Атом. Представление остроении атома

Поговорим о том, как найти протоны, нейтроны и электроны. В атоме существует три вида элементарных частиц, причем у каждой есть свой элементарный заряд, масса.

Строение ядра

Для того чтобы понять, как найти протоны, нейтроны и электроны, представим Оно является основной частью атома. Внутри ядра располагаются протоны и нейтроны, именуемые нуклонами. Внутри ядра эти частицы могут переходить друг в друга.

Например, чтобы найти протоны, нейтроны и электроны в необходимо знать его порядковый номер. Если учесть, что именно этот элемент возглавляет периодическую систему, то в его ядре содержится один протон.

Диаметр атомного ядра составляет десятитысячную долю всего размера атома. В нем сосредоточена основная масса всего атома. По массе ядро превышает в тысячи раз сумму всех электронов, имеющихся в атоме.

Характеристика частиц

Рассмотрим, как найти протоны, нейтроны и электроны в атоме, и узнаем об их особенностях. Протон - это которая соответствует ядру атома водорода. Его масса превышает электрон в 1836 раз. Для определения единицы электричества, проходящего через проводник с заданным поперечным сечением, используют электрический заряд.

У каждого атома в ядре располагается определенное количество протонов. Оно является постоянной величиной, характеризует химические и физические свойства данного элемента.

Как найти протоны, нейтроны и электроны в атоме углерода? Порядковый номер данного химического элемента 6, следовательно, в ядре содержится шесть протонов. Согласно планетарной вокруг ядра по орбитам движется шесть электронов. Для определения количество нейтронов из значения углерода (12) вычитаем количество протонов (6), получаем шесть нейтронов.

Для атома железа число протонов соответствует 26, то есть этот элемент имеет 26-й порядковый номер в таблице Менделеева.

Нейтрон является электрически нейтральной частицей, нестабильной в свободном состоянии. Нейтрон способен самопроизвольно превращаться в положительно заряженный протон, испуская при этом антинейтрино и электрон. Средний период его полураспада составляет 12 минут. Массовое число - это суммарное значение количества протонов и нейтронов внутри ядра атома. Попробуем выяснить, как найти протоны, нейтроны и электроны в ионе? Если атом во время химического взаимодействия с другим элементом приобретает положительную степень окисления, то число протонов и нейтронов в нем не изменяется, меньше становится только электронов.

Заключение

Существовало несколько теорий, касающихся строения атома, но ни одна из них не была жизнеспособной. До версии, созданной Резерфордом, не было детального пояснения о расположении внутри ядра протонов и нейтронов, а также о вращении по круговым орбитам электронов. После появления теории планетарного строения атома у исследователей появилась возможность не только определять количество элементарных частиц в атоме, но и предсказывать физические и химические свойства конкретного химического элемента.

Атом. Представление остроении атома. Электроны, протоны, нейтроны

Атом - элементарная частица вещества (хим. элемента), состоящая из определенного набора протонов и нейтронов (ядро атома), и электронов.

Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) ипорядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов). Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А. Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-). Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения

Атом – микромир, в котором действуют законы квантовой механики.

Волновой процесс движения электрона в атоме вокруг ядра описывается с помощью волновой функции пси (ψ), которая должна иметь три параметра квантования (3 степени свободы).

Физический смысл – трехмерная амплитуда эл. волны.

n – главное квантовое число, характ. энергетич. уровень в атоме.

l – побочное (орбитальное к.ч.) l=0…n-1, характеризует энергетич. подуровни в атоме и форму атомной орбитали.

m l – магнитное к.ч. ml= -l… +l, характеризует ориентацию элемента в м.п.

ms- спиновое число. Исп. Т.к. каждый электрон имеет свой момет движения

Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.

Пр. Гунда : заполнение происходит последовательно таким образом, чтобы сумма спиновых чисел (момент движения) было максимально.

Принцип Паули : в атоме не может быть 2х эл., у которых все 4 квант. Числа были бы одинаковы

Хn – макс кол-во эл. на энерг. ур.

Начиная с 3его периода наблюдается эффект запаздывания, который объясняется принципом наименьшей энергии: формирование электронной оболочки атома происходит таким образом, что эл. занимают энергетически выгодное положение, когда энергия связи с ядром максимально возможна, а собственная энергия электрона – минимально возможна.

Пр. Кличевского – наиболее энергетически выгодны те подур., у кот. сумма квантовых чисел n и l стремится к мин.



Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы Д.И.Менделеева. Металлы и неметаллы.

Энергия ионизации атома - Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации.

Сродство к электрону - Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону (Е).

Энергия ионизации возрастает в периодах от щелочных металлов к благородным газам и уменьшается в группах сверху вниз.

Для элементов главных подгрупп сродство к электрону возрастает в периодах слева направо и уменьшается в группах сверху вниз.

Периодический закон и периодическая система элементов Д.И.Менделеева. Периоды, группы и подгруппы периодической системы. Связь периодической системы со строением атомов. Электронные семейства элементов.

формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).



Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n - одинаково).

Метод валентных связей

В образовании ковалент хим связей участвуют только валентные атомные орбитали (электроны), а остальные локализованы возле ядра атома.

Основные положения:

В образовании ков хим св участвуют только валентные атомные орбитали

Ковалет св образуется двумя электронами с антипараллельными спинами

Связь располагается в том направлении, в кот возможность перекрывания электронных облаков минимальна

8. Два механизма образования ковалентной связи: обычный и донорно-акцепторный.

9. Гибридизация валентных атомных орбиталей: sр-, sp 2 -, sp 3 -гибридизация. Геометрическая форма и полярность молекул. Основные характеристики ковалентных связей: длина, энергия, направленность, насыщаемость, валентные углы.

Гибридизация – это энергетическое выравнивание валентных атомных орбиталей, сопровождающееся выравниванием форм эл. облаков

Гибридные атомные орбитали имеют форму направленной восьмерки в плоскости, в трехмерном пространстве – укороченная гантель, называемая q –а.о.

Полярность молекул определяется их составом и геометрической формой.

Неполярными (р = O) будут:

а) молекулы простых веществ, так как они содержат только неполярные ковалентные связи;

б) многоатомные молекулы сложных веществ, если их геометрическая форма симметрична.

Полярными (р > O) будут:

а) двухатомные молекулы сложных веществ, так как они содержат только полярные связи;

б) многоатомные молекулы сложных веществ, если их строение асимметрично, т. е. их геометрическая форма либо незавершенная, либо искаженная, что приводит к появлению суммарного электрического диполя, например у молекул NH3, Н2О, HNО3 и HCN.

Энергия ков.св.|Ех.с.(кДж/моль) –кол-во энергии, выделяемое при возникновении хим св в объеме 1 моля элементов

Длина ков св – определяется, как прямая, соединяющая ядра атомов хим элементов

Насыщаемость ков хим св – каждая валентная а.о. у атома может образовывать только одну хим связь т.е. только 1 раз перекрываться с а.о. других атомов

Направленность – обуславливает молекулярное строение веществ и геометрич. форму их молекул. Углы между 2мя связями называются валентными.

Полярность – обуславливается неравномерном распределением электронной плотности вследствие различных электроотрицательных атомов в молекуле, образованной атомами одного и того же электрона (o2, cl2…) общее эл. облако распределено симметрично относительно ядер атомов, т.к. разность электроотрицательности = 0. Такие хим связи называются полярными .

В молекулах типа HF HCl общее эл облако смещено в сторону ядра частицы с большей величиной э.о. такие связи называют неполярными

Реакции, отличающиеся по тепловому эффекту – эндо- и экзотермические. Превращения энергии при химических реакциях. Первый закон термодинамики. Функции состояния: внутренняя энергия, энтальпия, энтропия, энергия Гиббса.

Экзотермическая реакция - химическая реакция, сопровождающаяся выделением теплоты.

Эндотермическая реакция - химическая реакция, при которой происходит поглощение теплоты.

Выделение или поглощение энергии происходит в виде теплоты. Это позволяет судить о наличии в веществах определенного количества некоторой энергии (внутренней энергией реакции ).

При химических реакциях происходит освобождение части энергии, содержащейся в веществах, это носит название теплового эффекта реакции . по которому можно судить об изменении количества внутренней энергии вещества.

Во время химических реакций происходит взаимное превращение энергий – внутренней энергии веществ в тепловую, лучистую, электрическую и механическую, и наоборот.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

где ΔU - изменение внутренней энергии, A - работа внешних сил, Q - количество теплоты, переданной системе.

Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от вне­шних воздействий, то A = 0 и Q = 0, а следовательно, и ΔU = 0.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:

где A" - работа, совершаемая системой (A" = -A).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Функцией состояния называется такая переменная характеристика системы, которая не зависит от предыстории системы и изменение которой при переходе системы из одного состояния в другое не зависит от того, каким образом было произведено это изменение.

Внутренняя энергия характеризует общий запас системы (все виды энергии системы)

Энтропия – есть мера неупорядоченности системы. Энтпропия вводится как функция состояния, изменение которой определяется отношением количества теплоты, полученное или отданное системой при t – T.

Энтальпией образования сложного вещества из простых веществ называется тепловой эффект реакции образования данного вещества из простых веществ в стандартных состояниях, отнесенный к 1 молю получающегося вещества

Энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции.

Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.

Химическая кинетика изучает скорость химической реакции и зависимость ее от различных факторов, а также механизм протекания химических реакций.

Скоростью химической реакции называют число элементарных актов реакции, происходящих в единицу времени.

Скорость химической реакции зависит от:

1) концентрации реагирующих веществ;

2) температуры;

3) присутствия катализаторов;

4) природы реагирующих веществ;

5) степени измельчения твердого вещества;

6) перемешивания, если вещества находятся в растворенном состоянии.

V ист =

Средняя скорость каждой реакции определяется изменением молярной концентрации реагирующих в-в за промежуток времени. (моль/(литр*с))

21. Влияние концентрации на скорость химической реакции. Закон действующих масс.

Закон действующих масс показывает зависимость скорости хим. реакц. от концентрации реагир. в-в.

Скорость хим. реакт. Прямо пропорциональна произв. конц. реагирующих в-в, взятых в степенях их стехиометрических коэф.

Для газовых реакций можно пользоваться парциальным давлением.
Закон справедлив только для ГОМОГЕННЫХ систем. Если система гетерогенная, то скор. Реакц. Зависит от пов-ти раздела(степени давления) твердой фазы.

При повышении температуры увеличивается запас внутренней энергии молекул. Всё большее их число становятся активными. Как следствие этого, возрастает доля эффективных соударений между молекулами за единицу времени, а значит и скорость химической реакции.

При повышении температуры концентрации исходных веществ в реакционной смеси практически не изменяются. Значит, увеличение скорости реакции в соответствии с главным кинетическим уравнением должно быть связано с возрастанием её константы скорости.

Голландский учёный Вант-Гофф опытным путём определил, что для химических реакций (имеющих нормальный тип зависимости скорости от температуры) при повышении температуры на каждые 10 градусов величина константы скорости возрастает в 2-4 раза. Причём для каждой химической реакции это число является постоянным и может принимать из указанного интервала как целочисленные (2, 3, 4) значения, так и дробные. Оно определяется экспериментально, называется температурным коэффициентом скорости химической реакции или коэффициентом Вант-Гоффа и обозначается греческой буквой γ:

γ =

где k Т – константа скорости химической реакции при температуре, равной Т; k T+10 – константа скорости химической реакции при температуре, повышенной, по сравнению с исходной, на 10 градусов.

Энергию активации химической реакции (Е а) по физическому смыслу можно определить как тот избыток энергии, по сравнению со средней энергией неактивных молекул исходных веществ в реакционной системе при данной температуре, который им нужно сообщить, чтобы столкновения между ними привели к химической реакции.

Минимальный запас энергии, которым должны обладать молекулы для вступления в ту или иную реакцию, можно рассматривать как своеобразный энергетический барьер этой реакции.

Причём, чем он выше, тем меньшее число молекул способно его преодолеть. Зная общее число молекул в системе и величину энергии активации для данной реакции, количество таких активных молекул можно рассчитать по закону Максвелла-Больцмана

где N a – число активных молекул, N o – общее число молекул.

Типы гидролиза солей

Химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора, называется гидролизом солей.

Любую соль можно представить, как продукт взаимодействия кислоты и основания. Тип гидролиза соли зависит от природы основания и кислоты, образующих соль. Возможны 3 типа гидролиза солей.

Гидролиз по аниону идет, если соль образована катионом сильного основания и анионом слабой кислоты. Например, соль СН3СООNa образована сильным основанием NaOH и слабой одноосновной кислотой СН3СООН. Гидролизу подвергается ион слабого электролита СН3СОО–.

Гидролиз по катиону идет, если соль образована катионом слабого основания и анионом сильной кислоты. Например, соль CuSO4 образована слабым двухкислотным основанием Cu(OH)2 и сильной кислотой H2SO4. Гидролиз идет по катиону Cu2+ и протекает в две стадии с образованием в качестве промежуточного продукта основной соли.

Гидролиз по катиону и аниону идет, если соль образована катионом слабого основания и анионом слабой кислоты. Например, соль CH3COONH4 образована слабым основанием NH4OH и слабой кислотой СН3СООН. Гидролиз идет по катиону NH4+ и аниону СН3СОО–.

Количественно гидролиз можно охарактеризовать при помощи константы гидролиза (К Г) и степени гидролиза (h) .

Константа гидролиза (K Г) - это отношение ионного произведения воды (K w ) к константе диссоциации слабого основания или слабой кислоты, образующих данную соль.

Частное от деления одной постоянной величины на другую есть также величина постоянная. Поэтому K Г - величина постоянная, которая характеризует способность соли подвергаться гидролизу. Значение K Г зависит от природы соли, температуры и не зависит от концентрации раствора.

1. Для солей типа NH 4 Cl:

Чем слабее кислота, тем в большей степени подвергаются гидролизу соли, образованные этой кислотой.

3. Для солей типа NH 4 CN:

Так как , следовательно, . Таким образом, по первой ступени гидролиз солей всегда протекает в большей степени.

Степень гидролиза (h) - отношение количества гидролизованной соли к общему количеству растворенной соли, обычно выражаемое в процентах.

Если, например, в воде было растворено 2 моль соли, а гидролизу подверглось 0,01 моль, то .

Степень гидролиза зависит от многих факторов:

1. В первую очередь, она зависит от химической природы составляющих данную соль ионов. Так, в растворах CH 3 COONa и NaCN с молярными концентрациями 0,1 моль/л при 25 0 С степень гидролиза солей различна:

h(CH 3 COONa) = 0,01%, a h(NaCN) = 1,5%.

Это объясняется различной силой кислот, составляющих соли:

Таким образом:

Чем слабее кислота (основание), образующие соль, тем выше степень гидролиза.

2. Степень гидролиза сильно меняется c изменением температуры раствора соли. Действительно, процесс гидролиза является эндотермическим, поэтому:

Чем выше температура, тем больше степень гидролиза.

3. Степень гидролиза зависит от концентрации раствора:

Чем меньше концентрация раствора соли, тем больше степень гидролиза.

Степень гидролиза может быть выражена через константу гидролиза:

1. Для солей типаNH 4 Cl:

3. Для солей типаNH 4 CN:

(7)

Таким образом, степень гидролиза солей, образованных слабой кислотой и слабым основанием, практически не зависит от концентрации раствора соли.

34. Электродный потенциал. Возникновение скачка потенциала на межфазной границе. Понятие об электродной системе и электродной реакции.

Электродный потенциал- относительная величина т.к. измеряется относительно эталона, за эталон принимается водородный электрод

Скачек потенциала

При протекании электрохимической реакции на поверхности электродов 1 род образуется положительный или отрицательный заряд относительно прилегающего слоя раствора, который называется скачек потенциала. Этот скачек измерить сложно, поэтому вводят понятие электродный потенциал

35. Электродные системы, их классификация. Оx- и red- определяющие частицы в электродных системах разного типа.

1 рода состоит из металлического электрода – проводника опущенного в водный раствор электролита, который имеет также катионы этого металла. (Металл опущен в раствор своей соли). Электрод проводник – RED, а его катион - OX

2 рода состоит из электрода проводника металла, покрытого малорастворимым соединением, имеющим те же анионы этого металла, и опущен в раствор электролита, содержащий одноименные анионы малорастворимого соединения. В электродах второго рода окисленной формой является малорастворимое соединение (МА), восстановленной – атом металла (М) и анион раствора (АZ-).

Неметаллические электроды

Неметаллические электроды - системы состоящие из электрода проводника не участвующего в электродной реакции, а являющиеся поставщиками электронов для электродной реакции. Если в неметаллическом электроде частицы OX и RED являются ионами, то такие электроны называются редокси . Если одна из потенциалоопределяющих частиц- газ, то такие электроды называются газовыми.

Понятие о стандартном равновесном электродном потенциале. Таблица стандартных электродных потенциалов. Электрохимический ряд напряжений металлов и его использование для оценки электрохимической активности металлов.

36. а) Стандартный водородный электрод. Кислородный электрод.

Для стандартных условий, т.е. когда активность ионов водорода и парциальное давление водорода равны 1, а температура 250 С, по всеобщему соглашению принимается, что стандартный потенциал водородного электрода равен нулю. Водородный электрод называют электродом сравнения.

Уравнение Нернста для водородного электрода: ϕ H + /H 2 =-0.059*PH

Для кислородного ϕOH - /O 2 =1.23-0.059PH

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: низкий отрицательный потенциал означает, что данная форма является сильным восстановителем.

Окислительные

Пассивация

В компактном состоянии на поверхности металла образуется слой – пленки из окисной фазы, которая может предохранять от дальнейшей коррозии. Данное явление называется самопассивацией.
Условие сплошности пленки определяется правилом Пиллинга и Бедвортса

на поверхности металла образуется достаточно прочная пленка

Образуется рыхлая пленка

Потресковшаяся пленка не защищающая от коррозии

42. Химическое взаимодействие металлов с растворами щелочей.

С щелочами способны взаимодействовать только те металлы, оксиды и гидроксиды которых обладают амфотерными и кислотными свойствами. Это металлы: Be, Zn, Al, Ti, Ta, Cr, Mo, W, Mn, V, Nb
Металлы, у которых оксиды и гидроксиды обладают только основными свойствами к щелочам химически устойчивы (щелочные и щелочно-земельные металлы)

Щелочи в растворах и расплавах выполняют только роль среды, и окислителем по отношению к металлам в растворах щелочей является H 2 O , в расплавах окислитель – O 2

43. Химическое взаимодействие металлов с водой.

В зависимости от активности металла, реакция протекает при различных условиях и образуются разные продукты.

1). Взаимодействие с самыми активными металлами , стоящими в периодической системе в I А и I I А группах (щелочные и щелочно-земельные металлы) и алюминий . В ряду активности эти металлы расположены до алюминия (включительно)

Реакция протекает при обычных условиях, при этом образуется щелочь и водород.

активные металлы -Li, Na, K, Rb, Cs, Fr, Ca, Sr, Ba, Ra + Al – реагируют так

Катодные процессы

Поскольку катионы и молекулы воды принимают электроны от катода на инертном катоде в нейтральном растворе в первую очередь восстанавливаются те частицы, которые обладают наибольшей окислительной способностью (чем больше потенциал тем >OX способности.

Анодные процессы

Поскольку анионы и молекулы воды отдают электроны аноду, то в нейтральном растворе в первую очередь окисляются те частицы, которые обладают большей восстановительной способностью (с наименьшим электродным потенциалом) ϕ O 2/ H 2 O =1,23-0.059*PH

45. Процессы анодного окисления и катодного восстановления. Электролиз с инертным и растворяющимся анодом.

Катодный процесс.

Поскольку катион и молекулы воды принимают электроды от катода, на инертном катоде в нейтральном растворе в первую очередь восстанавливаются те частицы, которые облад наибольшей окислительной способностью (чем больше потенциал, тем выше их окисл способ)

ур.Нерснста – ϕh20/h2 =-0.059pH.

После воды не разряжаются (<-0.41)

Анодный процесс.

Поскольку анионы и H20 отдают электроны аноду, то в нейтральном растворе в первую очередь окисляются те частицы, которые обладают большей восст. Способностью (с наименьшим потенциалом).

Для H2O по ур Нернста ϕoh/h20=1.23-0.059pH

Сложные кислородсодержащие анионы не могут окисляться на аноде из водных растворов если ионы мет и немет в их состояниях имеют макс ст окисл

Искл – S+6O4 до S2O8

Металлы не могут принимать участие в процессе восстановления на катоде.

46. Расчеты масс веществ – продуктов электролиза по закону Фарадея. Выход по току продуктов электролиза.

m = AIT/nF

A – атомная масса эл

I – величина тока

T – время

F – пост. фарадея

N – валетность

Э – хим экв = A/n (m= ЭIT/F) в часах – ЭIT/26.8

Первый закон электролиза Фарадея : масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея : для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Выход вещества B=mфакт/mтеор*100%

Mфакт – фактическая масса вещ-ва на аноде и катоде

Mтеор – рассчитанная масса по формулам

47. Химический анализ. Качественный анализ неорганических веществ. Характерные и специфические реакции. Аналитическая классификация катионов и анионов.

Химический анализ - определение химического состава и строения веществ; включает качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава анализируемого объекта.

Задачей количественного анализа является определение точного содержания отдельных элементов или их соединений в анализируемом объекте.

Различные методы исследования, применяемые в качественном и в количественном анализах, можно разделить на три основные группы методов:

Химические, где используются химические реакции, результат которых определяют визуально;

Физические, основанные на измерении каких-либо физических характеристик вещества, являющихся функцией его химического состава;

Физико-химические, основанные на наблюдении за изменением физических свойств веществ (оптической плотности, электропроводности, теплопроводности и др.), которые происходят в результате химической реакции.

48. Методы количественного анализа – гравиметрический и титриметрический (объемный).

Титрование - это процесс, при котором к анализируемому раствору медленно, по каплям, приливают раствор реагента (р.в.) точно известной концентрации в количестве, эквивалентном содержанию определяемого компонента (о.в.).

Гравиметрический (весовой) анализ - метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в чистом химическом состоянии или в виде соответствующих соединений (точно известного постоянного состава).

Титриметрическим (объемным) методом анализа называют метод количественного химического анализа, основанный на точном измерении объема реагента (р.в.), требующегося для завершения реакции с данным количеством определяемого вещества (о.в.).

Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа. Его метрологические характеристики: предел обнаружения – 0,10 % или 10-3 моль/дм3; точность - 0,2 %.

Титриметрический метод анализа имеет предел обнаружения такой же, как и в гравиметрии - 0,10 % или 10-3 моль/дм3; а вот в точности уступает ей - 0,5 %. Являясь более точным, гравиметрический анализ имеет один существенный недостаток по сравнению с титриметрическим: он требует больших затрат времени на выполнение анализа.

49. Кислотно-основной метод титрования. Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе

Кислотно-основное титрование - титриметрические методы определения концентрации кислот или оснований, основанные на реакции нейтрализации:

Н + + ОН - = Н 2 О

Титрование раствором щелочи называется алкалиметрией , а титрование раствором кислоты - ацидиметрией. При количественном определении кислот (алкалиметрия) - рабочим раствором является раствор щелочи NaOH или КОН, при количественном определении щелочи (ацидиметрия) рабочим раствором является раствор сильной кислоты (обычно НСl или H2SO4). Определяемые вещества: сильные и слабые кислоты; сильные и слабые основания; соли, подвергающиеся гидролизу.

Виды кислотно-основного титрования:

Титрование сильной кислоты сильным основанием или наоборот;

Титрование слабой кислоты сильным основанием;

Титрование слабого основания сильной кислотой.

Индикаторы кислотно-основного титрования представляют собой слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются окраской. В процессе диссоциации эти две формы находятся в равновесии. Изменение рН в кислотно-основном титровании нарушает равновесие процесса диссоциации индикатора, что вызывает накопление в растворе одной из форм индикатора, окраску которой можно визуально наблюдать.

Закон эквивалентов формулируется так: эквивалентные количества всех веществ, участвующих в реакции, одинаковы. Для необратимой химической реакции

nАА + nВВ+ …= nСС + nDD + …

в соответствии с законом эквивалентов всегда будет справедливо равенство:

пeqA = пeqB = …=пeqC = пeqD = …

Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.

При выполнении титриметрических определений измерение объемов стандартных или анализируемых растворов проводят с помощью точной мерной посуды:

мерные колбы;

50. Титриметрический метод анализа. Классификация методов титриметрического анализа. Индикаторы в титриметрическом методе анализа.

Титриметрический анализ – метод количественного химического анализа, который базируется на измерении точного объема раствора с точно известной концентрацией (титранта), истраченного на взаимодействие с определяемым веществом.

Классификация по способу титрования. Обычно выделяют три способа: прямое, обратное и заместительное титрование.

Прямое титрование – это титрование раствора определяемого вещества А непосредственно раствором титранта В. Его применяют в том случае, если реакция между А и В протекает быстро. Содержание компонента А при прямом титровании титрантом В рассчитывают на основе равенства п =п .

Обратное титрование заключается в добавлении к определяемому веществу А избытка точно известного количества стандартного раствора В и после завершения реакции между ними, титровании оставшегося количества вещества В раствором титранта В". Этот способ применяют в тех случаях, когда реакция между А и В протекает недостаточно быстро, либо нет подходящего индикатора для фиксирования точки эквивалентности этой реакции.

Количество молей эквивалента определяемого веще­ства А при обратном титровании всегда равно разности между количеством молей эквивалента веществ В и В’:

п =п - п

Титрование косвенное заключается в титровании титрантом В не определяемого вещества А, а эквивалентного ему количества заместителя А", получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом.

Титрование заместителя применяют обычно в тех случаях, когда невозможно провести прямое титрование.

Количество молей эквивалента определяемого вещества при титровании заместителя всегда равно количеству молей, эквивалента титранта:

п =п = п

Индикаторы - вещества, которые дают возможность установить конечную точку титрования (момент резкого изменения окраски титруемого раствора). Наиболее часто индикатор добавляют ко всему титруемому раствору (внутренний индикатор). При работе с внешними индикаторами периодически берут каплю титруемого раствора и смешивают с каплей раствора индикатора или помещают на индикаторную бумагу (что приводит к по

Протон -- стабильная частица из класса адронов, ядро атома водорода.

Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906--1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона, подтвердив открытие искусственного превращения элементов. В этих опытах?-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона mp = (938,2796 ± 0,0027)МэВ или ~ 1,6-10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами -- глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры ~ 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия -- протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино (для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (?, ?, ?, ?) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число -- барионный заряд, равный 1 для барионов, - 1 -- для антибарионов и О -- для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона. Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (~ 2*1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона ~ 1032 лет в объеме воды в 100 м3 (1 м3 содержит ~ 1030 протонов) следует ожидать распада одного протона в год. Остается всего лишь зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природы.

Нейтрон -- нейтральная частица, относящаяся к классу адронов. Открыт в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона qn равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что |qn| <10-20e (здесь е -- элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку |qn|< 2?10-22 е. Спин нейтрона равен 1/2. Как адрон с полуцелым спином, он относится к группе барионов. У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен +1.Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного u-кварка с электрическим зарядом +2/3 и двух d-кварков с зарядом - 1/3, связанных между собой глюонным полем.

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон -- нестабильная частица, распадающаяся на протон (р), электрон (е-) и электронное антинейтрино. Время жизни нейтрона составляет (917 ?14) с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: mn-mp(1,29344 ±0,00007) МэВ. Из сопоставления ее с массой протона получим массу нейтрона: mn = 939,5731 ± 0,0027 МэВ; это соответствует mn ~ 1,6-10-24.Нейтрон участвует во всех видах фундаментальных взаимодействий. Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия -- бета-распад нейтрона.

Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса. Это лишь один из примеров его электромагнитного взаимодействия. Большой интерес приобрели поиски дипольного электрического момента нейтрона, для которого была получена верхняя граница. Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР; поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах.

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии:

медленные нейтроны (<105эВ, есть много их разновидностей),

быстрые нейтроны (105?108эВ), высокоэнергичные (> 108эВ).

Весьма интересными свойствами обладают очень медленные нейтроны(10-7эВ), которые получили название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов. Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне в институте ядерных исследований спустя почти десятилетие.

Недавно ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

  • Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
  • Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
  • Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
  • Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Общее представление о методе молекулярных орбиталей.
  • Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
  • Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
  • 11.Металлические связи. Металлические связи как предельный случай делокализации валентных электронных орбиталей. Кристаллические решетки металлов.
  • 12. Межмолекулярные связи. Взаимодействия Ван-дер-Ваальса – дисперсионное, диполь-дипольное, индуктивное). Водородная связь.
  • 13. Основные классы неорганических соединений. Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.
  • 14. Основания.Номенклатура оснований. Химические свойства оснований. Амфотерные основания, реакции их взаимодействия с кислотами и щелочами.
  • 15. Кислоты.Бескислородные и кислородные кислоты. Номенклатура (название кислот). Химические свойства кислот.
  • 16. Соли как продукты взаимодействия кислот и оснований. Типы солей: средние (нормальные), кислые, основные, оксосоли, двойные, комплексные соли. Номенклатура солей. Химические свойства солей.
  • 17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
  • 18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
  • 20. Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.
  • 22. Влияние температуры на скорость химической реакции. Энергия активации.
  • 23. Химическое равновесие. Константа равновесия, ее зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
  • 1)Кислота – сильный электролит.
  • 36. А) Стандартный водородный электрод. Кислородный электрод.
  • 37. Уравнение Нернста для расчета электродных потенциалов электродных систем различных типов. Уравнение Нернста для водородного и кислородного электродов
  • 3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
  • I – величина тока
  • 49. Кислотно-основной метод титрования.Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе
    1. Атом. Представление о строении атома. Электроны, протоны, нейтроны

    Атом - элементарная частица вещества (хим. элемента), состоящая из определенного набора протонов и нейтронов (ядро атома), и электронов.

    Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов). Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-). Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

    1. Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения

    Атом – микромир, в котором действуют законы квантовой механики.

    Волновой процесс движения электрона в атоме вокруг ядра описывается с помощью волновой функции пси (ψ), которая должна иметь три параметра квантования (3 степени свободы).

    Физический смысл – трехмерная амплитуда эл. волны.

    n– главное квантовое число, характ. энергетич. уровень в атоме.

    l– побочное (орбитальное к.ч.)l=0…n-1, характеризует энергетич. подуровни в атоме и форму атомной орбитали.

    m l – магнитное к.ч.ml= -l… +l, характеризует ориентацию элемента в м.п.

    ms- спиновое число. Исп. Т.к. каждый электрон имеет свой момет движения

    1. Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.

    Пр. Гунда : заполнение происходит последовательно таким образом, чтобы сумма спиновых чисел (момент движения) было максимально.

    Принцип Паули : в атоме не может быть 2х эл., у которых все 4 квант. Числа были бы одинаковы

    Х n – макс кол-во эл. на энерг. ур.

    Начиная с 3его периода наблюдается эффект запаздывания, который объясняется принципом наименьшей энергии: формирование электронной оболочки атома происходит таким образом, что эл. занимают энергетически выгодное положение, когда энергия связи с ядром максимально возможна, а собственная энергия электрона – минимально возможна.

    Пр. Кличевского – наиболее энергетически выгодны те подур., у кот. сумма квантовых чиселnиlстремится к мин.

    1. Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.

    Энергия ионизации атома - Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации.

    Сродство к электрону - Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону (Е).

    Энергия ионизации возрастает в периодах от щелочных металлов к благородным газами уменьшается в группах сверху вниз.

    Для элементов главных подгрупп сродство к электрону возрастает в периодах слева направои уменьшается в группах сверху вниз.

    1. Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.

    Электроотрицательность – способность атома хим.эл. в соединении притягивать к себе электроны

    Методы оценки:

    ЭО=I+E(кДж/моль) - полусумма энергий ионизации и сродства(по Маликену)

    Относительная шкала по Полингу

    Используя относ шкалу э.о. и приняв э.о. F= 4в периоде с увеличением заряда ядра э.о. увелич. и увелич немет. св-ва.

    В группе увеличение заряда ядра сопровождается уменьшение э.о. и усиление мет. св-в

    Степень окисления (окислительное число) – воображаемый заряд атома электронного соединения, который определяется из предположения, что соединение состоит из ионов

    С.о. простых веществ =0

    С.о кислорода = -2 (искл. Пероксиды H2O2(-1) и соединения со фтором)

    С.о. водорода и щелочных металлов = +1

    Отриц С.о. имеют только немет и только одну

    В любом ионе алгебраич сумма всех с.о. = заряду иона, а в нейтральных молекулах = 0

    Если хим соед сост из мет и немет, то мет +, немет –

    Если хим соед сост из 2х немет, то отриц с.о. имеет тот, у кот > э.о.

      Периодический закон и периодическая система элементов Д.И.Менделеева. Периоды, группы и подгруппы периодической системы. Связь периодической системы со строением атомов. Электронные семейства элементов.

    формулировка периодического закона такова:

    «свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

    Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

    Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

    В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

    Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

    Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n - одинаково).

    • Перевод

    В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

    Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

    • 0,93827 ГэВ/с 2 у протона,
    • 0,93957 ГэВ/с 2 у нейтрона.
    Это ключ к их природе – они на самом деле очень похожи. Да, между ними существует одно очевидное различие: у протона положительный электрический заряд, а у нейтрона заряда нет (он нейтральный, отсюда и его название). Соответственно, электрические силы действуют на первый, но не на второй. На первый взгляд это различие кажется очень важным! Но на самом деле это не так. Во всех остальных смыслах протон с нейтроном почти близнецы. У них идентичны не только массы, но и внутреннее строение.

    Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.

    Протоны идентифицировали и описали примерно в 1920 году (хотя открыты они были раньше; ядро атома водорода – это просто отдельный протон), а нейтроны нашли где-то в 1933-м. То, что протоны и нейтроны так похожи друг на друга, поняли почти сразу. Но то, что у них есть измеримый размер, сравнимый с размером ядра (примерно в 100 000 раз меньше атома по радиусу), не знали до 1954-го. То, что они состоит из кварков, антикварков и глюонов, постепенно понимали с середины 1960-х до середины 1970-х. К концу 70-х и началу 80-х наше понимание протонов, нейтронов, и того, из чего они состоят, по большей части устаканилось, и с тех пор остаётся неизменным.

    Нуклоны описать гораздо труднее, чем атомы или ядра. Не сказать, что атомы в принципе простые , но по крайней мере, можно сказать, не раздумывая, что атом гелия состоит из двух электронов, находящихся на орбите вокруг крохотного ядра гелия; а ядро гелия – достаточно простая группа из двух нейтронов и двух протонов. А вот с нуклонами всё уже не так просто. Я уже писал в статье "Что такое протон, и что у него внутри? ", что атом похож на элегантный менуэт, а нуклон – на дикую вечеринку.

    Сложность протона и нейтрона, судя по всему, всамделишные, и не проистекают из неполных физических знаний. У нас есть уравнения, используемые для описания кварков, антикварков и глюонов, а также сильных ядерных взаимодействий, происходящих между ними. Эти уравнения называются КХД, от "квантовая хромодинамика ". Точность уравнений можно проверять различными способами, включая измерение количества появляющихся на Большом адронном коллайдере частиц. Подставляя уравнения КХД в компьютер и запуская вычисления свойств протонов и нейтронов, и других сходных частиц (с общим названием «адроны»), мы получаем предсказания свойств этих частиц, хорошо приближающиеся к наблюдениям, сделанным в реальном мире. Поэтому у нас есть основания полагать, что уравнения КХД не врут, и что наше знание протона и нейтрона основано на верных уравнениях. Но просто иметь правильные уравнения недостаточно, ибо:

    • У простых уравнений могут оказаться очень сложные решения,
    • Иногда невозможно описать сложные решения простым способом.
    Насколько мы можем судить, именно так дело обстоит с нуклонами: это сложные решения относительно простых уравнений КХД, и описать их парой слов или картинок не представляется возможным.

    Из-за внутренней сложности нуклонов вам, читатель, придётся сделать выбор: как много вы хотите узнать по поводу описанной сложности? Неважно, как далеко вы зайдёте, удовлетворения это вам, скорее всего, не принесёт: чем больше вы будете узнавать, тем понятнее вам будет становиться тема, но итоговый ответ останется тем же – протон и нейтрон очень сложны. Я могу предложить вам три уровня понимания, с увеличением детализации; вы же можете остановиться после любого уровня и перейти на другие темы, или можете погружаться до последнего. По поводу каждого уровня возникают вопросы, ответы на которые я могу частично дать в следующем, но новые ответы вызывают новые вопросы. В итоге – как я делаю в профессиональных обсуждениях с коллегами и продвинутыми студентами – я могу лишь отослать вас к данным полученным в реальных экспериментах, к различным влиятельным теоретическим аргументам, и компьютерным симуляциям.

    Первый уровень понимания

    Из чего состоят протоны и нейтроны?

    Рис. 1: чрезмерно упрощённая версия протонов, состоящих только из двух верхних кварков и одного нижнего, и нейтронов, состоящих только из двух нижних кварков и одного верхнего

    Чтобы упростить дело, во многих книгах, статьях и на сайтах указано, что протоны состоят из трёх кварков (двух верхних и одно нижнего) и рисуют нечто вроде рис. 1. Нейтрон такой же, только состоящий из одного верхнего и двух нижних кварков. Это простое изображение иллюстрирует то, во что верили некоторые учёные, в основном в 1960-х. Но вскоре стало понятно, что эта точка зрения чрезмерно упрощена до такой степени, что уже не является корректной.

    Из более искушённых источников информации вы узнаете, что протоны состоит из трёх кварков (двух верхних и одного нижнего), удерживаемых вместе глюонами – и там может появиться картинка, похожая на рис. 2, где глюоны нарисованы в виде пружинок или ниток, удерживающих кварки. Нейтроны такие же, только с одним верхним кварком и двумя нижними.


    Рис. 2: улучшение рис. 1 за счёт акцента на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне

    Не такой уж плохой способ описания нуклонов, поскольку он делает акцент на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне за счёт глюонов (точно так же, как с электромагнитным взаимодействием связан фотон, частица, из которых состоит свет). Но это тоже сбивает с толку, поскольку на самом деле не объясняет, что такое глюоны и что они делают.

    Есть причины двигаться дальше и описывать вещи так, как я делал в : протон состоит из трёх кварков (двух верхних и одного нижнего), кучи глюонов и горы пар кварк-антикварк (в основном это верхние и нижние кварки, но есть и несколько странных). Все они летают туда и сюда с очень большой скоростью (приближаясь к скорости света); весь этот набор удерживается при помощи сильного ядерного взаимодействия. Я продемонстрировал это на рис. 3. Нейтроны опять такие же, но с одним верхним и двумя нижними кварками; изменивший принадлежность кварк указан стрелкой.


    Рис. 3: более реалистичное, хотя всё равно неидеальное изображение протонов и нейтронов

    Эти кварки, антикварки и глюоны не только бешено носятся туда-сюда, но и сталкиваются друг с другом, и превращаются друг в друга через такие процессы, как аннигиляция частиц (в которой кварк и антикварк одного типа превращаются в два глюона, или наоборот) или поглощение и испускание глюона (в котором могут столкнуться кварк и глюон и породить кварк и два глюона, или наоборот).

    Что у этих трёх описаний общего:

    • Два верхних кварка и нижний кварк (плюс что-то ещё) у протона.
    • Один верхний кварк и два нижних кварка (плюс ещё что-то) у нейтрона.
    • «Ещё что-то» у нейтронов совпадает с «ещё чем-то» у протонов. То есть, у нуклонов «ещё что-то» одинаковое.
    • Небольшая разница в массе у протона и нейтрона появляется из-за разницы масс нижнего кварка и верхнего кварка.
    И, поскольку:
    • у верхних кварков электрический заряд равен 2/3 e (где e – заряд протона, -e – заряд электрона),
    • у нижних кварков заряд равен -1/3e,
    • у глюонов заряд 0,
    • у любого кварка и соответствующего ему антикварка общий заряд равен 0 (к примеру, у антинижнего кварка заряд +1/3e, так что у нижнего кварка и нижнего антикварка заряд будет –1/3 e +1/3 e = 0),
    Каждый рисунок относит электрический заряд протона на счёт двух верхних и одного нижнего кварка, а «ещё что-то» добавляет к заряду 0. Точно так же у нейтрона заряд нулевой благодаря одному верхнему и двум нижним кваркам:
    • общий электрический заряд протона 2/3 e + 2/3 e – 1/3 e = e,
    • общий электрический заряд нейтрона 2/3 e – 1/3 e – 1/3 e = 0.
    Различаются эти описания в следующем:
    • сколько «ещё чего-то» внутри нуклона,
    • что оно там делает,
    • откуда берутся масса и энергия массы (E = mc 2 , энергия, присутствующая там, даже когда частица покоится) нуклона.
    Поскольку большая часть массы атома, и, следовательно, всей обычной материи, содержится в протонах и нейтронах, последний пункт крайне важен для правильного понимания нашей природы.

    Рис. 1 говорит о том, что кварки, по сути, представляют собой треть нуклона – примерно так, как протон или нейтрон представляют четверть ядра гелия или 1/12 ядра углерода. Если бы этот рисунок был правдив, кварки в нуклоне двигались бы относительно медленно (со скоростями гораздо меньшими световой) с относительно слабыми взаимодействиями, действующими между ними (хотя и при наличии некоей мощной силы, удерживающей их на месте). Масса кварка, верхнего и нижнего, составляла бы тогда порядка 0,3 ГэВ/с 2 , примерно треть массы протона. Но это простое изображение и навязываемые им идеи просто неверны.

    Рис. 3. даёт совершенно другое представление о протоне, как о котле частиц, снующих в нём со скоростями, близкими к световой. Эти частицы сталкиваются друг с другом, и в этих столкновениях некоторые из них аннигилируют, а другие создаются на их месте. Глюоны не имеют массы, массы верхних кварков составляют порядка 0,004 ГэВ/с 2 , а нижних – порядка 0,008 ГэВ/с 2 - в сотни раз меньше протона. Откуда берётся энергия массы протона, вопрос сложный: часть её идёт от энергии массы кварков и антикварков, часть – от энергии движения кварков, антикварков и глюонов, а часть (возможно, положительная, возможно, отрицательная) из энергии, хранящейся в сильном ядерном взаимодействии, удерживающем кварки, антикварки и глюоны вместе.

    В некотором смысле рис. 2 пытается устранить разницу между рис. 1 и рис. 3. Он упрощает рис. 3, удаляя множество пар кварк-антикварк, которые, в принципе, можно назвать эфемерными, поскольку они постоянно возникают и исчезают, и не являются необходимыми. Но она производит впечатление того, что глюоны в нуклонах являются непосредственной частью сильного ядерного взаимодействия, удерживающего протоны. И она не объясняет, откуда берётся масса протона.

    У рис. 1 есть другой недостаток, кроме узких рамок протона и нейтрона. Она не объясняет некоторые свойства других адронов, к примеру, пиона и ро-мезона . Те же проблемы есть и у рис. 2.

    Эти ограничения и привели к тому, что своим студентам и на моём сайте, я даю картинку с рис. 3. Но хочу предупредить, что и у неё есть множество ограничений, которые я рассмотрю позже.

    Стоит отметить, что чрезвычайную сложность строения, подразумеваемая рис. 3, стоило ожидать от объекта, который удерживает вместе такая мощная сила, как сильное ядерное взаимодействие. И ещё одно: три кварка (два верхних и один нижний у протона), не являющиеся частью группы пар кварков-антикварков, часто называют «валентными кварками», а пары кварков-антикварков – «морем кварковых пар». Такой язык во многих случаях технически удобен. Но он даёт ложное впечатление того, что если бы вы смогли заглянуть внутрь протона, и посмотрели на определённый кварк, вы сразу смогли бы сказать, является ли он частью моря или валентным. Этого сделать нельзя, такого способа просто нет.

    Масса протона и масса нейтрона

    Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

    Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

    Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

    Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

    Чтобы понять, как это работает, нужно думать не в терминах массы m протона, но в терминах его энергии массы E = mc 2 , энергии, связанной с массой. Концептуально правильным вопросом будет не «откуда взялась масса протона m», после которого вы можете подсчитать E, умножив m на c 2 , а наоборот: «откуда берётся энергия массы протона E», после которого можно подсчитать массу m, разделив E на c 2 .

    Полезно классифицировать взносы в энергию массы протона по трём группам:

    А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
    Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
    В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

    Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

    Подводя итоги, укажем, что:

    • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
    • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
    • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.
    Нам известно, что верен рис. 3. Для его проверки мы можем провести компьютерные симуляции, и, что более важно, благодаря различным убедительным теоретическим аргументам, мы знаем, что если бы массы верхнего и нижнего кварков были нулевыми (а всё остальное осталось, как есть), масса протона практически не изменилась бы. Так что, судя по всему, массы кварков не могут делать важные вклады в массу протона.

    Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

    Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

    Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

    На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.