Какие функции в клетке выполняют нуклеиновые кислоты? Структура и функции нуклеиновых кислот.

Нуклеиновые кислоты.

Нуклеиновые кислоты – природные высокомолекулярные биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Макромолекула нуклеиновых кислот, с молекулярной массой от 10000 Дальтон до нескольких миллионов, открыты в 1869 г. швейцарским химиком Ф. Мишером в ядрах лейкоцитов, входящих в состав гноя, отсюда и название (нуклеус – ядро).

Нуклеиновые кислоты представляют собой полимеры, мономерами которых являются нуклеотиды . Каждый нуклеотид состоит из азотистого основания, сахара пентозы и остатка фосфорной кислоты. Из нуклеотидов строятся длинные молекулы – полинуклеотиды .

Фосфат

Азотистое

основание

Связь между

фосфатом и сахаром

Рис. Строение нуклеотида.

Сахар , входящий в состав нуклеотида, содержит пять углеродных атомов, т. е. представляет собой пентозу . В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот – рибонуклеиновые (РНК), которые содержат рибозу , и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу (С 5 Н 10 О 4).

Основания , в обоих видах нуклеиновых кислот, содержатся четырех разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов . К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов – цитизин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК).

Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота.

Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют совой нукоеотиды. Таковы, например, аденозинтрифосфат (АТФ), никотинамидадениндинуклеотид (НАД), никотинамидадениндинуклеотид-фосфат (НАДФ) и флавинадениндинуклеотид (ФАД).

Нуклеиновые кислоты

ДНКРНК


ядерная цитоплазматические иРНК тРНК рРНК

В настоящее время известно большое число разновидностей ДНК и РНК, отличных друг от друга по строению и значению в метаболизме.

Пример: в бактериях клеток кишечной палочки содержится около 1000 различных нуклеиновых кислот, а у животных и растений еще больше.

Каждый вид организмов содержит свой, характерный только для него, набор этих кислот. ДНК локализуется преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав ядрышек, рибосом митохондрий, пластид и цитоплазмы.

Молекула ДНК является универсальным носителем генетической информации в клетках. Именно благодаря строению и функциям этой молекулы признаки передаются по наследству – от родителей потомкам, т.е. осуществляется всеобщее свойство живого – наследственность. Молекулы ДНК – самые крупные биополимеры.

Строение ДНК.

Структура молекул ДНК была расшифрована в 1953 г. Дж. Уотсоном и Ф. Криком. За это открытие они получили Нобелевскую премию.

Согласно модели ДНК по Уотсону – Крику , молекула ДНК состоит из двух полинуклеотидных цепочек, закрученных вправо вокруг одной и той же оси , образуя двойную спираль . Цепи распложены антипараллельно, т.е. навстречу друг другу. Объединяются две полинуклеотидные цепи в единую молекулу ДНК при помощи водородных связей, возникающих между азотистым основанием нуклеотидов разных цепей. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между дезоксирибозой, в молекуле ДНК (и рибозой в РНК), одного и остатком фосфорной кислоты другого нуклеотида.

Цепи двойной спирали комплементарны друг другу, т. к. спаривание оснований происходит в строгом соответствии: аденин соединяется с тимином, а гуанин – с цитозином.

В результате у всякого организма Рис. Спаривание нуклеотидов.

число адениловых нуклеотидов равно числу тимидиловых , а число гуаниловых – числу цитидиловых. Эта закономерность получила название «правило Чаргаффа».

Строгое соответствие нуклеотидов, расположенных в парных антипараллельных нитях ДНК, называются комплементарностью. Это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Таким образом, двойная спираль стабилизирована многочисленными водородными свойствами (между А и Т образуется две, а между Г и Ц – три) и гидрофобными взаимодействиями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований (один виток). Диаметр спирали – 2 нм. Расстояние между углеводными компонентами двух спаренных нуклеотидов 1,1 нм. Длина молекулы нуклеиновых кислот достигает сотен тысяч нанометров. Это значительно больше самой крупной макромолекулы белка, которая в развернутом виде достигает в длину не более 100-200 нм. Масса молекулы ДНК составляет 6*10 -12 г.

Процесс удвоения молекулы ДНК называется репликацией . Репликация происходит следующим образом. Под действием специальных ферментов (геликаза) разрываются водородные связи между нуклеотидами двух цепочек. Спираль раскручивается. К освободившимся связям, по принципу комплементарности, присоединяются соответствующие нуклеотиды ДНК, в присутствии фермента ДНК-полимеразы. Это наращивание может происходить только в направлении 5"→ 3". Это означает непрерывного возможность копирования только одной цепи ДНК (на рисунке верхняя). Этот процесс называется непрерывнаярепликация . Копирование другой цепи должно всякий раз начинаться вновь, в результате в цепи возникают разрывы. Для их ликвидации необходим фермент – ДНК-лигаза. Такую репликацию называют прерывистой .

Данный способ репликации ДНК, предложенный Уотсоном и Криком известен под названием полуконсервативная репликация .

Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т.е. «старая» цепочка ДНК как бы является матрицей для синтеза «новой». Такие реакции называются реакции матричного синтеза ; они характерны только для живого.

Репликация (редупликация) позволяет сохранить постоянство структуры ДНК. Синтезированная молекула ДНК абсолютно идентична исходной по последовательности нуклеотидов. Если под воздействием различных факторов в процессе репликации в молекуле ДНК происходят изменения в числе и порядке следования нуклеотидов, то возникают мутации. Способность молекул ДНК исправлять возникающие изменения и восстанавливать исходную называется репарацией .

Функции ДНК:

1) Хранение наследственной информации.

ДНК хранит информацию в виде последовательности нуклеотидов.

2) Воспроизведение и передача генетической информации.

Возможность передачи информации дочерним клеткам обеспечивается способностью хромосом к разделению на хроматиды с последующей редупликацией молекул ДНК. В ней закодирована генетическая информация о последовательности аминокислот в молекуле белка. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном.

3) Структурная.

ДНК присутствует в хромосомах в качестве структурного компонента, т.е. является химической основой хромосомного генетического материала (гена).

4) ДНК является матрицей для создания молекул РНК.

РНК содержиться во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит в качестве пентозы рибозу (вместо дезоксирибозы), а в качестве одного из пиримидиновых оснований – урацил (вместо тимина). Существует три типа РНК. Это матричная, или информационная, РНК (мРНК, иРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Все три синтезируются непосредственно на ДНК, а количество РНК в каждой клетке зависит от количества вырабатываемого этой клеткой белка.

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей (фосфодиэфирные связи) между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

В отличие от ДНК, молекулы РНК, представляют собой одноцепочечный линейный биополимер, состоящий из нуклеотидов.

Двухцепочечные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом – вирусная РНК.

Нуклеотиды одной молекулы РНК могут вступать в комплементарные взаимоотношения с другими нуклеотидами этой же цепочки, в результате образования вторичной и третичной структуры молекул РНК.

Рис. Строение транспортной РНК.

Рибисомальная РНК (рРНК) составляет 85% всей РНК клетки, она синтезируется в ядрышке, в соединение с белком входит в состав рибосом, митохондрий (митохондриальная РНК) и пластид (пластидная РНК). Содержит от 3 до 5 тыс. нуклеотидов. На рибосомах идет синтез белка.

Функции : рРНК выполняет структурную функцию (входит в состав рибосом) и участвует в формировании активного центра рибосом, где происходит образование пептидных связей между молекулами аминокислот в процессе биосинтеза белка.

Информационная РНК (иРНК) составляет 5% всей РНК в клетках. Она синтезируется в процессе транскрипции на определенном участке молекулы ДНК – гене. По строению иРНК комплементарна участку молекул ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывалась информация (может состоять из 300-30000 нуклеотидов)

Функции : иРНК переносит информацию о синтезе белка из ядра в цитоплазму на рибосомы и становится матрицей для синтеза молекул белка.

Транспортная РНК (тРНК) составляет около 10% всей РНК, синтезируется в ядрышке, имеет короткую цепь нуклеотидов и находится в цитоплазме. Она имеет функцию трилистника. У каждой аминокислоты имеется собственная семья молекул тРНК. Они доставляют содержащиеся в цитоплазме аминокислоты к рибосоме.

Функции : на одном конце находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому присоединяется аминокислота. Для каждой аминокислоты – своя тРНК.


НУКЛЕИНОВЫЕ КИСЛОТЫ
биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными. В 1928 английский бактериолог Ф. Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж. Бидл и Э. Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э. Чаргафф в США и Дж. Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.

Структура ДНК была установлена в 1953 М. Уилкинсом, Дж. Уотсоном и Ф. Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А. Даунс и Дж. Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф. Криком в Англии, М. Ниренбергом и С. Очоа в США, Х. Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами.
Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией. Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны. Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Большую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК. Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.
ОБЩИЕ СВОЙСТВА
Молекулы нуклеиновых кислот содержат множество отрицательно заряженных фосфатных групп и образуют комплексы с ионами металлов; их калиевая и натриевая соли хорошо растворимы в воде. Концентрированные растворы нуклеиновых кислот очень вязкие и слегка опалесцируют, а в твердом виде эти вещества белые. Нуклеиновые кислоты сильно поглощают ультрафиолетовый свет, и это свойство лежит в основе определения их концентрации. С этим же свойством связан и мутагенный эффект ультрафиолетового света. Длинные молекулы ДНК хрупки и легко ломаются, например при продавливании раствора через шприц. Поэтому работа с высокомолекулярными ДНК требует особой осторожности.
Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:

Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1" до 5". В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше. Фрагменты полинуклеотидных цепей ДНК и РНК показаны на рисунке.



Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3" и 5", молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул. Азотистые основания - это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1ў. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин.



Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями:


Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60° С, эти связи рвутся и цепи расходятся - происходит денатурация ДНК (плавление). Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований.


ДВОЙНАЯ СПИРАЛЬ ДНК. По своей структуре ДНК напоминает винтовую лестницу. Ее боковины составлены из чередующихся остатков сахара и фосфатных групп; каждый остаток сахара в одной боковине соединен со своим партнером в другой с помощью "перекладины", состоящей из пурина (аденина или гуанина) и пиримидина (цитозина или тимина), при этом аденин соединяется только с тимином, а гуанин - с цитозином.


Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом:


Соответствие А"Т и Г"Ц называют правилом комплементарности, а сами цепи - комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую. Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.
ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ
Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация).
Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты - это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:


Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты - ДНК-полимеразы. В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты -матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала. ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:


Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит "сбой", и возникают мутации (см. также НАСЛЕДСТВЕННОСТЬ). В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК):


Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК -> ДНК и ДНК -> РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК -> РНК и РНК -> ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК:


Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака.
Трансляция нуклеиновых кислот в белки. Генетическая информация, закодированная в нуклеотидной последовательности ДНК, переводится не только на язык нуклеотидной последовательности РНК, но и на язык аминокислот - мономерных единиц белков. Белковая молекула - это цепочка из аминокислот. Каждая аминокислота содержит кислую карбоксильную группу -COOH и оснвную аминогруппу -NH2. Карбоксильная группа одной аминокислоты связывается с аминогруппой другой, образуя амидную связь, и этот процесс продолжается, пока не образуется цепь, содержащая до 1000 аминокислот (см. также БЕЛКИ). В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена - участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул. Репликация нуклеиновых кислот осуществляется благодаря образованию водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через "адапторные" нуклеиновые кислоты - небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК. Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом:


Последовательность оснований в ДНК задает порядок следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, - только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза (см. также рисунок).



1. Ферменты, называемые аминоацил-тРНК-синтетазами, присоединяют аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты. 2. Молекула мРНК присоединяется своим первым кодоном к небольшой частице, называемой рибосомой. Рибосомы состоят из примерно равных количеств рРНК и белка. Структура и функция рибосом весьма сложны, но главная их задача - облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК. 3. тРНК, нагруженная аминокислотой, связывается с соответствующим кодоном мРНК, которая, в свою очередь, контактирует с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота. 4. мРНК, подобно ленте на конвейере, продвигается по рибосоме на один кодон вперед. 5. Следующая тРНК, нагруженная аминокислотой, присоединяется ко второму кодону. 6. Первая и вторая аминокислоты связываются между собой. 7. Первая тРНК отсоединяется от комплекса, и теперь вторая тРНК несет две аминокислоты, связанные между собой. 8. мРНК снова продвигается на один кодон вперед, и все события повторяются, а растущая аминокислотная цепь удлиняется на одну аминокислоту. Процесс продолжается, пока не будет достигнут последний, "стоп"-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100-200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты.
Генетический код. Итак, каждая аминокислота в белке опосредованно детерминируется определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет 4ґ4ґ4 = 64. Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов - от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии - это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.
Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трех случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота - глицин - может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ. Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания - пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и ЦАЦ, а глутамин - ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют никаких аминокислот и называются "бессмысленными". Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец цистрона, а также граница раздела между ними помечаются с помощью своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими "бессмысленными" кодонами. У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и "молчащих" генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты - неясно; возможно, они выполняют регуляторные функции. У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью.
Транспортные РНК и супрессия. Смысл информации, содержащейся в ДНК, если переводить ее на язык аминокислот, определяется как самой ДНК, так и считывающим механизмом, т.е. зависит не только от того, какие кодоны есть в ДНК и в какой последовательности они расположены, но также и от того, какие именно аминокислоты (и к каким тРНК) присоединяют аминоацил-тРНК-синтетазы. Конечно, природа синтетаз и тРНК тоже определяется ДНК, и в этом смысле ДНК является первичным детерминантом белковой последовательности. Тем не менее суммарная детерминация представляет собой функцию всей системы, поскольку результат зависит от исходных компонентов. Если бы соответствие между тРНК и аминокислотами было другим, смысл кодонов тоже изменился бы. Известно, что мутации в ДНК изменяют считывающий механизм и в результате меняют - пусть и незначительно - смысл кодонов. Так, в бактерии Escherichia coli глициновая тРНК обычно узнает в мРНК кодон ГГА; мутация в ДНК, с которой транскрибируется эта тРНК, изменяет антикодон глициновой тРНК таким образом, что теперь он узнает кодон АГА, соответствующий аргинину, и в белковой молекуле вместо аргинина появляется глицин. Это не обязательно имеет фатальные последствия, поскольку не все аргинины кодируются триплетом АГА и есть аргининовые тРНК, по-прежнему узнающие "свои" АГА. В результате измененными оказываются не все белковые молекулы. Иногда такие мутации, изменяющие антикодон, подавляют (супрессируют) мутации в кодоне. Например, если в результате мутации глициновый кодон ГГА превращается в АГА, он все же может прочитываться как глицин, если антикодон глициновой тРНК, в свою очередь, изменился так, что эта тРНК стала узнавать АГА. В этом случае вторая "ошибка" устраняет первую. Мутации, приводящие к изменению антикодонов, могут иметь разные последствия, поскольку один и тот же кодон может узнаваться несколькими тРНК. Вообще говоря, узнавание осуществляется благодаря комплементарности оснований кодона и антикодона, однако одно из оснований кодона может модифицироваться таким образом, что антикодон будет узнавать даже неполностью комплементарный кодон. В результате одна и та же тРНК может взаимодействовать с несколькими разными кодонами, кодирующими одну и ту же аминокислоту. Этот феномен неполного соответствия кодона и антикодона был назван Ф. Криком "шатанием".
Регуляция активности генов. Для организма было бы катастрофой, если бы во всех его клетках одновременно работали все гены и синтезировались все закодированные ими белки. Бактерии, например, должны все время приспосабливаться к условиям среды, синтезируя нужные ферменты. Все клетки высших организмов имеют один и тот же набор генов, но, к счастью, клетки мозга не продуцируют пищеварительные ферменты, а в хрусталике глаза не синтезируются мышечные белки. Активность гена характеризуется тем, транскрибируется ли он с образованием соответствующей мРНК. ДНК - длинная молекула, и в определенных ее участках имеются последовательности, называемые промоторами, которые распознаются специфическим транскрибирующим ферментом - полимеразой. В этих участках и только в них начинается транскрипция, продолжаясь до тех пор, пока не достигнет последовательности оснований, означающей конец считывания. Существуют особые репрессорные белки, которые связываются с ДНК поблизости от промотора в участке, называемом оператором. Образовавшийся комплекс блокирует транскрипцию, и мРНК не синтезируется. Таким образом, репрессорные белки являются ингибиторами транскрипции. С другой стороны, существуют небольшие молекулы, которые образуют комплекс с репрессорами и снимают их блокирующее действие на транскрипцию. Иными словами, они ингибируют ингибиторы. Так, у бактерий в норме отсутствуют ферменты, катализирующие расщепление некоторых сахаров; однако если один из этих сахаров появляется в среде, он образует комплекс с репрессором, ингибирование снимается и запускается синтез соответствующего фермента. Ферменты, синтез которых индуцируется собственными субстратами, называются индуцибельными. В ряде случаев, наоборот, репрессорный белок не блокирует транскрипцию мРНК, если он не связан с определенной молекулой. У бактерий некоторые ферменты, участвующие в синтезе определенных аминокислот, образуются только в отсутствие этих аминокислот, т.е. бактерии производят данные ферменты лишь по мере надобности. Если добавить в среду соответствующую аминокислоту, она образует комплекс с репрессором и активирует его, а тем самым ингибирует транскрипцию соответствующих генов. Уже образовавшаяся мРНК вскоре расщепляется, и синтез ферментов останавливается. Такие ферменты являются отрицально индуцибельными. Поскольку репрессорные белки сами кодируются генами, работа которых, в свою очередь, может регулироваться другими генами, а синтез малых молекул-индукторов и гормонов также в конечном счете регулируется генами, механизмы регуляции генной активности могут быть очень сложными.
ЛИТЕРАТУРА
Ичас М. Биологический код. М., 1971 Шабарова З.А., Богданов А.А. Химия нуклеиновых кислот и их компонентов, М., 1978 Зенгер В. Принципы структурной организации нуклеиновых кислот. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Вопрос 1. Что такое нуклеиновые кислоты?

Нуклеиновые кислоты получили свое название в связи с тем, что впервые были обна­ружены в клеточном ядре (лат. nucleus — яд­ро). Позже оказалось, что они присутствуют также в цитоплазме, пластидах и митохондри­ях. По химическому составу нуклеиновые кис­лоты — гетерополимеры, состоящие из нукле­отидов, соединенных между собой особым типом химической связи (фосфодиэфирная связь). Каждый нуклеотид, в свою очередь, со­стоит из трех частей: моносахарида-пентозы и связанных с ним азотистого основания и фос­форной кислоты.

Вопрос 2. Какие типы нуклеиновых кислот вы знаете?

Принято выделять два типа нуклеино­вых кислот — рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Оба этих типа содержатся во всех жи­вых клетках. Исключение составляют вирусы, обладающие либо только ДНК, либо только РНК.

Вопрос 3. Чем различается строение молекул ДНК и РНК?

Нуклеотиды, образующие молекулы ДНК и РНК, сходны по строению. Однако в нуклеоти­дах РНК моносахаридом является рибоза, а в нуклеотидах ДНК — дезоксирибоза. Кроме то­го, различается набор азотистых оснований. Три из них (аденин, гуанин, цитозин) пред­ставлены в обоих типах нуклеиновых кислот; четвертым в ДНК является тимин, в РНК — урацил.

Нуклеиновые кислоты отличаются по об­щей структуре: ДНК представляет собой комп­лементарную двуцепочечную молекулу (аде­нин всегда стоит напротив тимина, гуанин — напротив цитозина), РНК — одноцепочечную. Содержание ДНК в клетках относительно по­стоянно; содержание РНК может варьировать в зависимости от интенсивности синтеза бел­ка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.

Вопрос 4. Назовите функции ДНК.

Выделяют три основные функции ДНК.

Хранение наследственной информа­ции. Порядок нуклеотидов определяет первич­ную структуру белков. Первичная структура, в свою очередь, обуславливает свойства бел­ков, а следовательно, особенности строения и функционирования клеток. Таким образом, в ДНК закодирована информация обо всех свойствах клеток, тканей и органов. Участок молекулы ДНК, кодирующий первичную структуру одной белковой цепи, называют ге­ном.

Передача наследственной информа­ции следующему поколению клеток. Эта функция осуществляется благодаря способ­ности ДНК к удвоению (редупликации). После деления в каждую дочернюю клетку попада­ет одна из двух идентичных молекул ДНК, являющихся точной копией материнской ДНК.

Передача наследственной информа­ции из ядра в цитоплазму. Почти вся ДНК находится в ядре; синтез же белка происходит в цитоплазме клетки. Соответственно, необхо­дим посредник, передающий описание первич­ной структуры белка от ДНК к рибосоме. В ро­ли такого посредника выступает информаци­онная РНК, которая синтезируется на одной из цепей ДНК, копируя по принципу компле­ментарности последовательность нуклеотидов определенного гена.

Вопрос 5. Какие виды РНК существуют в клет­ке, где они синтезируются? Перечислите их функ­ции.

В зависимости от строения и выполняемой функции выделяют три вида РНК. Все они синтезируются в ядре, используя в качестве матрицы ДНК. Готовые молекулы РНК пере­ходят в цитоплазму.

Информационная, или матричная, РНК (иРНК, мРНК) переносит информацию о первичной структуре белка от ДНК к рибо­соме. Количество типов иРНК примерно соот­ветствует числу генов (у человека — около 30-40 тыс.).

Транспортная РНК (тРНК) в основном находится в цитоплазме клетки. Функция тРНК состоит в том, чтобы переносить амино­кислоты к рибосоме, где они включаются в синтезируемую белковую цепь.

Рибосомалъная РНК (рРНК) — самая «весомая» группа (до 80% от общего количе­ства РНК в клетке), однако наименее разно­образная: в каждой клетке присутствует не более четырех ее типов. Вместе с белками рРНК входит в состав рибосом — органоидов, синтезирующих белок. Масса синтезируемой в ядре рРНК настолько велика, что области ее образования под микроскопом выглядят более плотными и темными (ядрышки в яд­ре).

Более ста лет назад (в 1869 году) Фридрих Мишер, исследуя клетки гноя, выделил из ядер этих клеток новый тип химических соединений, которые он в совокупности назвал "нуклеином". Эти вещества, позднее получившие название нуклеиновых кислот, обладали кислотными свойствами, были необычайно богаты фосфором и содержали также углерод, кислород, водород и азот. Последующее изучение их показало, что существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), которые являются составной частью сложных белков - нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений.

Нуклеопротеины [соответственно, дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП)] отличаются друг от друга по составу, размерам и физико-химическим свойствам. Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП - дезоксирибозой. Название "нуклеопротеины" связано с названием ядра клетки, где они впервые и были обнаружены. Однако в настоящее время установлено, что ДНП и РНП содержатся и в других субклеточных структурах. При этом ДНП преимущественно локализованы в ядре, а РНП - в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП.

Отличия между ДНК и РНК
Показатели ДНК РНК
Местоположение ядро клетки, в составе хроматина, немного в митохондриях (0,2% от всей ДНК) во всех частях
Сахар (пентоза) Дезоксирибоза Рибоза
Азотистые основания Аденин,
Гуанин,
Цитозин,
Тимин
Аденин,
Гуанин,
Цитозин,
Урацил
Количество цепей в молекуле 99,99% - двойная спираль, 0,01% одноцепочечная 99,99% - одноцепочечная, 0,01% двухцепочечная
Форма молекулы Все одноцепочечные - кольцевые.

Большинство двухцепочечных - линейные, часть - кольцевые.

Линейные молекулы

Химический состав нуклеиновых кислот

Выделение нуклеиновых кислот из комплекса их с белками и последующий их полный гидролиз позволил определить химический состав нуклеиновых кислот. Так, при полном гидролизе в гидролизате были обнаружены пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорная кислота.

Азотистые основания (N-основания)

В основе структуры пуриновых и пиримидиновых оснований лежат два ароматических гетероциклических соединения - пурин и пиримидин. Молекула перимидина содержит один гетероцикл. Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.

Обрати внимание! Нумерация атомов в ароматическом кольце азотистых оснований осуществляется арабскими цифрами без штриха [ " ]. Символ [ " ] (произносится как "штрих" или "прим") показывает, что соответствующий номер нумерует атомы пентозного кольца, например 1" (см ниже).

В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин (Ц), урацил (У) и тимин (Т):

и два пуриновых - аденин (А) и гуанин (Г)

Одним из важных свойств азотистых оснований (содержащих оксигруппы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения pH среды. Таутомерные превращения можно представить на примере урацила.

Оказалось, что в составе нуклеиновых кислот все оксипроизводные пуринов и пиримидинов находятся в лактамной форме.

Помимо главных оснований, в составе нуклеиновых кислот открыты редкие (минорные) азотистые основания. Минорные основания встречаются преимущественно в транспортных РНК, где их список приближается к 50, в следовых количествах в рибосомальных РНК и в составе ДНК. В транспортных РНК на долю минорных оснований приходится до 10% всех нуклеотидов, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). К минорным основаниям относятся дополнительно метилированные пуриновые и пиримидиновые основания, например, 2-метиладенин, 1-метилгуанин, 5-метилцитозин, 5-оксиметилцитозин и др.

Углеводы

Углеводы (пентозы) в нуклеиновых кислотах представлены рибозой и 2-дезоксирибозой, которые находятся в β-D-рибофуранозной форме (формулы слева).

В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.

Конформация углеводного цикла (пентозы)

Для углеводного цикла (пентозы) нуклеиновых кислот плоская конформация, когда атомы углерода С1", С2", С3", С4" и гетероатом кислорода находятся в одной плоскости, - энергетически невыгодна. Среди многочисленных теоретически возможных конформаций этих остатков в полинуклеотидах реализуются только две: либо С2"-эндоконформации, либо С3"-эндоконформации. Эти конформации возникают при вращении вокруг связи С4", которое приводит к такому искажению кольца, при котором один из атомов пентозы (пятичленного фуранозного кольца) оказывается вне плоскости создаваемой четырьмя другими атомами. Такая конформация представляет собой эндо- или экзо- структуру, в зависимости от того располагается ли данный атом на той же стороне плоскости, что и С5" или на противоположной стороне.

Вещества, в которых азотистые основания соединены с пентозой, называются нуклеозидами (рис.2).

Нуклеозиды относятся к N-гликозидам. У них пиримидиновые азотистые основания (один гетероцикл) соединяются с пентозой гликозидной связью через N-1, пуриновые через N-9. В зависимости от типа пентозы различают два вида нуклеозидов - дезоксирибонуклеозиды, содержащие 2-дезоксирибозу, и рибонуклеозиды, содержащие рибозу.

Дезоксирибонуклеозиды входят только в ДНК, а рибонуклеозиды - только в РНК. Пиримидиновые и пуриновые нуклеозиды содержат соответствующие азотистые основания:

Кроме главных встречаются минорные нуклеозиды, в которые входят минорные азотистые основания. Больше всего минорных нуклеозидов содержится в тРНК. Наиболее распространенными минорными нуклеозидами, входящими во все тРНК, являются дигидроуридин, псевдоуридин (обозначаемый сокращенно значком Ψ) и риботимидин. В псевдоуридине отсутствует обычная N-гликозидная связь. В нем атом С-1 рибозы соединен с атомом С-5 урацила.

Вследствие стерических причин пуриновые основания в составе пуриновых нуклеотидов в ДНК могут принимать только две стерически доступные конформации относительно остатка дезоксирибозы, обозначаемые как син-конформации и анти-конформации.

В то же время пиримидиновые основания пиримидиновых нуклеотидов присутствуют в ДНК в виде анти-конформеров, что связано со стерическими несоответствиями, возникающими между углеводной частью нуклеотида и карбонильным кислородом в С-2 положении пиримидина. В силу этого пиримидиновые основания приобретают, главным образом, анти-конформацию (Nelson D.L., Cox M.M., Lehninger Principles of Biochemistry, W.H. Freeman (ed.), San Francisco, 2004).

Нуклеотиды представляют собой соединения соответствующего типа нуклеозида с фосфорной кислотой. Они также делятся на рибонуклеотиды, содержащие рибозу, и дезоксирибонуклеотиды, содержащие 2-дезоксирибозу. Название нуклеотида происходит от вида азотистого основания и количества остатков фосфорной кислоты. Если содержится один остаток фосфорной кислоты - нуклеозид монофосфат (к примеру дAMФ - дезоксиаденозин монофосфат), два остатка – нуклеозид дифосфат (к примеру дAДФ - дезоксиаденозин дифосфат), три остатка – нуклеозид трифосфат (к примеру дAТФ - дезоксиаденозин трифосфат). Остатки фосфорной кислоты присоединяются к 5"-углероду дезоксирибозы и обозначены α, β, γ.

Ниже приведено строение адениловых нуклеотидов.

Фосфат может присоединяться в разные положения кольца пентозы (в рибонуклеотидах - в положениях 2", 3", 5", в дезоксирибонуклеотидах - в положения 3", 5"). Имеющиеся в клетке свободные нуклеотиды содержат фосфатную группу в положении 5". Нуклеозид-5"-фосфаты участвуют в биологическом синтезе нуклеиновых кислот и образуются при их распаде. Поскольку нуклеозид-5"-фосфаты, или мононуклеотиды, являются производными соответствующих нуклеозидов, то различают те же главные и редкие рибомононуклеотиды и дезоксирибомононуклеотиды.

Удлинение фосфатного конца мононуклеотида за счет присоединения дополнительных фосфатов приводит к образованию нуклеозидполифосфатов. Чаще всего в клетках встречаются нуклеозиддифосфаты и нуклеозидтрифосфаты. Ниже приводятся названия и сокращенные обозначения нуклеозидфосфатов:

Все нуклеозидфосфаты находятся в клетке в виде анионов, поэтому аденозинфосфаты правильнее обозначать АМФ 2- , АДФ 3- , АТФ 4- . АДФ и АТФ являются макроэргическими, т. е. богатыми энергией, соединениями, химическая энергия которых используется организмом для различных функций. Остальные нуклеозидди- и трифосфаты также участвуют в реакциях синтеза биологических веществ.

Международные стандартные сокращения

В работах по исследованию нуклеиновых кислот употребляются схемы нумерации атомов и сокращений, рекомендованные комиссией Международного союза общей и прикладной химии (IUPAC) и Международным союзом биохимиков (IUB). Подкомиссия IUPAC-IUB выработала единые стандартные определения (IUPAC-IUB, 1983).

Сокращения и символы, используемые для обозначения оснований, нуклеозидов и нуклеотидов (Arnott S., 1970).

Основание
Название Символ Название Символ Название Символ
1. Рибонуклеозиды и рибонуклеотиды
Урацил Ura Уридин Urd или U Уридиловая кислота 5"-UMP или pU
Цитозин Cyt Цитидин Cyd или C Цитидиловая кислота 5"-CMP или pC
Аденин Ade Аденозин Ado или A Адениловая кислота 5"-AMP или pA
Гуанин Gua Гуанозин Guo или G Гуаниловая кислота 5"-GMP или pG
2. Дезоксирибонуклеозиды и дезоксирибонуклеотиды
Тимин Thy Дезокситимидин dThd или dT Дезокситимидиловая кислота 5"-dTMP или pdT
Цитозин Cyt Дезоксицитидин dCyd или dC Дезоксицитидинловая кислота 5"-dCMP или pdC
Аденин Ade Дезоксиаденозин dAdo или dA Дезоксиадениловая кислота 5"dAMP или pdA
Гуанин Gua Дезоксигуанозин dGuo или dG Дезоксигуаниловая кислота 5"dGMP или pdG
3.Полинуклетиды

Синтетические полимеры, состоящие из нуклеотидов одного и того же типа, называют гомополимерами. Обозначение, например, полиадениловая кислота - poly(A)

Синтетические полимеры с чередующейся последовательностью нуклеотидов называются гетерополимерами.

Сополимер с чередованием dA и dT - poly(дезоксиаденилат - дезокситимидилат) обозначается как poly d(A-Т) или poly(dA-dT) или (dA-dT) или d(A-T)n.

Для случайного сополимера dA, dT вместо деффиса между символами ставится запятая, например, poly d(A,T).

Образование комплементарного дуплекса обозначается точкой между символами - poly(dA) · poly(dT); тройной спирали - poly(dA)· 2poly(dT).

Олигонуклеотиды обозначаются следующим образом: например, олигонуклеотид гуанилил-3",5"-цитидилил-3",5"-уридин - GpCpU или GCU, при этом 5"-концевым нуклеотидом является G, а 3"-концевым - U.

Для комплементарно связанных олигонуклеотидов номенклатура следующая:

На рис.5. представлена принятая для нуклеотидов система нумерации атомов. Символы, обозначающие атомы сахара, отличаются от таковых для атомов оснований значком "штрих". Остов полинуклеотида описывают в направлении P -> O5" -> C5" -> C4" -> C3" -> O3" -> P.

В сахарном кольце нумерация такова: C1" -> C2" -> C3" -> C4" -> O4" ->C5".

Двум атомам водорода при атоме C5" и при атоме C2" в дезоксирибозе, а также двум свободным атомам кислорода при атомах фосфора приписываются номера 1 и 2, причем это делается следующим образом: если смотреть вдоль цепи в направлении O5"-> C5", то двигаясь по часовой стрелке, мы будем последовательно проходить атомы C4", H5"1, H5"2. Аналогично, если смотреть вдоль цепи в направлении O3" -> P - O5", то при движении по часовой стрелке мы будем последовательно проходить атомы O5", Op1, Op2.

Общая характеристика нуклеиновых кислот

Нуклеиновыми кислотами или полинуклеотидами называются высокомолекулярные вещества, состоящие из мононуклеотидов, соединенных в цепь 3",5"-фосфодиэфирными связями .

Общее содержание ДНК и РНК в клетках зависит от их функционального состояния. В сперматозоидах количество ДНК достигает 60% (в пересчете на сухую массу клеток), в большинстве клеток 1-10, а в мышцах около 0,2%. Содержание РНК, как правило, в 5-10 раз больше, чем ДНК. Соотношение РНК/ДНК в печени, поджелудочной железе, эмбриональных тканях и вообще в тканях, активно синтезирующих белок, составляет от 4 до 10. В тканях с умеренным синтезом белка соотношение колеблется от 0,3 до 2,5. Особое место занимают вирусы. У них в качестве генетического материала может быть либо ДНК (ДНК-овые вирусы), либо РНК (РНК-овые вирусы).

В клетках бактерий, не имеющих ядра (прокариоты), молекула ДНК (хромосома) находится в специальной зоне цитоплазмы - нуклеоиде. Если она связана с клеточной мембраной бактерии, то ее называют мезосомой. Фрагмент ДНК меньших размеров локализуется вне этой хромосомной зоны. Такие участки ДНК в бактериях называются плазмидами или эписомами. В клетках, имеющих ядро (эукариоты), ДНК распределена между ядром, где она входит в состав хромосом и ядрышка, и внеядерными органоидами (митохондриями и хлоропластами). Имеются наблюдения, что в очень малых количествах ДНК присутствует в микросомах.

Примерно 1-3% ДНК клетки приходится на внеядерную ДНК, а остальное сосредоточено в ядре. Значит, наследственные свойства характерны не только для ядра, но и для митохондрий и хлоропластов клеток. Необычно высоким содержанием внеядерной ДНК отличаются зрелые яйцеклетки, у которых она присутствует в многочисленных митохондриях и желточных пластинках, причем в последних является не генетическим материалом, а резервом нуклеотидов.

РНК в отличие от ДНК распределена по клетке более равномерно. Уже одно это обстоятельство говорит о том, что функция РНК более динамична и многообразна. В клетках высших организмов около 11% всей РНК находится в ядре, около 15% - в митохондриях, 50% - в рибосомах и 24% - в гиалоплазме.

Молекулярная масса ДНК зависит от степени сложности живого объекта: у бактерий она составляет 2 10 9 , у человека и животных достигает 10 11 . У бактерий ДНК находится в виде единичной гигантской молекулы, слабо связанной с белками. В других объектах ДНК окружена белками или простейшими аминами. У вирусов это простейшие основные белки или полиамины (путресцин и спермидин), которые нейтрализуют отрицательный заряд молекулы ДНК, связываясь с ее фосфатными группами. В сперматозоидах некоторых животных и рыб ДНК образует комплексы с протаминами и гистоноподобными белками. В хромосомах клеток человека и других высших организмов ДНК связана с гистонами и негистоновыми белками. Такие комплексы белка с ДНК называют дезоксирибонуклеопротеидами (ДНП).

РНК имеет значительно меньшую молекулярную массу, чем ДНК. В зависимости от выполняемой функции, молекулярной массы и состава нуклеотидов выделяют следующие главные типы РНК: информационная, или матричная (мРНК), транспортная (тРНК) и рибосомальная (рРНК). Разные рРНК различаются по молекулярной массе (табл. 13). Кроме трех главных типов есть минорные, или редкие, РНК, содержание которых в клетке незначительно, и функции их только изучаются.

Большинство типов РНК связано в клетке с различными белками. Такие комплексы называются рибонуклеопротеидами (РНП). Характеристика нуклеиновых кислот суммирована в табл. 1.

Таблица 1. Краткая характеристика нуклеиновых кислот клеток высших организмов
Тип нуклеиновой кислоты Молекулярная масса Константа седиментации (в единицах Сведберга-S) Содержание в клетке, % Локализация в клетке Функция
ДНК 10 11 - 97-99% от всей ДНК

1-3% от всей ДНК

Ядро

Митохондрии

Хранение генетической информации и участие в передаче ее родительской ДНК при делении клетки или в передаче РНК в процессе жизнедеятельности
мРНК 4 10 4 - 1,2 10 6 6-25 25% от всей РНК Ядро, цитоплазма Является копией участка ДНК, содержащего информацию о структуре полипептидной цепи белка. Переносит информацию от ДНК к месту синтеза белка - к рибосомам
тРНК 2,5 10 4 ~4 15% от всей РНК Гиалоплазма, рибосомы, митохондрии Участвует в активировании аминокислот, их транспорте к рибосомам и сборке из аминокислот полипептидов на рибосомах
рРНК 0,7 10 6 18 80% от всей РНК Рибосомы цитоплазмы Образует скелет рибосом цитоплазмы (или митохондрий), который окутывается белками рибосом. Играет вспомогательную роль при сборке белка на рибосомах
0,6 10 6 16 Рибосомы митохондрий
~4 10 4 5 Все рибосомы
Хромосомная векторная РНК 10 4 3 Следы Хромосомы ядер Узнавание и активирование генов ДНК
Низкомолекулярные ядерные РНК 2,5 10 4 -5 10 4 4-8 Доли процента Ядра, РНП частицы цитоплазмы Активирование генов ДНК, формирование скелета белковых частиц, переносящих тРНК из ядра в цитоплазму

Физико-химические свойства нуклеиновых кислот

Физико-химические свойства нуклеиновых кислот определяются высокой молекулярной массой и уровнем структурной организации. Для нуклеиновых кислот характерны: коллоидные и осмотические свойства, высокая вязкость и плотность растворов, оптические свойства, способность к денатурации.

Коллоидные свойства типичны для всех высокомолекулярных соединений. При растворении нуклеиновые кислоты набухают и образуют вязкие растворы типа коллоидов. Гидрофильность их зависит в основном от фосфатов. В растворе молекулы нуклеиновых кислот имеют вид полианиона с резко выраженными кислотными свойствами. При физиологических значениях pH все нуклеиновые кислоты являются полианионами и окружены противоионами из белков и неорганических катионов. Растворимость двуспиральных нуклеиновых кислот хуже, чем односпиральных.

Денатурация и ренатурация. Денатурация - свойство, присущее тем макромолекулам, которые имеют пространственную организацию. Денатурация вызывается нагреванием, воздействием химических веществ, которые разрывают водородные и ван-дер-ваальсовы связи, стабилизирующие вторичную и третичную структуру нуклеиновых кислот. Например, нагревание ДНК приводит к разделению двойной спирали на одиночные цепи, т. е. наблюдается переход "спираль - клубок". При медленном охлаждении цепи вновь воссоединяются по принципу комплементарности. Образуется нативная двойная спираль ДНК. Это явление называется ренатурацией. При быстром охлаждении ренатурация не происходит.

Характерно изменение оптической активности нуклеиновых кислот, сопровождающее их денатурацию и ренатурацию. Спиральные (организованные) участки нуклеиновых кислот вращают плоскость поляризованного света, т. е. оптически активны, а разрушение спиральных участков сводит на нет оптическую активность нуклеиновых кислот.

Все нуклеиновые кислоты имеют максимум оптической плотности при длине волны около 260 нм, что соответствует максимуму поглощения азотистых оснований. Однако интенсивность поглощения природной нуклеиновой кислоты значительно ниже, чем смеси ее же нуклеотидов, полученных, например, при гидролизе этой нуклеиновой кислоты, или одиночных цепей. Причиной является структурная организация ДНК и РНК, которая вызывает классический эффект - снижение оптической плотности. Это явление получило название гипохромного эффекта. Он максимально выражен у нуклеиновых кислот, имеющих спиральные структуры (например, у ДНК) и содержащих много ГЦ-пар (ГЦ-пары имеют три водородные связи, и поэтому их труднее разорвать).

Молекулярная гибридизация нуклеиновых кислот. На способности нуклеиновых кислот ренатурировать после денатурации основан чрезвычайно важный метод определения степени гомологичности, или родственности, нуклеиновых кислот. Его называют молекулярной гибридизацией. В его основе лежит комплементарное спаривание одноцепочечных участков нуклеиновых кислот.

Этот метод позволил обнаружить особенности первичной структуры ДНК. Оказывается, в ДНК животных имеются многократно (до 100 000 раз) повторяющиеся участки с одинаковой последовательностью нуклеотидов. Они составляют до 10-20% всей ДНК. Их гибридизация идет очень быстро. Остальная часть ДНК представлена уникальными последовательностями, которые не дублируются. Эти участки ДНК гибридизуются очень медленно. Вероятность их совпадения у разных организмов невелика. С помощью метода молекулярной гибридизации можно установить гомологичность ДНК организма одного вида ДНК другого вида или гомологичность РНК участкам ДНК.

Нуклеиновые кислоты и систематика организмов

Нуклеиновые кислоты являются материальным носителем наследственной информации и определяют видоспецифичность организма, сложившуюся в ходе эволюции. Изучение особенностей нуклеотидного состава ДНК разных организмов позволило перейти от систематики по внешним признакам к систематике генетической. Это направление в молекулярной биологии получило название геносистематики. Основателем его был выдающийся советский биохимик А. Н. Белозерский.

Сравнение нуклеотидного состава ДНК разных организмов привело к интересным выводам. Оказалось, что коэффициент специфичности ДНК, т. е. отношение Г + Ц к А + Т, сильно варьирует у микроорганизмов и довольно постоянен у высших растений и животных. У микроорганизмов наблюдаются колебания изменчивости от крайнего ГЦ-типа до выраженного АТ-типа. ДНК высших организмов стойко сохраняет АТ-тип. Может создаться впечатление, что у высших организмов теряется специфичность ДНК. На самом деле у них она так же специфична, как и у бактерий, но ее специфичность определяется не столько изменчивостью состава нуклеотидов, сколько последовательностью чередования их вдоль цепи. Интересные выводы на основании нуклеотидного состава ДНК были сделаны А. Н. Белозерским и его учениками относительно происхождения многоклеточных животных и высших растений. Их ДНК АТ-типа ближе всего к ДНК грибов, поэтому свою родословную животные и грибы, очевидно, ведут от общего предка - крайне примитивных грибообразных организмов.

Еще большую информацию о родстве организмов дает метод молекулярной гибридизации. С помощью этого метода была установлена высокая гомологичность ДНК человека и обезьяны. Причем по составу ДНК человека всего на 2-3% отличается от ДНК шимпанзе, чуть больше - от ДНК гориллы, более чем на 10% - от ДНК остальных обезьян, а от ДНК бактерии - почти на 100%. Особенности первичной структуры ДНК тоже можно использовать в систематике. Гомология по участкам повторяющихся последовательностей (быстрая гибридизация) используется для макросистематики, а для уникальных фрагментов ДНК (медленная гибридизация) - для микросистематики (на уровне видов и родов). Ученые считают, что постепенно по ДНК можно будет построить все родословное древо живого мира.

>> Нуклеиновые кислоты

1. Какова роль ядра в клетке?
2. С какими органоидами клетки связана передача наследственных признаков?
3. Какие вещества называются кислотами?

(от лат. nucleus - ядро) впервые были обнаружены в ядрах лейкоцитов. Впоследствии было выяснено, что нуклеиновые кислоты содержатся во всех клетках, причем не только в ядре, но также в цитоплазме и различных органоидах.

Различают два типа нуклеиновых кислот - дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит углевод дезоксирибозу, а молекула РНК - рибозу.

Нуклеиновые кислоты - биополимеры, состоящие из мсномеров-нуклеотидов. Мономеры-нуклеотиды ДНК и РНК имеют сходное строение.

Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Это азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты (рис. 9).

Азотистых оснований четыре: аденин, гуанин, цитозин или тимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 10).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.
Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом обнаруживается важная закономерность: против аденина одной цени всегда располагается тимин другой цепи, против гуанина - цитозин, и наоборот. Это объясняется тем, что пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными, или комплементарными (от лат, соmplementum - дополнение), друг другу. Между аденином и тимином всегда возникают две, а между гуанином и цитозином - три водородные связи (рис. 11).

Транспортные РНК (т-РНК) - самые небольшие по размеру - транспортируют аминокислоты к месту синтеза белка.

Информационные, или матричные, РНК (и-РНК) синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется.
Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.

Нуклеиновая кислота. Дезоксирибонуклеиновая кислота, или ДНК. Рибонуклеиновая кислота, или РНК, Азотистые основания: аденин, гуанин, цитозин, тимин, урацил. Комплементарностъ. Транспортная РНК (т-РНК). Рибосомная РНК (р РНК). Информационная РНК (и-РНК). Нуклеотид. Двойная спираль.

1. Какое строение имеет нуклеотид?
2. Какое строение имеет молекула ДНК?
3. В чем заключается принцип комплементар- ности?
4. Что общего и какие различия в строении молекул ДНК и РНК?
5. Какие типы молекул РНК вам известны? Каковы их функции?

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей