Наследственность и изменчивость — фундаментальные свойства живых организмов. Наследственная изменчивость

ЛЕКЦИЯ

ТЕМА: Наследственность и изменчивость

ПЛАН ЛЕКЦИИ:

    Наследственность

    Изменчивость

    1. Наследственная изменчивость

      Ненаследственная изменчивость

1. Наследственность

Развитие органического мира, во многом зависит от таких факторов как наследственность и изменчивость. Наследственностью называют общее свойство всех организмов хранить и передавать потомству свои признаки. Благодаря наследственности из поколения в поколение сохраняются специфические качества каждого биологического вида.

Связь родителей с потомками у организмов осуществляется в основном через размножение. Хотя потомство подобно родителям и предкам, но оно не является их точной копией. Механизм наследственности давно интересовал человечество. В 1866г. Г.Мендель выразил мнение, что признаки организмов определяются наследуемыми единицами, которые он назвал «элементами». Позже их стали называть наследственными факторами и, наконец, генами . Гены находятся в хромосомах и они передаются от одного поколения другому.

Несмотря на то, что теперь о хромосомах и структуре ДНК известно многое, дать точное определение гена все еще трудно. В результате изучения природы гена, его можно определить, как единицу рекомбинации, мутации и функции. Ген – это фактор наследственности, функционально неделимая единица генетического материала в виде участка молекулы нуклеиновой кислоты (ДНК или РНК). Он кодирует определенную структуру белка, молекулы т-РНК или р-РНК, или взаимодействует с биологически активными веществами (например, ферментами). Ген является целостной функциональной единицей, и любые нарушения его структуры изменяют закодированную в нем информацию или приводят к ее потере.

В результате наследственности, организм получает от родителей совокупность генов, что принято называть генотипом . Геном эукариотов сложнее, чем у прокариотов, потому что имеет большее количество ядерной ДНК, структурных и регуляторных генов. Кроме наследственного материала, расположенного в ядре, существует также цитоплазматическая наследственность , или внеядерная . Она заключается в способности определенных структур цитоплазмы хранить и передавать потомкам часть наследственной информации родителей. Хотя ведущая роль в наследовании большинства признаков организма принадлежит ядерным генам, роль цитоплазматической наследственности тоже значительна. Она связана с двумя видами генетических явлений:

    Наследованием признаков, которые кодируются внеядерными генами , расположенными в определенных органеллах (митохондриях, пластидах);

    Проявлением у потомков признаков, предопределенных ядерными генами, на формирование которых влияет цитоплазма яйцеклетки .

О существовании генов в органеллах (митохондриях, пластидах), способных к самоудвоению, стало известно в начале ХХ в. во время изучения зеленых и бесцветных пластид у некоторых цветковых растений с мозаичной расцветкой листьев. Внеядерные гены, взаимодействуя с ядерными, оказывают влияние на формирование признака. Например, цитоплазматическая наследственность, связанная с генами пластид, влияет на такой признак как пестролистность у растений (бегония, львиный зев и др.). И этот признак передается по материнской линии.

Причиной пестролистности является утрата способности некоторых пластид образовывать пигмент хлорофилл. После деления клеток с бесцветными пластидами в листьях возникают белые пятна, которые чередуются с зелеными участками. Передача такого признака по материнской линии объясняется тем, что во время образования гамет пластиды попадают к яйцеклеткам, а не к спермиям. При образовании новых пластид зеленые пластиды дают начало зеленым, а бесцветные – бесцветным. Во время деления клетки пластиды распределяются случайно, в результате чего образуются клетки с бесцветными, зелеными или обоими типами пластид одновременно .

Явление цитоплазматической наследственности, связанное с генами митохондрий, можно наблюдать у дрожжей. У этих микроорганизмов в митохондриях обнаружены гены, которые предопределяют отсутствие или наличие дыхательных ферментов, а также устойчивость к действию определенных антибиотиков. Влияние ядерных генов материнского организма через цитоплазму яйцеклетки на формирование признаков можно проследить и на примере прудовика. У этого пресноводного моллюска есть формы с разным направлением закручивания раковины – левого или правого. Аллель, которая определяет закручивание раковины вправо, доминирует над аллелью левозакрученности, но при этом указанный признак предопределяется генами материнской особи. Например, особи, гомозиготные по рецессивному гену (левозакрученность), могут иметь правозакрученную раковину, если доминантную аллель имел материнский организм.

2. Изменчивость

Изменчивостью называют всю совокупность расхождений по тому или иному признаку между организмами, которые относятся к одной и той же популяции или виду. Различают две основных формы изменчивости: наследственную и ненаследственную .

2.1. Наследственная изменчивость

Наследственной изменчивостью называют изменчивость, которая передается от родителей потомству, т.е. наследуется. Такая изменчивость связана с изменением генетического материала, причиной которого являются мутации. А потому наследственную изменчивость еще называют генотипической , генетической или мутационной .

Мутация – это изменение в хромосомах, которое происходит под воздействием факторов окружающей среды. Понятие о мутациях было введено в науку голландским ботаником Гуго где Фризом. Им же была сформулирована и мутационная теория , ряд положений которой принадлежит известному русскому ботанику С.И. Коржинскому.

Основные положения современной мутационной теории :

    Мутации возникают внезапно, скачкообразно и проявляются в виде дискретных признаков;

    Мутации не теряются и передаются из поколения в поколение;

    Мутации проявляются по-разному и могут быть доминантными или рецессивными, полезными и вредными, отличаться силой своего влияния на организм, вызывать незначительные изменения в работе организма или задевать жизненно важные признаки и быть летальными;

    Вероятность выявления мутаций зависит от количества исследованных особей;

    Мутации могут возникать повторно;

    Мутации можно вызывать влиянием на организм сильнодействующих физических или химических агентов, но при этом появление той или иной мутации не связано с видом агента;

    Мутации всегда спонтанны, не зависимы одна от другой, не имеют групповой направленности. Мутировать может любой участок хромосомы.

Мутационная изменчивость, в отличие от модификационной, является важным источником эволюционных превращений. Благодаря генетической изменчивости образуются организмы с новыми свойствами и признаками, поддерживается высокий уровень и фенотипической изменчивости.

В зависимости от характера влияния на жизнеспособность организмов различают летальные , сублетальные и нейтральные мутации . Летальные, как правило, влекут гибель организмов еще до момента рождения или до наступления половозрелости. Сублетальные – снижают жизнеспособность, приводя к гибели некоторой части (от 10 до 50%). Нейтральные мутации в обычных для организмов условиях существования на их жизнеспособность не влияют. И в некоторых случаях такие мутации могут стать даже полезными, особенно при изменениях условий существования организма.

По характеру наследственных изменений генетического материала выделяют три типа мутации: генные, хромосомные, геномные.

Генные ( точечные ) мутации являют собой качественные изменения отдельных генов. Эти мутации происходят на уровне первичной цепи ДНК, и приводят к нарушению аминокислотной последовательности в белках. Такие изменения могут иметь негативные последствия для организма. Ведь аминокислотная последовательность в каждом белке строго специфична, и замена даже одной из них может привести к нарушению пространственной структуры белка и, соответственно, функций.

Самый распространенный случай точечной мутации – замещение пары нуклеотида ГА на ГЦ или наоборот. Если эти изменения происходят в пределах структурных генов, то в результате вместо триплета АГА может появиться триплет АГЦ и в полипептидной цепи, соответственно, вместо негативно заряженной аминокислоты аргинина окажется незаряженная аминокислота серин . Такая мутация может привести к изменению заряда белка, нарушению его конформации, а если это фермент, – то и к снижению скорости химической реакции, которую он катализирует. В итоге могут начаться сбои в метаболизме всего организма.

Замены могут быть и нейтральными, например, замены аминокислот с одинаковыми свойствами. К крайне негативным последствиям приводят мутации стоп-кодона или мутации выпадения или встраивания одного из нуклеотидов. В результате изменяется часть или вся последовательность триплетов, которая способствует серьезным нарушением аминокислотной структуры белка и это почти всегда несовместимо с нормальным функционированием организма.

Хромосомные мутации – мутации, связанные с видимыми превращениями хромосом. Это могут быть перемещения одной части хромосомы на другую, поворот участка хромосомы на 180°, встраивание лишних частей хромосомы или, напротив, выпадение каких-либо участков. В большинстве случаев хромосомные перестройки не проходят для организма без последствий. Чаще всего они приводят к летальному исходу еще на очень ранних стадиях развития зародыша. Если же хромосомные изменения не касаются генов, которые отвечают за важные функции организма, то обычно они приводят к нарушениям мейоза, а значит к бесплодию особи. Однако бывают и совсем нейтральные хромосомные мутации (хромосомные полиморфизмы).

Геномные мутации связаны с изменением количества хромосом. Их причиной являются грубые нарушения мейоза. Одним из видов хромосомных мутаций есть анеуплоидия – увеличение гомологических хромосом на одну и больше или, напротив, недостаток чаще всего одной хромосомы. Обычно у животных такие нарушения несовместимы с нормальной жизнедеятельностью организма и приводят или к летальному исходу на ранних стадиях, или к многочисленным нарушениям в развитии. Наследственное заболевание человека, так называемый синдром Дауна, вызван появлением третьей дополнительной хромосомы в 21-й паре. А появление третьей хромосомы в 15-й паре вызывает другую наследственную аномалию человека – полидактилии – появления шестого пальца на конечностях.

Геномные мутации, связанные с кратным увеличением количества хромосомного набора, называют полиплоидией (от греч. polyploethia – множество, большое количество). Если количество хромосомных наборов увеличивается на один, то это триплоид, если на два – тетраплоид и т.д. Наибольшее увеличение количества хромосомного набора обнаруженное у организмов – это организмы с десятикратным хромосомным набором.

Полиплоидия способствует увеличению размеров организма, ускоряет процессы жизнедеятельности, может вызывать нарушения в процессе размножения. Особенно это касается полиплоидных форм с непарным набором хромосом, которые могут размножаться лишь путем партеногенеза или вегетативно.

Полиплоидность очень часто встречается в природе. По большей части она представлена парноплоидными (тетра- или октоплоидными) формами, у которых нормально происходит мейоз. Очень много полиплоидных видов среди растений и намного меньше их среди животных. Достаточно часто они встречаются среди беспозвоночных (ракообразных, моллюсков, червей). Есть полиплоиды и среди позвоночных. У рыб, например, существуют даже целые семейства (осетровые) и отряды (лососеобразные), виды которых исключительно полиплоидные. Реже случаются полипоиды у амфибий и рептилий, а у птиц и млекопитающих такие особи погибают на ранних этапах развития.

Соматические мутации – мутации, которые происходят только в отдельных соматических клетках. У организмов, размножающихся половым путем (большинство животных), такие мутации не наследуются. Другое дело у растений – вегетативное размножение позволяет сохранить возникшее изменение и сделать его наследственным.

Большинство мутаций, которые происходят в организме, как правило, являются рецессивными, а дикий тип (так называют обычный фенотип, свойственный особям, которые живут в естественных условиях) – доминантным. Например, альбинизм (от лат. albus – белый) – рецессивный признак, который проявляется в гомозиготном (аа) состоянии в виде отсутствия пигмента кожи, волос, в радужной оболочке глаз. Как выяснилось, у особей-альбиносов не функционирует фермент тирозиназа, который катализирует реакцию образования пигмента меланина. Гетерозиготные особи (Аа) имеют дикий окрас.

Доминантные мутации проявляются и в гетерозиготном состоянии, но они случаются намного реже рецессивных. Следствием таких мутаций являются, например, большинство случаев появления животных-меланистов, у которых, в отличие от не мутированных особей, синтезируется очень много меланина. Обычно такие организмы имеют более темный окрас .

Еще одним важным фактором генетической изменчивости является рекомбинация (от лат. re – префикс, который указывает на повторное действие и combinare, – соединение) – перераспределение генетического материала в потомстве. Основными причинами рекомбинации генов оказываются :

    Соединение гамет от разных родителей в случае случайного скрещивания у животных и перекрестного опыления у растений ;

    Независимое распределение хромосом после первого деления мейоза ;

    Кроссинговер – обмен участками гомологических хромосом во время конъюгации в метафазе І мейоза.

В результате полового размножения рекомбинация приводит к образованию потомков с самыми разнообразными генотипическими комбинациями. В результате в одной популяции невозможно встретить двух генетически одинаковых особей. Рекомбинация играет важную роль в эволюции организмов. Ее свойства используют в процессе выведения новых сортов растений и пород животных .

2.2. Ненаследственная изменчивость

Развитие фенотипа организма происходит при взаимодействии его наследственной основы – генотипа – с условиями окружающей среды. Признаки организма в разной степени варьируют под воздействием различных факторов среды. Одни из них очень пластичные и переменчивые, другие менее переменчивые, третьи практически не изменяются под воздействием условий среды. Например, удой рогатого скота во многом зависит от условий содержания (кормления, ухода). В то время как жирность молока в большей степени зависит от породы и ее трудно изменить, хотя можно добиться некоторых результатов, изменив пищевой рацион. Еще более постоянным признаком является масть. При всевозможных условиях она почти не изменяется.

Модификационная (от лат. modulus – мера, вид и facies – форма, внешность) изменчивость это изменения признаков организма (его фенотипа), вызванные изменениями условий среды существования и не связанные с изменениями генотипа. В силу того, что модификационная изменчивость не связана с изменением генотипа, то она и не наследуется.

Фактически модификационные изменения (модификации) – это реакции организмов на смену интенсивности действия определенных факторов окружающей среды. Они одинаковы для всех генотипов близкородственных организмов. Например, у всех растений стрелолиста, погруженных в воду, образуются длинные и тонкие листья, а у тех, что растут на суходоле, – они стреловидные. У растений стрелолиста, погруженных в воду частично, формируются листья обоих типов.

У дневной бабочки пестрокрылки переменчивой окрас крыльев зависит от температуры, при которой развивались куколки. Из тех куколок, которые перезимовали, выходят бабочки с кирпично-красным окрасом, а из тех, которые развивались летом в условиях повышенных температур, – черным фоном крыльев. Степень выраженности модификаций прямо зависит от интенсивности и длительности действия на организм определенного фактора. Так, у мелкого рачка-артемии степень мохнатости задней части брюшка зависит от солености воды: она тем больше, чем ниже концентрация солей.

Как показали многочисленные исследования, модификации могут исчезать в течение жизни одной особи, если прекращается действие фактора, который их вызывал. Например, загар, приобретенный человеком летом, постепенно исчезает в течение осенне-зимнего периода. Если растение стрелолист пересадить из воды на суходол, то новые листья будут иметь не удлиненную, а стреловидную форму. Возникшие модификации могут сохраняться в течение всей жизни особи, особенно те, что возникли на ранних этапах индивидуального развития. Но потомкам они не передаются. Например, искривление костей нижних конечностей в результате рахита сохраняется в течение всей жизни. Но у родителей, которые в детстве переболели на рахит, дети рождаются нормальными, если во время своего развития они получают необходимое количество витамина D. Другой пример модификаций, которые сохраняются в течение жизни, – это дифференциация личинок медоносной пчелы на цариц и рабочих особей. Личинки, которые развиваются в особых больших ячейках сот и питаются лишь «маточкиным молочком», которое производят особые железы рабочих пчел, развиваются в цариц. А те, которых выкармливают пергой (смесью меда и пыльцы), впоследствии становятся рабочими особями – недоразвитыми самками, неспособными к размножению. Следовательно, дифференциация личинок женского пола медоносной пчелы зависит от еды, которую они получают во время своего развития. Если на ранних этапах развития поменять местами личинок, из которых в дальнейшем должны развиться царица и рабочая пчела, то соответственно изменится характер их питания и последующая дифференциация. Однако на более поздних этапах развития это становится невозможным.

Модификационная изменчивость играет исключительную роль в жизни организмов, обеспечивая их приспособленность к изменениям условий среды. Так, изменение формы листьев стрелолиста из стреловидной на лентовидную (линейную) при погружении этого растения в воду, защищает ее от повреждения течением. Изменение шерсти млекопитающих во время осенней линьки на более густую обеспечивает защиту от действия низких температур, а загар человека – от вредного воздействия солнечной радиации. Все это дает основание считать, что подобные модификации возникли в процессе исторического развития вида как определенные приспособительные реакции на смену условий среды существования, с которыми постоянно сталкиваются организмы. Однако не все модификации имеют приспособительный характер. Например, если затенить нижнюю часть стебля картофеля, то на ней начнут образовываться надземные клубни. Модификации, лишенные приспособительного значения, возникают тогда, когда организмы оказываются в необычных для себя условиях, с которыми не приходилось сталкиваться их предкам.

Модификационная изменчивость подчиняется определенным статистическим закономерностям . В частности, любой признак может изменяться лишь в определенных пределах. Такие пределы модификационной изменчивости (от min до mах) признаков предопределены генотипом организма и называются нормой реакции . Следовательно, конкретный аллельный ген предопределяет не развитие определенного, кодируемого им состояния признака, а лишь пределы, в которых тот может изменяться в зависимости от интенсивности действия тех или иных факторов окружающей среды. Среди признаков есть такие, разные состояния которых почти полностью определяются генотипом (например, расположение глаз, количество пальцев на конечностях, группа крови, характер жилкования листьев и т.п.). Но на степень проявления состояний других признаков (рост и масса организмов, размеры слоеной пластинки и т.п.) значительно влияют условия окружающей среды. Например, развитие расцветки шерсти некоторых животных (например, горностаевых кролей, сиамских котов) зависит от температуры. Если у таких животных выбрить участок тела, покрытый белой шерстью, и приложить к нему лед, то в условиях низкой температуры на этом участке вырастет черная шерсть.

Норма реакции для разных признаков имеет собственные пределы. Весьма узкой нормой реакции обладают признаки, определяющие жизнеспособность организмов (например, взаиморасположение внутренних органов), а для признаков, которые не несут важного жизненного значения, она может быть значительно шире (масса тела, рост, цвет волос).

Обычно единичное проявление признака принято называть вариантой . Для изучения изменчивости определенного признака, т.е. вариант, составляют вариационный (от лат. variatio – изменение) ряд последовательность количественных показателей проявлений состояний определенного признака (вариант), расположенных в порядке их возрастания или убывания .

Длина вариационного ряда свидетельствует о размахе модификационной изменчивости (норме реакции). Она предопределена генотипом организма, но зависит от условий окружающей среды: чем они будут более стабильными, тем более короткий будет вариационный ряд, и наоборот. Если проследить распределение отдельных вариант внутри вариационного ряда, то можно заметить, что наибольшее их количество расположено в средней его части, т.е. они имеют среднее значение данного признака.

Такое распределение объясняется тем, что минимальные и максимальные значения развития признака формируются тогда, когда большинство факторов окружающей среды действуют в одном направлении: наиболее или наименее благоприятном. Но организм, как правило, чувствует на себе разное их влияние: одни факторы содействуют развитию признака, другие, напротив, тормозят. Именно поэтому степень развития определенного признака у большинства особей одного вида усредненные. Так, большинство людей имеет средний рост, и только незначительная часть среди них – великаны или карлики. Распределение вариант внутри вариационного ряда можно графически изобразить в виде вариационной кривой. Вариационная кривая – это графическое изображение зависимости возможных вариант признака от частоты встречаемости. С помощью вариационной кривой можно установить средние показатели и норму реакции определенного признака.

ОБОБЩЕНИЕ

Проявление фенотипа каждого организма зависит от наследственности и изменчивости. Благодаря наследственности особь получает генетический набор от родительских форм, сохраняя таким образом специфические особенности каждого вида, а изменчивость нарушает эту закономерность – благодаря изменчивости в мире невозможно встретить двух генетически одинаковых особей.

Различают два типа изменчивости: ненаследственную (фенотипическую, модификационную) и наследственную (генотипическую, генетическую). Факторами генетической изменчивости являются мутации и рекомбинации генетического материала. А посему наследственную изменчивость еще называют мутационной. Модификационную изменчивость вызывают реакции организма на факторы окружающей среды. А поскольку условия формирования каждого организма во многом различны, то и особи, даже если они являются представителями одного вида, имеют свой уникальный фенотип.

Наследственность и изменчивость играют важную роль в эволюции организмов. Их свойства используют и в процессе выведения новых сортов растений и пород животных.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ

1. Что собой представляет ген с биохимической и генетической точек зрения?

2. Почему наследственность и изменчивость называют альтернативными явлениями? Дайте определение наследственности и изменчивости.

3. Что такое цитоплазматическая наследственность и чем она вызвана?

4. Что такое мутации? Какие виды мутаций вам известны?

5. Что такое анеуплоидия и полиплоидия?

6. Почему мутации, связанные с кратным уменьшением хромосомного набора, негативно влияют на жизнеспособность организмов по сравнению с теми, которые вызваны кратным увеличением генома?

7. Большинство мутаций рецессивно или доминантно?

8. В чем заключается различие между модификационной и мутационной изменчивостью?

9. Что называют нормой реакции модификационной изменчивости?

10. Что входит в статистическую обработку данных модификационной изменчивости?

Изменчивость в биологии - это возникновение индивидуальных различий между особями одного вида. Благодаря изменчивости популяция становится разнородной, а у вида появляется больше шансов приспособиться к меняющимся условиям окружающей среды.

В такой науке, как биология, наследственность и изменчивость идут рука об руку. Существуют два вида изменчивости:

  • Ненаследственная (модификационная, фенотипическая).
  • Наследственная (мутационная, генотипическая).

Ненаследственная изменчивость

Модификационная изменчивость в биологии - это способность единичного живого организма (фенотипа) подстраиваться под факторы внешней среды в пределах своего генотипа. Благодаря такому свойству особи приспосабливаются к изменениям климата и других условий существования. лежит в основе адаптационных процессов, протекающих в любом организме. Так, у беспородных животных при улучшении условий содержания увеличивается продуктивность: надои молока, яйценоскость и прочее. А животные, завезенные в горные районы, вырастают низкорослыми и с хорошо развитым подшерстком. Изменение факторов внешней среды и обуславливают изменчивость. Примеры этого процесса можно легко найти в повседневной жизни: кожа человека под воздействием ультрафиолетовых лучей становится темной, в результате физических нагрузок развиваются мышцы, растения, выросшие в затененных местах и на свету, имеют разную форму листьев, а зайцы меняют окрас шерсти зимой и летом.

Для ненаследственной изменчивости характерны следующие свойства:

  • групповой характер изменений;
  • не наследуется потомством;
  • изменение признака в пределах генотипа;
  • соотношение степени изменения с интенсивностью воздействия внешнего фактора.

Наследственная изменчивость

Наследственная или генотипическая изменчивость в биологии - это процесс, в результате которого изменяется геном организма. Благодаря ей особь приобретает признаки, ранее несвойственные ее виду. По Дарвину, генотипическая изменчивость является основным двигателем эволюции. Различают следующие виды наследственной изменчивости:

  • мутационная;
  • комбинативная.

Возникает в результате обмена генами при половом размножении. При этом признаки родителей по-разному комбинируются в ряду поколений, повышая разнообразие организмов в популяции. Комбинативная изменчивость подчиняется правилам наследования Менделя.

Пример такой изменчивости - инбридинг и аутбридинг (близкородственное и неродственное скрещивание). Когда черты отдельного производителя хотят закрепить в породе животных, то применяют близкородственное скрещивание. Таким образом, потомство становится более однообразным и закрепляет качества основателя линии. Инбридинг ведет к проявлению рецессивных генов и может приводить к вырождению линии. Для повышения жизнеспособности потомства применяют аутбридинг - неродственное скрещивание. При этом нарастает гетерозиготность потомства и увеличивается разнообразие внутри популяции, и, как следствие, возрастает устойчивость особей к неблагоприятным воздействиям факторов внешней среды.

Мутации, в свою очередь, разделяются на:

  • геномные;
  • хромосомные;
  • генные;
  • цитоплазматические.

Изменения, затрагивающие половые клетки, передаются по наследству. Мутации в могут передаваться потомству, если особь размножается вегетативным способом (растения, грибы). Мутации могут быть полезными, нейтральными или вредными.

Геномные мутации

Изменчивость в биологии посредством геномных мутаций может быть двух видов:

  • Полиплоидия - мутация часто встречается у растений. Она вызвана кратным увеличением всего числа хромосом в ядре, образуется в процессе нарушения их расхождения к полюсам клетки при делении. Полиплоидные гибриды широко используются в сельском хозяйстве - в растениеводстве насчитывают более 500 полиплоидов (лук, гречка, сахарная свекла, редис, мята, виноград и другие).
  • Анеуплоидия - увеличение или уменьшение числа хромосом по отдельным парам. Такой вид мутации характеризуется низкой жизнеспособностью особи. Широко распространенная мутация у человека - одна по 21-ой паре вызывает синдром Дауна.

Хромосомные мутации

Изменчивость в биологии путем появляется при изменении структуры самих хромосом: потери концевого участка, повторение набора генов, поворот отдельного фрагмента, перенос сегмента хромосомы в другое место или к другой хромосоме. Такие мутации часто возникают под воздействием радиации и химического загрязнения окружающей среды.

Генные мутации

Значительная часть таких мутаций не проявляется внешне, так как является рецессивным признаком. Обусловлены генные мутации изменением последовательности нуклеотидов - отдельных генов - и приводят к появлению молекул белка с новыми свойствами.

Генные мутации у человека обуславливают проявление некоторых наследственных заболеваний - серповидно-клеточная анемия, гемофилия.

Цитоплазматические мутации

Цитоплазматические мутации связаны с изменениями в структурах цитоплазмы клетки, содержащих ДНК-молекулы. Это митохондрии и пластиды. Передаются такие мутации по материнской линии, так как зигота получает всю цитоплазму от материнской яйцеклетки. Пример цитоплазматической мутации, вызвавшей изменчивость в биологии - это перистолистность растений, которая вызывается изменениями в хлоропластах.

Для всех мутаций характерны следующие свойства:

  • Они возникают внезапно.
  • Передаются по наследству.
  • У них нет какой-либо направленности. Мутации может подвергнуться как незначительный участок, так и жизненно важный признак.
  • Возникают у отдельных особей, то есть индивидуальны.
  • По своему проявлению мутации могут быть рецессивными или доминантными.
  • Одна и та же мутация может повторяться.

Каждая мутация вызывается определенными причинами. В большинстве случаев точно установить ее не удается. В экспериментальных условиях для получения мутаций используют направленный фактор воздействия внешней среды - радиационное облучение и тому подобное.

Из истории

Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

Наследственность организмов

Наследственностью организмов называют общее свойство всех организмов сохранять и передавать особенности строения и функций от предков к потомству.

Связь родителей с потомками у организмов осуществляется в основном через размножение. Потомство всегда подобно родителям и предкам, но не бывает их точной копией.

Каждый знает, что из желудя вырастает дуб, из яиц кукушки выводятся ее птенцы. Из семян культурных растений определенного сорта вырастают растения того же сорта. У домашних животных сохраняют свойства потомки той же породы.

Почему же потомство похоже на своих родителей? Во времена Дарвина причины наследственности были мало изучены. В настоящее время известно, что материальную основу наследственности составляют гены, расположенные в хромосомах. Ген представляет собой участок молекулы органического вещества ДНК, под действием которого формируются признаки. В клетках организмов разных видов содержатся единицы и десятки хромосом и сотни тысяч генов.

Хромосомы с расположенными в них генами имеются как в половых клетках, так и в клетках тела. При половом размножении происходит слияние мужской и женской половых клеток. В клетках зародыша объединяются мужские и женские хромосомы, поэтому формирование его происходит под влиянием генов как материнского, так и отцовского организма. На развитие одних признаков большее влияние оказывают гены материнского организма, других - отцовского, на третьи признаки материнские и отцовские гены оказывают равное влияние. Поэтому потомство по одним признакам оказывается похожим на материнский организм, по другим - на отцовский, по третьим - совмещает признаки отца и матери, т. е. имеет промежуточный характер.

Изменчивость организмов

Изменчивостью организмов называют общее свойство организмов приобретать новые признаки - различия между особями в пределах вида.

Изменчивы все признаки организмов: особенности внешнего и внутреннего строения, физиологии, поведения и др. В потомстве одной пары животных или среди растений, выросших из семян одного плода, невозможно встретить совершенно одинаковых особей. В стаде овец одной породы каждое животное отличается еле уловимыми особенностями: размерами тела, длиной ног, головы, окраской, длиной и плотностью завитка шерсти, голосом, повадками. Количество краевых язычковых цветков в соцветиях золотой розги (семейство сложноцветных) колеблется от 5 до 8. Число лепестков ветреницы дубравной (семейство лютиковых) - 6, а иногда 7 и 8. Растения одного вида или сорта несколько отличаются друг от друга в сроках цветения, созревания плодов, степени засухоустойчивости и др. Благодаря изменчивости особей популяция оказывается разнородной.

Дарвин различал две основные формы изменчивости - ненаследственную и наследственную.

Ненаследственная или модификационная изменчивость

Давно было замечено, что все особи данной породы, сорта или вида под влиянием определенной причины изменяются в одном направлении. Сорта культурных растений при отсутствии условий, в которых они были выведены человеком, теряют свои качества. Например, белокочанная капуста при возделывании в жарких странах не образует кочана. Известно, что при хорошем удобрении, поливе, освещении растения обильно кустятся и плодоносят. Породы лошадей, завезенные в горы или на острова, где пища недостаточно питательна, со временем становятся низкорослыми. Продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается. Все эти изменения ненаследственны, и если растения или животных перенести в исходные условия существования, то признаки вновь возвращаются к первоначальным.

Причины ненаследственной, или модификационной, изменчивости организмов во времена Дарвина были слабо изучены. К настоящему времени выяснено, что формирование организма идет как под влиянием генов, так и под воздействием условий среды обитания. Эти условия и служат причиной ненаследственной, модификационной, изменчивости. Они могут ускорить или замедлить рост и развитие, изменить окраску цветков у растений, но гены при этом не изменяются. Благодаря ненаследственной изменчивости особи популяций оказываются приспособленными к меняющимся условиям среды.

Наследственная изменчивость

Кроме модификационной существует другая форма изменчивости - наследственная изменчивость организмов, которая затрагивает хромосомы или гены, т. е. материальные основы наследственности. Наследственные изменения были хорошо известны Дарвину, им он отводил большую роль в эволюции.

Причины наследственной изменчивости во времена Дарвина также были мало исследованы. В настоящее время известно, что наследственные изменения обусловлены изменением генов или образованием новых комбинаций их в потомстве. Так, один вид наследственной изменчивости - мутации - обусловлен изменением генов; другой вид - комбинативная изменчивость - вызван новой комбинацией генов в потомстве; третий - соотносительная изменчивость - связан с тем, что один и тот же ген оказывает влияние на формирование не одного, а двух и более признаков. Таким образом, в основе всех видов наследственной изменчивости лежит изменение гена или совокупности генов.

Мутации могут быть незначительными и затрагивать самые различные морфологические и физиологические особенности организма, например у животных - размеры, окраску, плодовитость, молочность и т. п. Иногда мутации проявляются в более значительных изменениях. Такого рода изменения были использованы при создании курдючных, мериносовых и каракулевых пород овец, махровых сортов многих декоративных растений, деревьев с плакучими и пирамидальными кронами. Известны наследственные изменения земляники с простыми яйцевидными листьями, чистотела с рассеченными листьями.

Мутации могут происходить в силу самых различных воздействий. Источником комбинативной изменчивости в популяциях служит скрещивание. Отдельные особи одной и той же популяции несколько отличаются друг от друга по генотипу. В результате свободного скрещивания получаются новые комбинации генов.

Появившиеся в популяции в силу случайных причин наследственные изменения постепенно распространяются среди особей благодаря свободному скрещиванию, и популяция оказывается насыщенной ими. Эти наследственные изменения сами по себе не могут привести ни к появлению новой популяции, ни тем более нового вида, но они являются необходимым материалом для отбора, предпосылкой для эволюционных изменений.

Еще Дарвин отметил соотносительный характер наследственной изменчивости. Например, длинные конечности животных почти всегда сопровождаются удлиненной шеей; у бесшерстных собак наблюдаются недоразвитые зубы; голуби с оперением на ногах имеют перепонки между пальцами. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и нижней стороны листьев. У львиного зева со светлыми венчиками цветков стебель и листья зеленые; с темными венчиками - стебель и листья темные. Поэтому, проводя отбор по одному, нужному признаку, следует учитывать возможность появления в потомстве других, иногда нежелательных признаков, относительно с ним связанных.

Наследственность и изменчивость - разные свойства организмов, обусловливающие сходство и несходство потомства с родителями и с более отдаленными предками. Наследственность выражает устойчивость органических форм в ряду поколений, а изменчивость - их способность к преобразованию.

Дарвин неоднократно подчеркивал необходимость глубокой разработки законов изменчивости и наследственности. Позднее они стали предметом изучения генетики.

Существует 2 типа наследственной изменчивости: мутационная и комбинативная.

В основе комбинативной изменчивости лежит образование рекомби­наций, т.е. таких соединений генов, каких не было у родителей. Фенотипически это может проявляться не только в том, что родительские при­знаки встречаются у части потомков в других комбинациях, но и в обра­зовании у потомков новых признаков, отсутствующих у родителей. Это случается, когда два или больше неаллельных гена, которыми отличают­ся родители, влияют на формирование одного и того же признака.

Основными источниками комбинативной изменчивости являются:

Независимое расхождение гомологичных хромосом в первом мейотическом делении;

Рекомбинация генов, основанная на явлении перекреста хромосом (рекомбинационные хромосомы, попав в зиготу, вызывают появление признаков, не типичных для родителей);

Случайная встреча гамет при оплодотворении.

В основе мутационной изменчивости лежат мутации - стойкие изме­нения генотипа, затрагивающие целые хромосомы, их части или отдель­ные гены.

1) Типы мутаций по последствиям влияния на организм делятся на полезные, вредные и нейтральные.

2) По месту возникновения мутации могут быть генеративными, если они возникают в половых клетках: они могут проявляться в том поко­лении, которое развивается из половых клеток. Соматические мутации происходят в соматических (неполовых) клетках. Потомкам такие му­тации могут передаваться только при бесполом или вегетативном раз­множении.

3) В зависимости от того, какую часть генотипа они затрагивают, мутации могут быть:

Геномные, приводящие к кратному изменению количества хромо­сом, например, полиплоидия;

Хромосомные, связанные с изменением строения хромосом, присо­единение лишнего участка вследствие перекреста, поворот определен­ного участка хромосом на 180° или со сменой количества отдельных хро­мосом. Благодаря хромосомным перестройкам происходит эволюция кариотипа, и отдельные мутанты, которые возникли вследствие таких перестроек, могут оказаться более приспособленными к условиям суще­ствования, размножиться и дать начало новому виду;

Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Это наиболее распространенный тип мутаций.

4) По способу возникновения мутации разделяются на спонтанные и индуцированные.

Спонтанные мутации возникают в естественных условиях под дей­ствием мутагенных факторов среды без вмешательства человека.

Индуцированные мутации возникают при направленном воздействии на организм мутагенных факторов. К физическим мутагенам относят раз­личные виды излучений, низкие и высокие температуры; к химическим - различные химические соединения; к биологическим - вирусы.



Итак, мутации являются основным источником наследственной измен­чивости - фактора эволюции организмов. Благодаря мутациям появляют­ся новые аллели (их называют мутантными). Однако большинство мута­ций вредны для живых существ, поскольку они снижают их приспособлен­ность, возможность давать потомство. Природа допускает много ошибок, создавая, благодаря мутациям, множество видоизмененных генотипов, но вместе с тем она всегда безошибочно и автоматически отбирает те геноти­пы, которые дают наиболее приспособленный к определенным условиям среды фенотип.

Таким образом, мутационный процесс является основным источни­ком эволюционных изменений.

2. Дайте общую характеристику класса Двудольные растения. Каково значение двудольных растений в природе, жизни человека?

Класс двудольные растения – растения, в зародыше семени которых присутствует

две семядоли.

Класс двудольных – 325 семейств.

Рассмотрим крупные семейства двудольных растений .

Семейство Особенности цветка, соцветие Формула цветка Плод Представители
Сложноцветные Цветки – мелкие, трубчатой и язычковой формы – ассиметричные Соцветие – корзинка. Ч (5) Л 5 Тn П 1 – цветки трубчатые Ч (5) Л 5 Тn П 1 – цветки язычковые Семянка, орешек Травянистые растения (лекарственные и масличные) – одуванчик, цикорий, василек, ромашка, астра и мн.др.
Крестоцветные Околоцветник – четырехчленный. Соцветие кисть, реже в виде щитка. Ч 4 Л 4 Т 4+2 П 1 Стручок, стручочек Однолетние и многолетние травянистые растения – репа, редис, турнепс, редька, брюква, капуста и мн.др.
Розоцветные Цветки – одиночные Ч (5) Л 5 Тn П 1 Ч 5+5 Л 5 Тn П 1 Костянка, костянка сложная, многоорешек, яблоко Травы, кустарники, деревья. Шиповник, малина, земляника, слива, яблоня, груша и мн.др.
Бобовые Кисть, головка Ч 5 Л 1+2+(2) Т (9)+1 П 1 Боб Кустарники. Травянистые растения – фасоль, горох, чечевица, арахис, клевер, люцерна, люпин и мн.др.
Пасленовые Одиночные цветки или соцветия – кисть, завиток Ч (5) Л (5) Т (5) П 1 Ягода, коробочка Деревья. Травянистые растения – баклажаны, томаты, перец, картофель, паслен, дурман, белена и мн. др.

ЗНАЧЕНИЕ В ПРИРОДЕ: - растения этого класса являются продуцентами в экосистемах, т. е. фотосинтезируют органические вещества; - эти растения являются началом всех пищевых цепочек; - эти растения определяют вид биогеоценоза (берёзовый лес, кипрейная степь) ; - это активные участники круговорота веществ и воды.



ЗНАЧЕНИЕ В ЖИЗНИ ЧЕЛОВЕКА: - среди растений класса Двудольные много культурных растений, органы которых используются в пищу человеком (семейство Розоцветные -вишня, яблоня, слива, малина, сем. Сложноцветные - подсолнечник, сем. Паслёновые - томат, картофель, перец, сем. Крестоцветные - различные сорта капусты, сем. Бобовые - горох, соя, фасоль) - многие растения используются на корм скоту; - при производстве натуральных нитей (лён, хлопок); - как культурно-декоративные (акация, розы); - лекарственные (горчица, ромашка, крапива, термопсис). Также среди этого класса много пряностей, из них производят табак, кофе, чай, какао, красители, канаты, верёвки, бумагу, деревянную посуду, мебель, музыкальные инструменты; - бесценна для строительства древесина некоторых двудольных (дуб, граб, липа).

Наследственность и изменчивость – свойства организмов. Генетика как наука


Наследственность – способность организмов передавать свои признаки и особенности развития потомству.
Изменчивость – разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм.
Генетика – наука о закономерностях наследственности и изменчивости.

2. Охарактеризуйте вклад известных вам ученых в развитие генетики как науки, заполнив таблицу.

История развития генетики

3. Какие методы генетики как науки вам известны?
Основной метод генетики – гибридологический. Это скрещивание определенных организмов и анализ их потомства. Этот метод использовал Г. Мендель.
Генеалогический – изучение родословных. Позволяет определить закономерности наследования признаков.
Близнецовый – сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).
Цитогенетический – изучение под микроскопом хромосомного набора – числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни.

4. В чем состоит сущность гибридологического метода изучения наследования признаков?
Гибридологический метод – один из методов генетики, способ изучения наследственных свойств организма путем скрещивания его с родственной формой и последующим анализом признаков потомства.

5. Почему горох можно считать удачным объектом генетических исследований?
Виды гороха отличаются друг от друга малым количеством хорошо отличимых признаков. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год. Кроме того, в природе горох является самоопылителем, но в эксперименте самоопыление легко предотвратить, и исследователь легко может опылить растение одной пыльцой с другого растения.

6. Наследование каких пар признаков у гороха изучал Г. Мендель?
Мендель использовал 22 чистые линии гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые – морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные – карликовые).

7. Что понимают в генетике под чистой линией?
Чистая линия в генетике – это группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей.

Закономерности наследования. Моногибридное скрещивание

1. Дайте определения понятий.
Аллельные гены – гены, ответственные за проявление одного признака.
Гомозиготный организм – организм, содержащий два одинаковых аллельных гена.
Гетерозиготный организм – организм, содержащий два различных аллельных гена.

2. Что понимают под моногибридным скрещиванием?
Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

3. Сформулируйте правило единообразия гибридов первого поколения.
При скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

4. Сформулируйте правило расщепления.
При скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют ¼ часть от всего числа потомков первого поколения.

5. Сформулируйте закон чистоты гамет.
При образовании в каждую из них попадает только один из двух «элементов наследственности», отвечающий за данный признак.

6. Используя общепринятые условные обозначения, составьте схему моногибридного скрещивания.


Охарактеризуйте на данном примере цитологические основы моногибридного скрещивания.
Р – родительское поколение, F1 – первое поколение потомков, F2 – второе поколение потомков, А – ген, отвечающий за доминантный признак, а – ген, отвечающий за рецессивный признак.
В результате мейоза в гаметах родительских особей будет присутствовать по одному гену, отвечающему за наследование определенного признака (А или а). В первом поколении соматические клетки будут гетерозиготными (Аа), поэтому половина гамет первого поколения будет содержать ген А, а другая половина – ген а. В результате случайных комбинаций гамет во втором поколении возникнут следующие комбинации: АА, Аа, аА, аа. Особи с тремя первыми комбинациями генов будут иметь одинаковый фенотип (из-за наличия доминантного гена), а с четвертой – иной (рецессивный).

7. Решите генетическую задачу на моногибридное скрещивание.
Задача 1.
У арбуза зеленая окраска плода доминирует над полосатой. От скрещивания зеленоплодного сорта с полосатоплодным получены гибриды первого поколения, имеющие плоды зеленой окраски. Гибриды переопылили и получили 172 гибрида второго поколения. 1) Сколько типов гамет образует растение зеленоплодного сорта? 2) Сколько растений F2 будут гетерозиготными? 3) Сколько разных генотипов будет в F2? 4) Сколько в F2 будет растений с полосатой окраской плодов? 5) Сколько гомозиготных растений с зеленой окраской плодов будет в F2?
Решение
А – зеленая окраска, а – полосатая окраска.
Так как при скрещивании растений с зелеными и полосатыми плодами получили растения с зеленым плодом, можно сделать вывод, что родительские особи были гомозиготными (АА и аа) (по правилу единообразия гибридов первого поколения Менделя).
Составим схему скрещивания.


Ответы:
1. 1 или 2 (в случае гетерозиготы)
2. 86
3. 3
4. 43
5. 43.

Задача 2.
Длинная шерсть у кошек рецессивна по отношению к короткой. Длинношерстная кошка, скрещенная с гетерозиготным короткошерстным котом, принесла 8 котят. 1) Сколько типов гамет образуется у кота? 2) Сколько типов гамет образуется у кошки? 3) Сколько фенотипически разных котят в помете? 4) Сколько генотипически разных котят в помете? 5) Сколько котят в помете с длинной шерстью?
Решение
А – короткая шерсть, а – длинная шерсть. Так как у кошки была длинная шерсть, она гомозиготна, ее генотип аа. У кота генотип Аа (гетерозиготный, короткая шерсть).
Составим схему скрещивания.


Ответы:
1. 2
2. 1
3. 4 с длинной и 4 с короткой
4. 4 с генотипом Аа, и 4 с генотипом аа
5. 4.

Множественные аллели. Анализирующее скрещивание

1. Дайте определения понятий.
Фенотип – совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Генотип – это совокупность всех генов организма, являющихся его наследственной основой.

2. Почему понятия о доминантном и рецессивном генах являются относительными?
У гена какого-либо признака могут быть и другие «состояния», которые нельзя назвать ни доминантными, ни рецессивными. Это явление может произойти в результате мутаций и называется «множественный аллелизм».

3. Что понимают под множественным аллелизмом?

Множественный аллелизм - это существование в популяции более двух аллелей данного гена.

4. Заполните таблицу.

Типы взаимодействия аллельных генов


5. Что такое анализирующее скрещивание и каково его практическое значение?
Анализирующее скрещивание используют для установления генотипа особей, которые не различаются по фенотипу. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа).

6. Решите задачу на анализирующее скрещивание.
Задача.

Белая окраска венчика у флокса доминирует над розовой. Скрещено растение с белой окраской венчика с растением, имеющим розовую окраску. Получено 96 гибридных растений, из которых 51 имеет белую окраску, а 45 – розовую. 1) Какие генотипы имеют родительские растения? 2) Сколько типов гамет может образовывать растение с белой окраской венчика? 3) Сколько типов гамет может образовывать растение с розовой окраской венчика? 4) Какое соотношение по фенотипу можно ожидать в поколении F2 от скрещивания между собой гибридных растений F1 с белыми цветками?
Решение.
А – белая окраска, а – розовая окраска. Генотип одного растения А.. – белый, второго аа – розовый.
Так как в первом поколении наблюдается расщепление 1:1 (51:45), генотип первого растения Аа.
Составим схему скрещивания.

Ответы:
1. Аа и аа.
2. 2
3. 1
4. 3 с белым венчиком:1 с розовым венчиком.

Дигибридное скрещивание

1. Дайте определения понятий.
Дигибридное скрещивание – скрещивание особей, у которых учитывают отличия друг от друга по двум признакам.
Решетка Пеннета – это таблица, предложенная английским генетиком Реджинальдом Пеннетом в качестве инструмента, представляющего собой графическую запись для определения сочетаемости аллелей из родительских генотипов.

2. Какое соотношение фенотипов получается при дигибридном скрещивании дигетерозигот? Ответ проиллюстрируйте, расписав решетку Пеннета.
А – Желтая окраска семян
а – Зеленая окраска семян
В – Гладкая форма семян
в – Морщинистая форма семян.
Желтый гладкий (ААВВ) × Зеленый морщинистый (аавв) =
Р: АаВв×АаВв (дигетерозиготы)
Гаметы: АВ, Ав, аВ, ав.
F1 в таблице:

Ответ: 9 (желтых гладких):3 (зеленых гладких):3 (желтых морщинистых):1 (зеленых морщинистых).

3. Сформулируйте закон независимого наследования признаков.
При дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга.

4. Решите генетические задачи на дигибридное скрещивание.
Задача 1.

Черная окраска у кошек доминирует над палевой, а короткая шерсть – над длинной. Скрещивались чистопородные персидские кошки (черные длинношерстные) с сиамскими (палевые короткошерстные). Полученные гибриды скрещивались между собой. Какова вероятность получения в F2 чистопородного сиамского котенка; котенка, фенотипически похожего на персидского; длинношерстного палевого котенка (выразить в частях)?
Решение:
А – черная окраска, а – палевая.
В – короткая шерсть, в – длинная.

Составим решетку Пеннета.

Ответ:
1) 1/16
2) 3/16
3) 1/16.

Задача 2.

У томатов округлая форма плодов доминирует над грушевидной, а красная окраска плодов – над желтой. От скрещивания гетерозиготного растения с красной окраской и грушевидной формой плодов и желтоплодного с округлыми плодами получено 120 растений. 1) Сколько типов гамет образует гетерозиготное растение с красной окраской плодов и грушевидной формой? 2) Сколько разных фенотипов получилось от такого скрещивания? 3) Сколько разных генотипов получилось от такого скрещивания? 4) Сколько получилось растений с красной окраской и округлой формой плодов? 5) Сколько растений получилось с желтой окраской и округлой формой плодов?
Решение
А – округлая форма, а – грушевидная форма.
В – красная окраска, в – желтая окраска.
Определим генотипы родителей, типы гамет и запишем схему скрещивания.

Составим решетку Пеннета.


Ответ:
1. 2
2. 4
3. 4
4. 30
5. 30.

Хромосомная теория наследственности. Современные представления о гене и геноме

1. Дайте определения понятий.
Кроссинговер – процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.
Хромосомная карта – это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.

2. В каком случае происходит нарушение закона независимого наследования признаков?
При кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы.

3. Напишите основные положения хромосомной теории наследственности Т. Моргана.
Ген представляет собой участок хромосомы.
Аллельные гены (гены, отвечающие за один признак) расположены в строго определенных местах (локусах) гомологичных хромосом.
Гены располагаются в хромосомах линейно, то есть друг за другом.
В процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, то есть может происходить кроссинговер.

4. Сформулируйте закон Моргана.
Гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцепленно.

5. От чего зависит вероятность расхождения двух неаллельных генов при кроссинговере?
Вероятность расхождения двух неаллельных генов при кроссинговере зависит от расстояния между ними в хромосоме.

6. Что лежит в основе составления генетических карт организмов?
Подсчет частоты кроссинговера между какими-либо двумя генами одной хромосомы, отвечающими за различные признаки, дает возможность точно определить расстояние между этими генами, а значит, и начать построение генетической карты, которая представляет собой схему взаимного расположения генов, составляющих одну хромосому.

7. Для чего составляют хромосомные карты?
При помощи генетических карт можно узнать расположение генов животных и растений и информацию из них. Это поможет в борьбе с различными неизлечимыми пока заболеваниями.

Наследственная и ненаследственная изменчивость

1. Дайте определения понятий.

Норма реакции – способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида.
Мутация – стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды.
2. Заполните таблицу.


3. От чего зависят пределы модификационной изменчивости?
Пределы модификационной изменчивости зависят от нормы реакции, которая обусловлена генетически и наследуется.

4. Что имеют общего и чем отличаются комбинативная и мутационная изменчивость?
Общее: оба вида изменчивости обусловлены изменениями в генетическом материале.
Отличия: комбинативная изменчивость возникает из-за рекомбинации генов во время слияния гамет, а мутационная вызвана действием на организм мутагенов.

5. Заполните таблицу.

Виды мутаций

6. Что понимают под мутагенными факторами? Приведите соответствующие примеры.
Мутагенные факторы – воздействия, приводящие к возникновениям мутаций.
Это могут быть физические воздействия: ионизирующее излучение и ультрафиолетовое излучение, повреждающее молекулы ДНК; химические вещества, нарушающие структуры ДНК и процессы репликации; вирусы, встраивающие свои гены в ДНК клетки-хозяина.

Наследование признаков у человека. Наследственные болезни у человека

1. Дайте определения понятий.
Генные заболевания – болезни, причинами которых являются генные или хромосомные мутации.
Хромосомные болезни – болезни, вызванные изменением числа хромосом или их строением.

2. Заполните таблицу.

Наследование признаков у человека


3. Что понимают под наследованием, сцепленным с полом?
Наследованием, сцепленное с полом – это наследование признаков, гены которых расположены в половых хромосомах.

4. Какие признаки у человека наследуются сцепленно с полом?
Сцепленно с полом у человека наследуются гемофилия и дальтонизм.

5. Решите генетические задачи на наследование признаков у человека, в том числе на наследование, сцепленное с полом.
Задача 1.

У человека ген длинных ресниц доминирует над геном коротких ресниц. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчин с короткими ресницами. 1) Сколько типов гамет образуется у женщины? 2) Сколько типов гамет образуется у мужчин? 3) Какова вероятность рождения в данной семье ребенка с длинными ресницами (в %)? 4) Сколько разных генотипов и сколько фенотипов может быть среди детей данной супружеской пары?
Решение
А – длинные ресницы
а – короткие ресницы.
Женщины гетерозиготна (Аа), так как у отца были короткие ресницы.
Мужчина гомозиготен (аа).


Ответ:
1. 2
2. 1
3. 50
4. 2 генотипа (Аа) и 2 фенотипа (длинные и короткие ресницы).

Задача 2.

У человека свободная мочка уха доминирует над несвободной, а гладкий подбородок рецессивен по отношению к подбородку с треугольной ямкой. Эти признаки наследуются независимо. От брака мужчины с несвободной мочкой уха и треугольной ямкой на подбородке и женщины, имеющей свободную мочку уха и гладкий подбородок, родился сын с гладким подбородком и несвободной мочкой уха. Какова вероятность рождения в этой семье ребенка с гладким подбородком и свободной мочкой уха; с треугольной ямкой на подбородке (в %)?
Решение
А – свободная мочка уха
а – несвободная мочка уха
В – треугольная ямка
в – гладкий подбородок.
Так как у пары родился ребенок, с гомозиготными признаками (аавв), генотип матери Аавв, а отца – ааВв.
Запишем генотипы родителей, типы гамет и схему скрещивания.


Составим решетку Пеннета.


Ответ:
1. 25
2. 50.

Задача 3.

У человека ген, вызывающий гемофилию, рецессивен и находится в Х-хромосоме, а альбинизм обусловлен аутосомным рецессивным геном. У родителей, нормальных по этим признакам, родился сын альбинос и гемофилик. 1) Какова вероятность того, что у их следующего сына проявятся эти два аномальных признака? 2) Какова вероятность рождения здоровых дочерей?
Решение:
Х° - наличие гемофилии (рецессивен), Х – отсутствие гемофилии.
А – нормальный цвет кожи
а – альбинос.
Генотипы родителей:
Мать - Х°ХАа
Отец – ХУАа.
Составим решетку Пеннета.


Ответ: вероятность проявления признаков альбинизма и гемофилии (генотип Х°Уаа) – у следующего сына - 6,25%. Вероятность рождения здоровых дочерей – (генотип ХХАА) – 6,25%.

Задача 4.

Гипертония у человека определяется доминантным аутосомным геном, а оптическая атрофия вызывается рецессивным геном, сцепленным с полом. Женщина с оптической атрофией вышла замуж за мужчину с гипертонией, у которого отец также был с гипертонией, а мать была здорова. 1) Какова вероятность, что ребенок в этой семье будет страдать обеими аномалиями (в %)? 2) Какова вероятность рождения здорового ребенка (в %)?
Решение.
Х° - наличие атрофии (рецессивен), Х – отсутствие атрофии.
А – гипертония
а – нет гипертонии.
Генотипы родителей:
Мать - Х°Х°аа (так как больна атрофией и без гипертонии)
Отец – ХУАа (так как не болен атрофией и его отец был с гипертонией, а мать здорова).
Составим решетку Пеннета.

Ответ:
1. 25
2. 0 (только 25% дочерей не будут иметь данных недостатков, но они будут носителями атрофии и без гипертонии).