлением.

При взрывной декомпрессии прежде всего страдают легкие. Быстрое нарастание внутрилегочного избыточного давления (более чем на 80 мм рт. ст.) приводит к значительному растяжению легочной ткани, что может вызвать разрыв легких (при их расширении в 2,3 раза). Взрывная декомпрессия может вызвать повреждение и желудочно-кишечного тракта. Величина возникающего избыточного давления в легких будет во многом зависеть от скорости истечения из них воздуха в процессе декомпрессии и объема воздуха в легких. Особенно опасно, если верхние дыхательные пути в момент декомпрессии окажутся закрытыми (при глотании, задержке дыхания) или декомпрессия совпадет с фазой глубокого вдоха, когда легкие наполняются большим количеством воздуха.

Температура атмосферы

Температура атмосферы с увеличением высоты вначале понижается (в среднем от 15° у земли до -56,5° на высоте 11-18 км). Вертикальный температурный градиент в этой зоне атмосферы составляет около 0,6° на каждые 100 м; он изменяется в течение суток и года (табл. 4).

Таблица 4. ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ТЕМПЕРАТУРНОГО ГРАДИЕНТА НАД СРЕДНЕЙ ПОЛОСОЙ ТЕРРИТОРИИ СССР

Рис. 5. Изменение температуры атмосферы на различных высотах. Границы сфер обозначены пунктиром.

На высотах 11 - 25 км температура становится постоянной и составляет -56,5°; затем температура начинает повышаться, достигая на высоте 40 км 30-40°, на высоте 50-60 км 70° (рис. 5), что связано с интенсивным поглощением озоном солнечной радиации. С высоты 60- 80 км температура воздуха вновь несколько снижается (до 60°), а затем прогрессивно повышается и составляет на высоте 120 км 270°, на 220 км 800°, на высоте 300 км 1500°, а

на границе с космическим пространством - больше 3000°. Следует заметить, что вследствие большой разреженности и малой плотности газов на этих высотах их теплоемкость и способность к нагреванию более холодных тел очень незначительна. В этих условиях передача тепла от одного тела к другому происходит только посредством лучеиспускания. Все рассматриваемые изменения температуры в атмосфере связаны с поглощением воздушными массами тепловой энергии Солнца - прямой и отраженной.

В нижней части атмосферы у поверхности Земли распределение температуры зависит от притока солнечной радиации и поэтому имеет в основном широтный характер, то есть линии равной температуры - изотермы - параллельны широтам. Так как атмосфера в нижних слоях нагревается от земной поверхности, то на горизонтальное изменение температуры сильно влияет распределение материков и океанов, термические свойства которых различны. Обычно в справочниках указывается температура, измеренная при сетевых метеорологических наблюдениях термометром, установленным на высоте 2 м над поверхностью почвы. Наиболее высокие температуры (до 58е) наблюдаются в пустынях Ирана, а в СССР - на юге Туркменистана (до 50°), наиболее низкие (до -87°) в Антарктиде, а в СССР - в районах Верхоянска и Оймякона (до -68°). Зимой вертикальный температурный градиент в отдельных случаях вместо 0,6° может превышать 1° на 100 м или даже принимать отрицательное значение. Днем в теплое время года он может быть равен многим десяткам градусов на 100 м. Различают также горизонтальный градиент температуры, который обычно относят к расстоянию 100 км по нормали к изотерме. Величина горизонтального градиента температуры - десятые доли градуса на 100 км, а во фронтальных зонах он может превышать 10° на 100 м.

Организм человека способен поддерживать тепловой гомеостаз (см.) в довольно узких пределах колебаний температуры наружного воздуха - от 15 до 45°. Существенные различия температуры атмосферы у Земли и на высотах требуют применения специальных защитных технических средств для обеспечения теплового баланса между организмом человека и внешней средой в высотных и космических полетах.

Характерные изменения параметров атмосферы (температуры, давления, химического состава, электрического состояния) позволяют условно разделить атмосферу на зоны, или слои. Тропосфера - ближайший слой к Земле, верхняя граница которого простирается на экваторе до 17-18 км, на полюсах - до 7-8 км, в средних широтах - до 12-16 км. Для тропосферы характерно экспоненциальное падение давления, наличие постоянного вертикального температурного градиента, горизонтальные и вертикальные перемещения воздушных масс, значительные изменения влажности воздуха. В тропосфере находится основная масса атмосферы, а также значительная часть биосферы; здесь возникают все основные виды облаков, формируются воздушные массы и фронты, развиваются циклоны и антициклоны. В тропосфере из-за отражения снежным покровом Земли солнечных лучей и охлаждения приземных слоев воздуха имеет место так называемая инверсия, то есть возрастание температуры в атмосфере снизу вверх вместо обычного убывания.

В теплое время года в тропосфере происходит постоянное турбулентное (беспорядочное, хаотичное) перемешивание воздушных масс и перенос тепла потоками воздуха (конвекция). Конвекция уничтожает туманы и уменьшает запыленность нижнего слоя атмосферы.

Вторым слоем атмосферы является стратосфера .

Она начинается от тропосферы узкой зоной (1-3 км) с постоянной температурой (тропопауза) и простирается до высот около 80 км. Особенностью стратосферы является прогрессирующая разреженность воздуха, исключительно высокая интенсивность ультрафиолетового излучения, отсутствие водяных паров, наличие большого количества озона и постепенное повышение температуры. Высокое содержание озона обусловливает ряд оптических явлений (миражи), вызывает отражение звуков и оказывает существенное влияние на интенсивность и спектральный состав электромагнитных излучений. В стратосфере происходит постоянное перемешивание воздуха, поэтому состав его аналогичен воздуху тропосферы, хотя плотность его у верхних границ стратосферы крайне мала. Преобладающие ветры в стратосфере - западные, а в верхней зоне наблюдается переход к восточным ветрам.

Третьим слоем атмосферы является ионосфера , которая начинается от стратосферы и простирается до высот 600-800 км.

Отличительные признаки ионосферы - крайняя разреженность газовой среды, высокая концентрация молекулярных и атомарных ионов и свободных электронов, а также высокая температура. Ионосфера оказывает влияние на распространение радиоволн, обусловливая их преломление, отражение и поглощение.

Основным источником ионизации высоких слоев атмосферы является ультрафиолетовое излучение Солнца. При этом из атомов газов выбиваются электроны, атомы превращаются в положительные ионы, а выбитые электроны остаются свободными или захватываются нейтральными молекулами с образованием отрицательных ионов. На ионизацию ионосферы оказывают влияние метеоры, корпускулярное, рентгеновское и гамма-излучение Солнца, а также сейсмические процессы Земли (землетрясения, вулканические извержения, мощные взрывы), которые генерируют акустические волны в ионосфере, усиливающие амплитуду и скорость колебаний частиц атмосферы и способствующие ионизации газовых молекул и атомов (см. Аэроионизация).

Электрическая проводимость в ионосфере, связанная с высокой концентрацией ионов и электронов, очень велика. Повышенная электропроводимость ионосферы играет важную роль в отражении радиоволн и возникновении полярных сияний.

Ионосфера - это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. В настоящее время космическая медицина изучает возможные влияния на организм человека условий полета в этой части атмосферы.

Четвертый, внешний слой атмосферы - экзосфера . Отсюда атмосферные газы рассеиваются в мировое пространство за счет диссипации (преодоления молекулами сил земного тяготения). Затем происходит постепенный переход от атмосферы к межпланетному космическому пространству. От последнего экзосфера отличается наличием большого количества свободных электронов, образующих 2-й и 3-й радиационные пояса Земли.

Разделение атмосферы на 4 слоя весьма условно. Так, по электрическим параметрам всю толщу атмосферы делят на 2 слоя: нейтросферу, в которой преобладают нейтральные частицы, и ионосферу. По температуре различают тропосферу, стратосферу, мезосферу и термосферу, разделенные соответственно тропо-, страто- и мезопаузами. Слой атмосферы, расположенный между 15 и 70 км и характеризующийся высоким содержанием озона, называют озоносферой.

Для практических целей удобно пользоваться Международной стандартной атмосферой (MCA), для к-рой принимают следующие условия: давление на уровне моря при t° 15° равно 1013 мбар (1,013 X 10 5 нм 2 , или 760 мм рт. ст.); температура уменьшается на 6,5° на 1 км до уровня 11 км (условная стратосфера), а затем остается постоянной. В СССР принята стандартная атмосфера ГОСТ 4401 - 64 (табл. 3).

Осадки. Поскольку основная масса водяного пара атмосферы сосредоточена в тропосфере, то и процессы фазовых переходов воды, обусловливающие осадки, протекают преимущественно в тропосфере. Тропосферные облака обычно закрывают около 50% всей земной поверхности, тогда как облака в стратосфере (на высотах 20-30 км) и вблизи мезопаузы, получившие название соответственно перламутровых и серебристых, наблюдаются сравнительно редко. В результате конденсации водяного пара в тропосфере образуются облака и выпадают осадки.

По характеру выпадения осадки разделяются на 3 типа: обложные, ливневые, моросящие. Количество осадков определяется толщиной слоя выпавшей воды в миллиметрах; измерение осадков производят дождемерами и осадкомерами. Интенсивность осадков выражается в миллиметрах в 1 минуту.

Распределение осадков в отдельные сезоны и дни, а также по территории крайне неравномерно, что обусловлено циркуляцией атмосферы и влиянием поверхности Земли. Так, на Гавайских островах в среднем за год выпадает 12 000мм, а в наиболее сухих областях Перу и Сахары осадки не превышают 250 мм, а иногда не выпадают по нескольку лет. В годовой динамике выпадения осадков различают следующие типы: экваториальный - с максимумом выпадения после весеннего и осеннего равноденствия; тропический - с максимумом осадков летом; муссонный - с очень резко выраженным пиком летом и сухой зимой; субтропический - с максимумом осадков зимой и сухим летом; континентальный умеренных широт - с максимумом выпадения осадков летом; морской умеренных широт - с максимумом осадков зимой.

Весь атмосферно-физический комплекс климатометеорологических факторов, составляющий погоду, широко используется для укрепления здоровья, закаливания и в лечебных целях (см. Климатотерапия). Наряду с этим установлено, что резкие колебания этих атмосферных факторов могут отрицательно влиять на физиологические процессы в организме, вызывая развитие различных патологических состояний и обострение болезней, получивших название метеотропных реакций (см. Климатопатология). Особое значение в этом отношении имеют частые длительные возмущения атмосферы и резкие скачкообразные колебания метеофакторов.

Метеотропные реакции наблюдаются чаще у людей, страдающих заболеваниями сердечно-сосудистой системы, полиартритами, бронхиальной астмой, язвенной болезнью, заболеваниями кожи.

Библиография: Белинский В. А. и Побияхо В. А. Аэрология, Л., 1962, библиогр.; Биосфера и ее ресурсы, под ред. В. А. Ковды, М., 1971; Данилов А. Д. Химия ионосферы, Л., 1967; Колобков Н. В. Атмосфера и ее жизнь, М., 1968; Калитин H.H. Основы физики атмосферы в применении к медицине, Л., 1935; Матвеев Л. Т. Основы общей метеорологии, Физика атмосферы, Л., 1965, библиогр.; Минх А. А. Ионизация воздуха и ее гигиеническое значение, М., 1963, библиогр.; он же, Методы гигиенических исследований, М., 1971, библиогр.; Тверской П. Н. Курс метеорологии, Л., 1962; Уманский С. П. Человек в космосе, М., 1970; Хвостиков И. А. Высокие слои атмосферы, Л., 1964; X р г и а н A. X. Физика атмосферы, Л., 1969, библиогр.; Хромов С. П. Метеорология и климатология для географических факультетов, Л., 1968.

Влияние на организм повышенного и пониженного давления - Армстронг Г. Авиационная медицина, пер. с англ., М., 1954, библиогр.; Зальцман Г.Л. Физиологические основы пребывания человека в условиях повышенного давления газов среды, Л., 1961, библиогр.; Иванов Д. И. и Хромушкин А. И. Системы жизнеобеспечения человека при высотных и космических полетах, М., 1968, библиогр.; Исаков П. К. и др. Теория и практика авиационной медицины, М., 1971, библиогр.; Коваленко Е. А. и Черняков И. Н. Кислород тканей при экстремальных факторах полета, М., 1972, библиогр.; Майлс С. Подводная медицина, пер. с англ., М., 1971, библиогр.; Busby D. Е. Space clinical medicine, Dordrecht, 1968.

И. H. Черняков, M. Т. Дмитриев, С. И. Непомнящий.