Коэффициент корреляции знаков фехнера. Простейшие показатели тесноты связи (коэффициент Фехнера, коэффициент корреляции рангов, коэффициент ассоциации)

Общее представление о корреляционно-регрессивном анализе

Существующие между явлениями формы и виды связей весьма разнообразны по своей классификации. являются только такие из них, которые имеют количественный характер и изучаются с помощью количественных методов. Рассмотрим метод корреляционно-регрессионного анализа, который является основным в изучении взаимосвязей явлений.

Данный метод содержит две свои составляющие части — корреляционный анализ и регрессионный анализ. Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ — это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.

Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока: слабая — от 0,1 до 0,3; умеренная — от 0,3 до 0,5; заметная — от 0,5 до 0,7; высокая — от 0,7 до 0,9; весьма высокая (сильная) — от 0,9 до 1,0. Она используется далее в примерах по теме.

Линейная корреляция

Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной — положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.

Если переменные — количественные и равноценные в своих независимых наблюдениях при их общем количестве , то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т.Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К.Пирсона (1857-1936).

Коэффициент парной корреляции знаков Фехнера определяет согласованность направлений в индивидуальных отклонениях переменных и от своих средних и . Он равен отношению разности сумм совпадающих () и несовпадающих () пар знаков в отклонениях и к сумме этих сумм:

Величина Кф изменяется от -1 до +1. Суммирование в (1) производится по наблюдениям, которые не указаны в суммах ради упрощения. Если какое-то одно отклонение или , то оно не входит в расчет. Если же сразу оба отклонения нулевые: , то такой случай считается совпадающим по знакам и входит в состав . В таблице 12.1. показана подготовка данных для расчета (1).

Таблица 12.1 Данные для расчета коэффициента Фехнера.

Число работников, тыс. чел.

Товарооборот, у.е.

Отклонение от средних

Сравнение знаков и

совпа-дение
(С к)

несов-падение (Н к)

По (1) имеем К ф = (3 — 2)/(3 + 2) = 0,20 . Направление взаимосвязи в вариациях!!Средняя численность работников|численности работников]] и — положительное (прямолинейное): знаки в отклонениях и и в своем большинстве (в 3 случаях из 5) совпадают между собой. Теснота взаимосвязи переменных по шкале Чеддока — слабая.

Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных. Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:

Этот коэффициент также изменяется от -1 до +1. При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид

Этот коэффициент изменяется от 0 до 1. Если элиминировать (совсем исключить или зафиксировать на постоянном уровне) влияние на и , то их "общая" связь превратится в "чистую", образуя чистый (частный) коэффициент линейной корреляции Пирсона:

Этот коэффициент изменяется от -1 до +1. Квадраты коэффициентов корреляции (2)-(4) называются коэффициентами (индексами) детерминации — соответственно парной, чистой (частной), множественной (совокупной):

Каждый из коэффициентов детерминации изменяется от 0 до 1 и оценивает степень вариационной определенности в линейной взаимосвязи переменных, показывая долю вариации одной переменной (y), обусловленную вариацией другой (других) — x и y. Многомерный случай наличия более трех переменных здесь не рассматривается.

Согласно разработкам английского статистика Р.Э. Фишера (1890-1962), статистическая значимость парного и чистого (частного) коэффициентов корреляции Пирсона проверяется в случае нормальности их распределения, на основании -распределения английского статистика В.С. Госсета (псевдоним "Стьюдент"; 1876-1937) с заданным уровнем вероятностной значимости и имеющейся степени свободы , где — число связей (факторных переменных). Для парного коэффициента имеем его среднеквадратическую ошибку и фактическое значение -критерия Стьюдента:

Для чистого коэффициента корреляции при расчете его вместо (n-2) надо брать , т.к. в этом случае имеется m=2 (две факторные переменные x и z). При большом числе n>100 вместо (n-2) или (n-3) в (6) можно брать n, пренебрегая точностью расчета.

Если t r > t табл. , то коэффициент парной корреляции — общий или чистый является статистически значимым, а при t r ≤ t табл. — незначимым.

Значимость коэффициента множественной корреляции R проверяется по F — критерию Фишера путем расчета его фактического значения

При F R > F табл. коэффициент R считается значимым с заданным уровнем значимости a и имеющихся степенях свободы и , а при F r ≤ F табл — незначимым.

В совокупностях большого объема n > 100 для оценки значимости всех коэффициентов Пирсона вместо критериев t и F применяется непосредственно нормальный закон распределения (табулированная функция Лапласа-Шеппарда).

Наконец, если коэффициенты Пирсона не подчиняются нормальному закону, то в качестве критерия их значимости используется Z — критерий Фишера, который здесь не рассматривается.

Условный пример расчета (2) — (7)дан в табл. 12.2, где взяты исходные данные табл.12.1 с добавлением к ним третьей переменной z — размера общей площади магазина (в 100 кв. м).

Таблица 12.2. Подготовка данных для расчета коэффициентов корреляции Пирсона

Показатели

Согласно (2) — (5), коэффициенты линейной корреляции Пирсона равны:

Взаимосвязь переменных x и y является положительной, но не тесной, составляя по их парному коэффициенту корреляции величину и по чистому — величину и оценивалась по шкале Чеддока соответственно как "заметная" и "слабая".

Коэффициенты детерминации d xy =0,354 и d xy . z = 0,0037 свидетельствуют, что вариация у (товарооборота) обусловлена линейной вариацией x (численности работников) на 35,4% в их общей взаимосвязи и в чистой взаимосвязи — только на 0,37% . Такое положение обусловлено значительным влиянием на x и y третьей переменной z — занимаемой магазинами общей площади. Теснота ее взаимосвязи с ними составляет соответственно r xz =0,677 и r yz =0,844 .

Коэффициент множественной (совокупной) корреляции трех переменных показывает, что теснота линейной взаимосвязи x и z c y составляет величину R = 0,844 , оцениваясь по шкале Чеддока как "высокая", а коэффициент множественный детерминации — величину D=0,713 , свидетельствуя, что 71,3 % всей вариации у (товарооборота) обусловлены совокупным воздействием на нее переменных x и z . Остальные 28,7% обусловлены воздействием на y других факторов или же криволинейной связью переменных y, x, z .

Для оценки значимости коэффициентов корреляции возьмем уровень значимости . По исходным данным имеем степени свободы для и для . По теоретической таблице находим соответственно t табл.1. = 3,182 и t табл.2. = 4,303. Для F-критерия имеем и и по таблице находим F табл. = 19,0. Фактические значения каждого критерия по (6) и (7) равны:

Все расчетные критерии меньше своих табличных значений: все коэффициенты корреляции Пирсона статистически незначимы.

Рассмотрим ряд простейших показателей тесноты связи, которые приблизительно измеряют зависимости между признаком-фактором «х » и признаком-результатом «y ».

Коэффициент Фехнера (1801-1887 г.г.) измеряет тесноту связи по числу совпадений знаков отклонений индивидуальных величин от средней. Степень тесноты связи такая же как у коэффициента корреляции. Он равен:

с – число совпадений знаков отклонений индивидуальных значений от средней по признаку-фактору – «х » и признаку-результату «y ».

н – число несовпадений знаков отклонений.

Этот показатель принимает значение от -1 до +1. Если знаки всех отклонений совпадут, то н = 0 и тогда = +1, что говорит о возможном наличии прямой связи.

Если же знаки всех отклонений – разные, то с = 0 и = -1, что говорит о возможном наличии обратной связи. Рассчитаем этот показатель (см. табл. 16). Рассчитаем средние величины по «х » и по «y ».

Таблица 16

Расчет коэффициентов Фенхера и корреляции рангов Спирмэна

№п/п Среднесписочная численность работников «х» Товарная продукция, тыс.руб. «y» Совпадение или несовпадение знаков
2,5 - - с +2
5,0 - + н +3
6,0 + + с +2
3,0 + - н -2
1,6 + - н -6
2,0 - - с +2
1,5 - - с -3
10,5 + + с +2
итого 32,1 с = 5 н = 3 +11 -11 =74

Средняя списочная численность рабочих равна:

Средний объем товарной продукции равна:

Затем находим отклонения от средних величин и посчитаем число совпадений и несовпадений знаков.

Коэффициент Фехнера составит
, что говорит о слабой связи прямой между списочной численностью и товарной продукцией.

Этот показатель целесообразно использовать для установления факта наличия при небольшом объеме исходной информации.

Коэффициент корреляции рангов Спирмэна равен:

, где

– количество рангов

– разность между рангов

Р – ранг (порядковые номера вариантов).

Он варьирует от -1 до +1 и измеряет тесноту связи при небольшом количестве исходной информации и измеряет тесноту связи как между количественными, так и между качественными признаками при условии, что значение этих признаков могут быть проранжированны по степени убывания или возрастания. Коэффициент корреляции рангов Спирмена равен:

или 12%

Теснота связи между признаком «x» и признаком «y» - слабая, прямая.

Коэффициент ассоциации применяется для изменения тесноты связи для качественных альтернативных признаков. Он равен:

, где

a – противоположно b

c – противоположно d

Расчетная таблица в этом случае состоит из четырех ячеек (таблица «четырех полей»), стратегическое сказуемое, которое схематически может быть представлено в следующем виде (см. табл. 17)

Таблица 17

Расчетная таблица для коэффициента ассоциации

Коэффициент ассоциации равен:

или 68,8%

Данный показатель показывает частоту связи между показателями оценок, работающего по специальности и не по специальности. Связь между показателями будет тесная (68,8%), т.е. чем больше студенты будут работать по специальности, тем больше будет положительных оценок.

Методы оценки существенности расчета коэффициента корреляции.

Как правило расчет коэффициента корреляции при определении тесноты связи производится на базе небольшого числа исходных данных – выборочных данных.

В этой связи возникает необходимость оценить существенности коэффициента корреляции, которая дает возможность распространить выводы по результатам выборочных данных на генеральную совокупность. Критерии оценки существенности расчета коэффициента корреляции основаны на условии нормального распределения значений признака в генеральной совокупности. Рассмотрим некоторые из них: при большом объеме выборки и при малом объеме выборки .

При большом объеме выборки

При большой выборке, отобранной из генеральной совокупности нормального распределения, предполагается считать распредение коэффициента корреляции близко к нормальному со средней, равной «r» и дисперсией , а среднеквадратическая ошибка коэффициента корреляции тогда будет равна:

, где

r – коэффициент корреляции выборочной совокупности;

n – объем выборки;

k = n – 2 – число степеней свободы при линейной зависимости.

Если величина > в раз, или >

Найдем для сгруппированных данных (см. таб. 14) среднюю квадратическую ошибку коэффициента корреляции:

, тогда

С вероятностью0,95 и числом степеней свободы k = 50 – 2 = 48 , .

Поскольку > , следует, что с вероятностью Р = 0,95 и числом степеней свободы k = 48 можно утверждать о существенности выборочного коэффициента корреляции, т.е. связь между х и y – значимая.

Для генеральной совокупности коэффициент корреляции будет находится в пределах.

С вероятностью 0,95 можно утверждать, что коэффициент корреляции будет не ниже 46,6% и не выше 80,4%.

При малой выборки

Для малого объема выборочной совокупности для оценки значимости коэффициента корреляции.

Если > , то расчетный коэффициент корреляции существенен и связь между х и y вполне реальна. Если < , то связь между х и y несущественна и корреляционная связь в генеральной совокупности отсутствует.

По данным таблицы 15

, а с вероятностью 0,95 и числом степеней свободы k = 10 – 2 = 8 , .

Значит связь между х (простоями) и y – (выпуском продукции) существенна, т.к.

>

8. Проверка возможности использования прямолинейной функции – гипотезы Кендэла о линейной корреляционной зависимости.

Для проведения гипотезы Кендэла о линейной зависимости определяется величина вероятности, которая рассчитывается по следующей формуле:

, где

n – объем совокупности

m – число групп по признаку фактору х

Если критерий найденный с определенной вероятностью и критериями свободы ( и ) будут меньше F расчетного, то гипотеза о линейной связи между х и у отвергается. Если наоборот – то возможность использовать линейную функцию не опровергается.

По данным таблицы 14 рассчитаем этот критерий.

Критерий свободы , а . С вероятностью , и табличное значение - критерия = 3,2.

Расчетный критерий равен:

Поскольку меньше , то это не позволяет отклонить гипотезу о линейной связи между производительностью труда – х и товарной продукцией – y .

Вопросы для самопроверки

1. Что такое функциональные и корреляционные связи?

2. Какие задачи стоят перед корреляционным анализом?

3. Назовите виды корреляционной зависимости и рассмотрите их.

4. Как графически изображается корреляционная зависимость для несгруппированных и сгруппированных данных?

5. Эмпирическая линия регрессии и её характеристика.

6. Теоретическая линия регрессии и её характеристика.

7. Показатели тесноты связи и их характеристика.

8. Сущность коэффициента корреляции.

9. Характеристика эмпирического корреляционного отношения.

10. Теоретическое корреляционное отношение и его характеристика.

11. Простейшие показатели тесноты связи: коэффициент Фехнера, коэффициент корреляции рангов, коэффициент ассоциации.

12. Методы оценки существенности расчета коэффициента корреляции.

13. Гипотеза Кендела о линейной корреляционной зависимости.

Тема 9. Выборочный метод.

1. Общие понятия о выборочном методе и причины, вызывающие выборочное обследование.

2. Условия правильности проведения выборочного отбора.

3. Задачи выборки.

4. Способы отбора.

И некоторые ранговые коэффициенты

Кроме рассмотренных в подразд. 10.2 коэффициента кор-

Реляции, коэффициента детерминации, корреляционного от-

Ношения, существуют и другие коэффициенты для оценки

Степени тесноты корреляционной связи между изучаемыми

Явлениями, причем формулы для их нахождения достаточно

Просты. Рассмотрим некоторые из таких коэффициентов.

Коэффициент корреляции знаков Фехнера

Этот коэффициент является простейшим показателем

Степени тесноты связи, он был предложен немецким ученым

Г. Фехнером. Данный показатель основан на оценке степени

Согласованности направлений отклонений индивидуальных

Значений факторного и результативного признаков от соот-

Ветствующих средних значений. Для его определения вычис-

Ляют средние значения результативного () и факторного ()

Признаков, а затем находят знаки отклонений от средних для

Всех значений результативного и факторного признаков. Если

сравниваемое значение больше среднего, то ставится знак “+”,

а если меньше - знак “-”. Совпадение знаков по отдельным

значениям рядов x и y означает согласованную вариацию, а их

Несовпадение - нарушение согласованности.

Коэффициент Фехнера находится по следующей формуле:

, (10.40)

где С - число совпадений знаков отклонений индивидуаль-

Ных значений от средней величины;

Н - число несовпадений знаков отклонений индивидуаль-

Ных значений от средней величины.

Заметим, что -1 ≤ Кф ≤ 1. При Кф = ±1 имеем полную пря-

мую или обратную согласованность. При Кф = 0 - связь между

Рядами наблюдений отсутствует.

По исходным данным примера 10.1 рассчитаем коэффици-

Ент Фехнера. Необходимые данные для его определения помес-

тим в табл. 10.4.

Из табл. 10.4 находим, что С = 6; Н = 0, поэтому по форму-

ле (10.40) получаем: , т. е. полную прямую зависимость

между хищениями оружия (х ) и вооруженными преступлени-

ями (y ). Полученное значение Кф подтверждает вывод, сделан-

Ный после вычисления коэффициента корреляции о том, что

Между рядами x и y существует достаточно близкая прямая

Линейная зависимость.

Таблица 10.4

Хищение

оружия, x

Вооруженные

преступления, y

Знаки отклонения от средней

773 4481 − −

1130 9549 − −

1138 8873 − −

1336 12160 + +

1352 18059 + +

1396 19154 + +

Коэффициент корреляции рангов Спирмэна

Данный коэффициент относится к ранговым, т. е. коррели-

Руются не сами значения факторного и результативного при-

Знаков, а их ранги (номера их мест, занимаемых в каждом ряду

Значений по возрастанию или убыванию). Коэффициент кор-

Реляции рангов Спирмэна основан на рассмотрении разности

Рангов значений факторного и результативного признаков. Для

его нахождения используется следующая формула:

, (10.41)

Где - квадрат разности рангов.

Рассчитаем коэффициент Спирмэна по данным рассмат-

Риваемого примера 10.1. Так как значение факторного призна-

ка х мы изначально расположили по возрастанию, то ряд х ран-

жировать не надо. Ранжируем (от меньшего к большему) ряд y .

Все необходимые данные для расчета помещены в табл. 10.5.

Таблица 10.5

Ранги Rgx ряда х Ранги Rgy ряда y |di | = |Rgxi Rgyi |

Теперь по формуле (10.41) получаем

Заметим, что -1 ≤ ρc ≤ 1, т. е. полученное значение показыва-

Ет, что между хищениями оружия и вооруженными преступле-

Следует упомянуть коэффициент Фехнера, характеризующий элементарную степень тесноты связи, который целесообразно использовать для установления факта наличия связи, когда существует небольшой объем исходной информации.

Он основан на сравнении поведения отклонений индивидуальных значений каждого признака ( и ) от своей средней величины. При этом во внимание принимаются не величины отклонений , а их знаки («+» или «-»). Определив знаки отклонения от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений () и несовпадений ().

Коэффициент Фехнера ()рассчитывается как отношение разности чисел пар совпадений и несовпадений знаков к их сумме, т.е. к общему числу наблюдаемых единиц:

. (9.12)

Очевидно, что если знаки всех отклонений по каждому признаку совпадают, то и тогда . Это характеризует наличие прямой связи. Если все знаки не совпадают, то , а , что характеризует обратную связь. Коэффициент Фехнера, как и любой другой показатель тесноты связи, может принимать значения от -1 до +1.

Пример 9.3 . Имеются следующие данные о росте восьми пар братьев и сестер (таблица 9.2).

Таблица 9.2 - Данные о росте восьми пар братьев и сестер

Рост брата, см Рост сестры, см


Определить тесноту зависимости между ростом братьев и сестер на основе:

а) коэффициента Фехнера;

б) коэффициентов корреляции рангов Спирмэна и Кендэла.

Решение:

а) Рассчитаем средние величины и :

Определив знаки отклонения от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений () и несовпадений ():

.

Коэффициент Фехнера ()рассчитывается по формуле 9.8:

.

По величине коэффициента Фехнера () можно сделать вывод о весьма тесной зависимости между и .

б) По уже имеющимся данным (графы 1-2 таблицы 9.2) для нахождения коэффициентов корреляции рангов Спирмэна и Кендэла построим таблицу 9.3.

Таблица 9.3 – Расчетные значения, необходимые для исчисления коэффициентов корреляции рангов Спирмэна и Кендэла

Подсчет баллов
«+» «-»
6,5 6,5 1,5 1,5 6,5 6,5 -0,5 -1 -2 2,5 -0,5 -1,5 0,25 6,25 0,25 2,25 - -

В данном примере отдельные значения и повторяются. При ранжировании повторяющихся значений, им присваивается ранг, рассчитанный как средняя арифметическая из суммы мест, которые они занимают по возрастанию.

Расчет рангов показан в графах 3 и 4.

Для случая повторяющихся рангов есть особые скорректированные формулы и для коэффициента Спирмэна, и для коэффициента Кендэла. Однако на практике часто пользуются приведенной ранее формулой Спирмэна и для случая повторяющихся рангов, поскольку ошибку она дает весьма малую:

.

Формула коэффициента Кендэла для повторяющихся рангов имеет вид:

,

где , как и раньше, a и -показатели, корректирующие максимальную сумму баллов и определяемые по формуле , где - число повторяющихся рангов в соответствующем ряду и :

Так как значения рангов идут строго в возрастающем порядке, то следим лишь за поведением . После первой пары значений рангов, где в шести случаях идут значения и ни одного случая, где . Это означает, что в графу 7 мы ставим число «6», а в графу 8число «0». Далее после второй пары значений рангов, где в четырех случаях идут значения и ни одного случая, где . Это означает, что в графу 7 мы ставим число «4», а в графу 8число «0». ». В случае, если бы после второй пары значений рангов, где в трех случаях шли бы значения и два случая, где - это означало бы, что в графу 7 мы ставим число «3», а в графу 8число «2» и т.д.

Расчет и показан в графах 7 и 8. По результатам подсчетов .

Отсюда коэффициент корреляции рангов Кендэла:

По величине коэффициента () можно сделать вывод о весьма тесной зависимости между и , т.е. рост сестры весьма зависим от роста её брата.

Говоря о расчете коэффициента Кендэла, следует еще раз подчеркнуть, что если наблюдаемые единицы совокупности записаны неупорядоченно по одному из признаков (таблица 9.2.), то после ранжирования значений и , ранги одного из признаков, например , следует переписать, расположив их строго в порядке возрастания (или убывания), а для второго признака сохранить значения рангов, соответствующие значениям каждого в исходных данных (таблица 9.3).

Коэффициент конкордации

Корреляция рангов ()может определяться не только для двух, но и для большего числа показателей (факторов). Исчисляемый в этом случае показатель именуется коэффициентом конкордации ()и рассчитывается по формуле:

, (9.13)

где - количество коррелируемых факторов;

Число наблюдений;

- сумма квадратов отклонений суммы рангов по факторам от их средней арифметической, т.е.

а) или, что по значению тоже самое, (9.14)

б) где - ранг -го показателя. (9.15)

Коэффициент конкордации часто используется в экспертных оценках для определения согласованности мнений экспертов в распределение мест (рангов) между исследуемыми факторами или объектами по их приоритетности.

Пример 9.4. Пусть имеются следующие данные по пяти фирмам (графы 1-4 таблицы 9.4).

Таблица 9.4 – Исходные данные и промежуточные расчеты коэффициентов конкордации

Фирма Прибыль, тыс. руб. Стоимость оборотных средств, млн. руб. Затраты на 100 руб. продукции, руб. Ранги факторов Сумма рангов Квадрат суммы рангов
2,0 2,5 1,8 2,2 2,4
Σ

Определить тесноту зависимости между с помощью коэффициента конкордации.

Решение:

1. Ранжираем каждый и трех показателей (графы 5-7).

2. Находим сумму рангов по каждой строке (графа 8) и общую сумму пяти строк

3. Возводим в квадрат сумму рангов в каждой строке и находим сумму пяти строк (графа 9):

.

4. Находим , используя формулу 9.11:

.

5. Рассчитаем коэффициент конкордации:

Учитывая малое значение коэффициента конкордации, можно сказать, что зависимость между рассматриваемыми показателями весьма незначительна.

Существуют и другие коэффициенты для измерения тесноты зависимости (коэффициенты ассоциации и контингенции ; коэффициент взаимной сопряженности Пирсона ; коэффициент Чупрова ), которые применяются достаточно редко.

Непараметрические методы

Применение корреляционного и регрессионного анализа требует, чтобы все признаки были количественно измеренными. Построение аналитических группировок предполагает, что количественным должен быть результативный признак. Параметрические методы основаны на использовании основных количественных параметров распределения (средних величин и дисперсий).

Вместе с тем в статистике применяются также непараметрические методы , с помощью которых устанавливается связь между качественными (атрибутивными) признаками . Сфера их применения шире, чем параметрических, поскольку не требуется соблюдения условия нормальности распределения зависимой переменной, однако при этом снижается глубина исследования связей. При изучении зависимости между качественными признаками не ставится задача представления ее уравнением. Здесь речь идет только об установлении наличия связи и измерении ее тесноты.

В практике статистических исследований приходится иногда анализировать связи между альтернативными признаками , представленными только группами с противоположными (взаимоисключающими) характеристиками. Тесноту связи в этом случае можно оценить, вычислив коэффициент ассоциации.

Для расчета коэффициента ассоциации строится четырехклеточная корреляционная таблица, которая носит название таблицы «четырех полей» и имеет следующий вид:

a b a+b
c d c+d
a+c b+d a+b+c+d

Применительно к таблице «четырех полей» с частотами и коэффициент ассоциации выражается формулой:

. (9.16)

Коэффициент ассоциации изменяется от -1 до +1; чем ближе к +1 или -1, тем сильнее связаны между собой изучаемые признаки.

Если не менее 0,3, то это свидетельствует о наличии связи между качественными признаками.

Пример 9.5 . Имеющиеся данные о росте отцов и сыновей представлены в таблице 9.5.

Таблица 9.5 - Распределение отцов и сыновей по росту, чел.

Рост сына Рост отца Всего
Ниже среднего Выше среднего
Ниже среднего
Выше среднего
Итого

Подсчитаем коэффициент ассоциации по данным таблицы 9.5:

Поскольку , между ростом отцов и сыновей существует корреляционная связь.

Если по каждому из взаимосвязанных признаков выделяется число групп более двух, то для подобного рода таблиц теснота связи между качественными признаками может быть измерена с помощью показателя взаимной сопряженности А.A. Чупрова:

(9.17)

где - число возможных значений первой статистической величины (число групп по столбцам);

Число возможных значений второй статистической величины (число групп по строкам);

Показатель взаимной сопряженности (определяется как сумма отношений квадратов частот клетки таблицы распределения к произведению итоговых частот соответствующего столбца и строки).

Вычтя из этой суммы единицу, получим .

Коэффициент взаимной сопряженности А.А. Чупрова изменяется от 0 до 1, но уже при значении 0,3 можно говорить о тесной связи между вариацией изучаемых признаков.

Пример 9.6. Данные об уровне образования членов 100 семей приведены в таблице 9.6.

Таблица 9.6- Распределение семей по уровню образования мужа и жены

Примечание: частоты - верхние строки; их квадраты (в скобках) - средние строки; квадраты частот, деленные на суммы частот по столбцу - нижние строки; в итоговых столбцах - сумма частот, сумма результатов деления (А), а также результат деления нижнего числа на верхнее - последний столбец (В).

Тогда , .

Коэффициент взаимной сопряженности А.А. Чупрова:

.

Его значение показывает заметную связь между уровнями образования мужа и жены при формировании семьи.