Модели систем массового обслуживания (СМО). Оценка эффективности работы смо

Основы математического моделирования

социально-экономических процессов

Лекция 3

Тема лекции: «Модели систем массового обслуживания»

1. Модели организационных структур управления (ОСУ).

2. Системы и модели массового обслуживания. Классификация систем массового обслуживания (СМО).

3.Модели СМО. Показатели качества функционирования СМО.

  1. МОДЕЛИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

Многие экономические задачи связаны с системами мас-сового обслуживания (СМО), т. е. с такими системами, в кото-рых, с одной стороны, возникают массовые запросы (требо-вания) на выполнение каких-либо услуг, с другой — проис-ходит удовлетворение этих запросов.

СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания (ТМО).

Методами теории массового обслуживания (ТМО) могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых то- чек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций. И задача тео-рии массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммар-ные расходы на обслуживание и убытки от простоя транс-порта были бы минимальными. Теория массового обслужи-вания может найти применение и при расчете площади складских помещений, при этом складская площадь рас-сматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку — как требование.

Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем. Переход к рынку требует от всех субъектов хозяйствования повышенной надежности и эффективности функционирования производств, гибкости и живучести в ответ на динамичные изменения внешней деловой среды, снижения разновидностей рисков и потерь от запоздалых и некомпетентных управленческих решений.

СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО) ЯВЛЯЮТСЯ МАТЕМАТИЧЕСКИМИ МОДЕЛЯМИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

ОРГАНИЗАЦИОННЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ (ОСУ) призваны оперативно отслеживать колебания рынка и принимать в зависимости от складывающихся ситуаций компетентные управленческие решения.

Поэтому становится понятным то внимание, которое уделяют субъекты рынка (транснациональные корпорации, промышленные предприятия, коммерческие банки, фирмы, организации, малые предприятия и т.п.) выбору эффективно функционирующих организационных структур управления (ОСУ).

Взамен широко распространенных в 90-х годах двадцатого столетия ОСУ предприятий (иерархических, матричных, дуальных, параллельных и др.) сегодня в мире эффективно используются АЛЬТЕРНАТИВНЫЕ ФОРМЫ МНОГОФУНКЦИОНАЛЬНЫХ СТРУКТУР, базирующихся на принципах самоорганизации, адаптации, автономности отдельных подразделений с мягкими связями между ними .

Подобной структурой обладает множество передовых зарубежных фирм, в составе которых насчитывается множество рабочих групп с сетевыми взаимоотношениями между ними. Популярными в последнее время считаются организации, ориентированные на минимизацию потребления ресурсов, имеющие явно выраженную горизонтальную форму с координацией, осуществляемой не по иерархическому признаку, а самими рабочими группами, организованными в сеть.

Альтернативными моделями, противостоящими моделям ОСУ, созданным на базе организационной логики и жесткого регулирования, являются нечеткие структуры без иерархических уровней и структурных подразделений , основанные на координации личной ответственности и профилировании самоуправляемых групп со следующими признаками:

а) наличием относительно независимых рабочих групп с участием представителей различных подразделений, создаваемых для решения определенных проектов и проблем, при широкой свободе действий и автономии в области координации задач и принятия решений;

б) ликвидацией жестких связей между подразделениями ОСУ с введением гибких взаимосвязей.

На аналогичных принципах базируется современная концепция минимизированного по ресурсам производства: на подобных предприятиях в качестве организационных единиц используют рабочие группы с широкими полномочиями и большими возможностями самоуправления с конечной целью, заключающейся в создании разумной гибкой организации труда, опирающейся на самостоятельно действующих исполнителей, а не на синтезированные специалистами рациональные структуры; сотрудниками оцениваются возникающие проблемы, определяются возможности контактов со специалистами внутри и за пределами системы. Самоуправляемый персонал основной упор делает на самоорганизацию, заменяющую собой привнесенную извне (задаваемую сверху) жесткую упорядоченную структуру.

Крайним случаем такого подхода является создание безорганизационной, постоянно «размороженной», структуры со следующими свойствами:

Широкое творческое обсуждение любых обрабатываемых процедур и поступающих извне сигналов без учета шаблонных решений и прошлого опыта;

Автономная работа членов групп с самостоятельной организацией временных взаимосвязей и производственных соглашений между партнерами по мере необходимости для решения возникающих проблем.

Заметим, что чрезмерное увлечение одной системной функцией — гибкостью, при полном игнорировании прочих функций — интеграции, идентификации, учета и контроля, всегда опасно для устойчиво функционирующих систем, так как трудно обеспечить успешную координацию в рамках данной организации без высокой квалификации сотрудников, их способности к обучению и совершенствованию, к установлению эффективных контактов и координации.При подобной форме организации основное внимание должно уделяться созданию условий для максимального использования интеллекта человеческих ресурсов и повышения их квалификации, выделению высококвалифицированных специалистов — системщиков, увязывающих действия членов организации для достижения конечной цели. При этом в сфере системной координации существует вероятность возможных срывов, конфликтов и негативных последствий, так как ориентация на способность персонала к самоорганизации и самокоординации носит слишком общий характер. Хотя высокая компетентность, инициатива и сила воли каждого работника и влияет на жизнеспособность любой децентрализованной организации, но в целом они не могут заменить регулирующей функции целой организационной структуры.

Сегодня в мире интенсивно развивается новое направление синтеза ОСУ как обучающихся систем, характеризующихся следующими характерными особенностями:

а) привлечением высококвалифицированных экспертов-специалистов к процессам восприятия и накопления информации, а также к обучению и расширению способностей персонала;

б) постоянным изменением в процессе функционирования, расширением своих способностей взаимодействия с окружающей деловой средой и быстрой адаптацией к постоянно меняющимся внешним и внутренним условиям;

в) широким распространением открытых компьютерных сетей, охватывающих не только отдельные организации, предприятия или их конгломераты, но и целые крупные регионы и даже совокупности стран (ЕЭС, СВИФТ и др.), что обусловливает новые возможности организации и повышения эффективности работы предприятий и отраслей в масштабах всей страны и даже всего мира.

Считается, что ОСУ должна создаваться на принципах многофункциональности и многоаспектности, позволяющих эффективно контролировать сложные рынки и распределять имеющиеся ресурсы. Из анализа мирового опыта функционирования ОСУ в условиях рынка применительно к российской экономике и ее субъектам хозяйствования можно выделить следующие рекомендации:

1) иерархическую ОСУ можно сохранять и применять с минимумом риска для предприятия, если высшее руководство фирмы способно выступать в качестве координаторов проблем, а их подчиненные — в качестве «маленьких предпринимателей»; при этом предпринимательская инициатива и ответственность перемещаются с верхних в нижние эшелоны фирменной власти при исполнении иерархами действительно координаторских функций;

2) матричную ОСУ можно сохранять, если в фирме отсутствует механическое дублирование служебных инстанций и существует органичная сетевая структура с оптимальной коммуникацией;

3) дуальную ОСУ следует применять при ясности и контролируемости как ключевых связей между основными и сопутствующими структурами, так и прозрачности функций самой системы сопутствующих вторичных структур, причем они должны быть многофункциональными и многоцелевыми (типа «учебных центров»), а не специализированными, ориентированными лишь на собственные потребности;

4) параллельную ОСУ следует применять при сформированной конструктивной конкурентной культуре, сотрудничестве партнеров на базе доверия, терпимости, готовности разрешать конфликты, а в острых ситуациях иметь нейтральную «третейскую» инстанцию.

При наличии средних предприятий, состоящих из слабо интегрированных функциональных подразделений, на вторичные структуры можно возложить решение интеграционных проблем, но эффект от реализации этого механизма получится при осознании руководством подразделений создания структурной надстройки как средства поддержки их собственной позиции, а не как угрозу для их существования.

Развитие на стыке кибернетики, вычислительных сетей, менеджмента и социальной психологии направления Groupware (США), связанного с электронными информационными системами, локальными диалоговыми сетями и средствами их поддержки, обеспечивает распределенную работу больших коллективов людей в режиме прямого доступа, позволяя хранить в машинной памяти огромный объем информации (любую деловую, производственно-техническую и прочую документацию, совещания, переговоры организации и даже обычные разговоры ее сотрудников, а также всю предысторию и опыт работы), используя ее при необходимости для корректировки структуры, функций, задач, стратегии и тактики управления в деятельности конкретной организации. Такой подход по-новому раскрывает понятие обучающейся организации, обеспечивает проведение аналогий между процессами, протекающими в живых и в диалоговых компьютерных системах.

Если обучение и память обусловливают выживание живых систем, то аналогично организационное обучение и память влияют на эффективность деятельности любой организации при изменении деловой внешней среды. Обучение, как живых, так и организационных систем обязательно ведет к структурным изменениям. Организационно правильно построенная компьютерная сеть может вызывать качественный сдвиг в улучшении корпоративной деятельности. Гибкость и широта функциональных возможностей рабочих групп, реализующих управление проектами при минимуме затрат на координацию их работы, обусловливают рост и качество исполнения крупных задач, стоящих перед фирмами, необходимость оптимизации функциональных подразделений и организационных структур в целом, изменения связей между функциональными единицами в зависимости от складывающихся ситуаций.

Качество реструктуризации в живых и организационных системах определяется совокупностью унаследованного и приобретенного поведения, эффективностью обучения и памяти, организации инфраструктур, обеспечивающих совершенствование взаимосвязей и диалогов между людьми. Повышение скорости обучения и эффективности памяти организации зависит от способа управления взаимоотношениями и диалогами между людьми. Сегодня коммуникации — это координация действий, а не передача информации. Организационные инфраструктуры должны расширять возможности формирования и поддержки диалогов между людьми независимо от их традиций, культуры и др. Пример тому организация и распространение сети Internet и ей подобных.

Учет специфики моделей разновидностей СМО в практической деятельности субъектов рынка позволяет:

Провести более глубокий анализ особенностей функционирования сложных систем, оценить их качество и эффективность с получением конкретных количественных оценок;

Вскрыть имеющиеся резервы и возможности по оптимизации протекающих процессов, экономии финансовых и прочих ресурсов, снижению рисков в условиях неопределенности деловой внешней и внутренней среды.

Рассмотрим эти вопросы подробнее.

2. СИСТЕМЫ И МОДЕЛИ МАССОВОГО ОБСЛУЖИВАНИЯ. КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО).

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского уче-ного А. К. Эрланга (1878—1929), с его трудами в области проекти-рования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной мате-матики, занимающаяся анализом процессов в системах произ-водства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и пере-дачи информации; автоматических линиях производства и др.

Большой вклад в развитие этой теории внесли российские математики А. Я. Хинчин, Б. В. Гнеденко, А. Н. Колмогоров, Е. С. Вентцель и др.

Предметом теории массового обслуживания является установ-ление зависимостей между характером потока заявок, числом ка-налов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум сум-марных затрат от ожидания обслуживания, потерь времени и ре-сурсов на обслуживание и от простоев каналов обслуживания.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, напри-мер обслуживание продавцами покупателей в магазинах, обслу-живание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслужива-ния, обеспечение телефонных разговоров на телефонной стан-ции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а опера-ции обслуживания выполняются кем-либо или чем-либо, назы-ваемыми каналами (узлами) обслуживания.

Заявки в силу массовости поступления на обслуживание об-разуют потоки, которые до выполнения операций обслужива-ния называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки об-служивания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока за-явок, очереди, каналов обслуживания и выходящего потока за-явок образует простейшую систему массового обслуживания — СМО.

Одним из параметров входного потока заявок является интенсивность входящего потока заявок λ ;

К параметрам каналов обслуживания заявок относятся: интенсивность обслуживания μ , число каналов обслуживания n .

Параметрами очереди являются: максимальное число мест в очереди L max ; дисциплина очереди D («первым пришел - первым ушел» (FIFO); «последним пришел - первым ушел» (LIFO); с приоритетами; случайный выбор из очереди).

Процедура обслуживания считается завершенной, когда заяв-ка на обслуживание покидает систему. Продолжительность ин-тервала времени, требуемого для реализации процедуры обслу-живания, зависит в основном от характера запроса заявки на об-служивание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, например, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой — от формы организации об-служивания и обслуживающего персонала, что может значитель-но повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания.

Под обслуживанием заявок мы будем понимать процесс удовле-творения потребности. Обслуживание имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства.

В некоторых случаях обслуживание производится одним челове-ком (обслуживание покупателя одним продавцом), в некоторых — группой людей (обслуживание клиента в ресторане), а в некоторых случаях — техническими устройст-вами (продажа газированной воды, бутербродов автоматами).

Совокупность средств, которые осуществляют обслуживание за-явок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одина-ковые заявки, то каналы обслуживания называются однородны-ми.

Совокупность однородных каналов обслуживания называет-ся обслуживающей системой.

В систему массового обслуживания поступает большое коли-чество заявок в случайные моменты времени, длительность обслу-живания которых также является случайной величиной. Последо-вательное поступление заявок в систему обслуживания называет-ся входящим потоком заявок , а последовательность заявок, покидающих систему обслуживания, — выходящим потоком .

Если максимальная длина очереди L max = 0 , то СМО является системой без очередей.

Если L max = N 0 , где N 0 >0 - некоторое положительное число, то СМО является системой с ограниченной очередью.

Если L max → ∞, то СМО является системой с бесконечной очередью.

Случайный характер распределения длительности выполне-ния операций обслуживания, наряду со случайным характером поступления требований на обслуживание, приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания .

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением про-цессов, связанных с массовым обслуживанием, разработкой ме-тодов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслужи-вания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания тре-бование может быть обслужено любым свободным каналом.

Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслужи-вания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществля-ется последовательно несколькими каналами обслуживания .

При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер , обслуживание заявки одним каналом называется фазой обслуживания . Например, если в магазине са-мообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли челове-ка. Под качеством функционирования системы в теории массо-вого обслуживания понимают не то, насколько хорошо выполне-но обслуживание, а то, насколько полно загружена система об-служивания, не простаивают ли каналы обслуживания, не образуется ли очередь .

Работу системы обслуживания характеризуют такие показате-ли, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в ко-нечном итоге удовлетворение качеством обслуживания.

Чтобы улучшить качество функционирования системы об-служивания, необходимо определить, каким образом распреде-лить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как распо-ложить или сгруппировать каналы обслуживания или обслужива-ющие аппараты для улучшения показателей. Для решения перечисленных задач существует эффек-тивный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

Потоки событий.

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий — поступле-ния заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты вре-мени, формирует так называемый поток событий .

Примерами таких потоков являются потоки различной природы — потоки товаров, денег, документов; транспортные потоки; потоки клиентов, покупателей; потоки телефонных звонков, переговоров и др. По-ведение системы обычно определяется не одним, а сразу не-сколькими потоками событий. Например, обслуживание поку-пателей в магазине определяется потоком покупателей и пото-ком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является веро-ятностное распределение времени между соседними события-ми. Существуют различные потоки, которые отличаются свои-ми характеристиками.

Поток событий называется регулярным , если в нем события следуют одно за другим через заранее заданные и строго опреде-ленные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегу-лярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зави-сит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени.

То есть стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим λ), не меняется во времени. Таким образом, вероятность поступления в систему определен-ного количества требований в течение заданного промежутка времени?t зависит от его величины и не зависит от начала его отсчета на оси времени.

Стационарность потока означает независимость от времени его вероятностных характеристик; в частности, интенсивность тако-го потока есть среднее число событий в единицу времени и оста-ется величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток вре-мени от t до t+?t.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не оп-ределяет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на веро-ятность возникновения обрыва на других станках.

Поток событий называется потоком без последствия , если число событий, попадающих на один из произвольно выбран-ных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой.

В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждо-го из них, не связаны с аналогичными причинами для других по-купателей.

Поток событий называется ординарным , если вероятность по-падания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попа-дания только одного события.

Другими словами, ординарность потока означает практическую невозмож-ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя сразу несколько станков. В ординарном потоке события происходят поодиночке, а не по два (или более) сразу.

Если поток одновременно обладает свойствами стационарнос-ти, ординарности и отсутствием последствия , то такой поток назы-вается простейшим (или пуассоновским) потоком событий .

Мате-матическое описание воздействия такого потока на системы ока-зывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Методы и модели, применяющиеся в теории массового обслуживания (ТМО), можно условно разделить на АНАЛИТИЧЕСКИЕ и ИМИТАЦИОННЫЕ.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некото-рые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процес-сов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения та-ких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность по-ступления за время t ровно k требований задается формулой:

Важная характеристика СМО — время обслуживания требований в системе.

Время обслуживания одного требования является, как правило, случайной величиной и, следователь-но, может быть описано законом распределения.

Наибольшее распространение в теории и особенно в практических прило-жениях получил экспоненциальный закон распределения времени обслуживания . Функция распределения для этого закона имеет вид:

F(t) = 1 - e - μ t , (2)

т.е. вероятность того, что время обслуживания не превосхо-дит некоторой величины t, определяется формулой (2), где μ — параметр экспоненциального закона распределения времени обслуживания требований в системе. То есть μ - это величина, обратная среднему времени обслуживания ? o6 . :

μ = 1/ ? o6 . (3)

Кроме понятия простейшего потока событий часто приходит-ся пользоваться понятиями потоков других типов.

Поток собы-тий называется потоком Пальма , когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тn являются независимыми, одинаково распределенными, слу-чайными величинами, но в отличие от простейшего потока необязательно распределенными по показательному закону.

Про-стейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так назы-ваемый поток Эрланга . Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего пото-ка. Например, условившись учитывать только каждое второе со-бытие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д. Можно полу-чить потоки Эрланга любого k-го порядка. Очевидно, простей-ший поток есть поток Эрланга первого порядка.

КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

Любое исследование системы массового обслуживания (СМО) начи-нается с изучения того, что необходимо обслуживать, следова-тельно, с изучения входящего потока заявок и его характеристик.

1. В зависимости от условий ожидания начала обслуживания различают:

СМО с потерями (отказами),

СМО с ожиданием.

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами явля-ется телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.

В СМО с ожиданием требование, застав все обслуживаю-щие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди .

СМО, допускающие очередь , но с ограниченным сроком пребывания каждого требования в ней, называются систе-мами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на

- одноканальные ;

- многоканальные .

3. По месту нахождения источника требований

СМО делятся на:

- разомкнутые , когда источник требования находится вне системы;

- замкнутые , когда источник находится в самой системе.

Примером разомкнутой системы может служить мастерская по обслуживанию и ремонту бытовой техники. Здесь неисправные устройства — это источник требований на их обслуживание, находятся вне самой системы, число требований можно считать неограни-ченным.

К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, и, следовательно, источником требований на их обслу-живание , например, бригадой наладчиков.

Возможны и другие признаки классификации СМО, на-пример, по дисциплине обслуживания , однофазные и многофазные СМО и др.

3. МОДЕЛИ СМО. ПОКАЗАТЕЛИ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ СМО.

Рассмотрим аналитические модели наиболее распростра-ненных СМО с ожиданием, т.е. таких СМО, в которых требо-вания, поступившие в момент, когда все обслуживающие ка-налы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ СОСТОИТ В СЛЕДУЮЩЕМ.

Система имеет n обслуживающих каналов , каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требований с параметром λ .

Если в момент поступления оче-редного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об. — случайная величина, которая подчиняется экспоненциальному за-кону распределения с параметром μ .

СМО С ОЖИДАНИЕМ МОЖНО РАЗБИТЬ НА ДВЕ БОЛЬШИЕ ГРУППЫ: ЗАМКНУТЫЕ И РАЗОМКНУТЫЕ.

К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен .

Например, мастер, задачей кото-рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требований на накладку. В по-добных системах общее число циркулирующих требования конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований , то системы называются разомкнутыми.

Приме-рами подобных систем могут служить магазины, кассы вокза-лов, портов и др. Для этих систем поступающий поток требо-ваний можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух видов накладывают определенные условия на исполь-зуемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемые фор-мулы Эрланга ).

  1. 1. РАЗОМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ.

Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой СМО с ожиданием.

При изучении таких систем рассчитывают различные по-казатели эффективности обслуживающей системы. В каче-стве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициенты за-нятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ/μ . Заметим, что если выполняется неравенство α / n < 1, то очередь не может расти безгранично.

Это условие имеет следующий смысл: λ — среднее число требо-ваний, поступающих за единицу времени , 1/μ — среднее время обслуживания одним каналом одного требования, тогда α = λ (1/ μ) — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступаю-щие требования. Тогда μ - среднее число требований, обслуживаемых одним каналом за единицу времени.

Поэтому условие: α / n < 1, означает, что чис-ло обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования .

ВАЖНЕЙ-ШИЕ ХАРАКТЕРИСТИКИ РАБОТЫ СМО (для разомкнутой системы массового обслуживания с ожиданием ):

1. Вероятность P 0 того, что все обслуживающие каналы сво-бодны:

2. Вероятность P k того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находя-щихся на обслуживании, не превосходит числа обслуживающих аппаратов, то есть при 1 k n :

3. Вероятность P k того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов, то есть при k > n :

4. Вероятность Pn того, что все обслуживающие каналы заняты:

5. Среднее время ожидания требованием начала обслу-живания в системе:

6. Средняя длина очереди:

7. Среднее число свободных от обслуживания каналов:

8. Коэффициент простоя каналов:

9. Среднее число занятых обслуживанием каналов:

10. Коэффициент загрузки каналов

Фирма по обслуживанию и ремонту бытовой техники и электроники имеет филиал: мастерскую по ремонту мобильных телефонов, в которой работает n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ =10 мобильных телефонов. Общее число мобильных телефонов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть основания считать, что поток заявок на ремонт ап-паратуры является случайным, пуассоновским. В свою оче-редь каждый мобильный телефон в зависимости от характера неисправ-ности также требует различного случайного времени на ре-монт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мас-тера и множества других причин. Пусть статистика показа-ла, что время ремонта подчиняется экспоненциальному за-кону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 мобильных телефона.

Требуется оценить работу филиала фирмы по ремонту -бытовой техники и электроники, рассчитав ряд основных характеристик данной СМО.

За единицу времени принимаем 1 рабочий день (7 часов).

1. Определим параметр

α = λ / μ = 10/ 2,5 = 4.

Так как α < n = 5, то можно сделать вывод: очередь не может расти безгранично.

2. Вероятность P 0 того, что все мастера свободны от ремонта аппаратуры, равна согласно (4):

P0 = (1 + 4 + 16/2 + 64/3! + 256/4! + 1024/5!(1- 4/5)) -1 = (77) -1 ≈ 0,013.

3. Вероятность P5 того, что все мастера заняты ремонтом, находим по формуле (7) (Pn при n=5):

P5 = P0 1024 /5! (1-4/5) = P0 256 /6 ≈ 0,554.

Это означает, что 55,4% времени мастера полностью за-гружены работой.

4. Среднее время обслуживания (ремонта) одного аппарата согласно формуле (3):

? o6. = 1/ μ = 7/2,5 = 2,8 ч./аппарат (важно: единица времени - 1 рабочий день, т. е. 7 часов).

5. В среднем время ожидания каждого неисправного мобильного телефона начала ремонта равно по формуле (8):

Ож. = Pn/(μ (n-α)) = 0,554 2,8/(5 - 4) =1,55 часа.

6. Очень важной характеристикой является средняя длина очереди, которая определяет необходимое место для хранения аппаратуры, требующей ремонта; находим ее по формуле (9):

Оч. = 4 P5/ (5-4) ≈ 2,2 моб. телефона.

7. Определим среднее число мастеров, свободных от ра-боты, по формуле (10):

Ñ0 = P0 (5 + 16 + 24+ 64/3 + 32/3) = P0 77 ≈ 1 мастер.

Таким образом, в среднем в течение рабочего дня ремонтом заняты четыре мастера из пяти.

  1. 2. ЗАМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ.

Перейдем к рассмотрению алгоритмов расчета характери-стик функционирования замкнутых СМО.

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m — число обслуживаемых объектов).

За критерий, характеризующий качество функциониро-вания рассматриваемой системы, выберем отношение средней длины очереди к наибольшему числу требований, находя-щихся одновременно в обслуживающей системе — коэффици-ент простоя обслуживаемого объекта .

В качестве другого критерия возьмем отношение среднего числа незанятых об-служивающих каналов к их общему числу — коэффициент простоя обслуживаемого канала .

Первый из названных критериев характеризует потери времени из-за ожидания начала обслуживания ; второй по-казывает полноту загрузки обслуживающей системы .

Очевидно, что очередь может возникнуть, лишь когда число каналов обслуживания меньше наибольшего числа требований, нахо-дящихся одновременно в обслуживающей системе (n < m).

Приведем последовательность расчетов характеристик замкнутых СМО и необходимые формулы.

ПАРАМЕТРЫ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

1. Определим параметр α = λ / μ — показатель загрузки системы , то есть математическое ожидание числа требований, поступающих в систему за время, равное средней длитель-ности обслуживания (1/μ = ?o6.).

2. Вероятность P k того, что занято k обслуживающих каналов при условии, что число требований, находящихся в системе, не превосходит числа обслуживающих каналов системы (то есть при m n ) :

3. Вероятность P k того, что в системе находится k требований для случая, когда их число больше числа обслуживающих каналов (то есть при k > n , при этом k m ):

4. Вероятность P 0 того, что все обслуживающие каналы сво-бодны, определим, используя очевидное условие:

Тогда величина P 0 будет равна:

5. Среднее число M оч. требований, ожидающих начала обслу-живания (средняя длина очереди):

Или с учетом формулы (15)

6. Коэффициент простоя обслуживаемого требования (объекта):

7. Среднее число M требований, находящихся в обслуживаю-щей системе, обслуживаемых и ожидающих обслуживания:

где для вычислений первой и второй суммы применяются формулы (14) и (15) соответственно.

8. Среднее число свободных обслуживающих каналов

где P k вычисляется по формуле (14).

9. Коэффициент простоя обслуживающего канала

Рассмотрим пример расчета характеристик замкнутой СМО.

Рабочий обслуживает группу автоматов, состоя-щую из 3 станков. Поток поступающих требований на обслу-живание станков является пуассоновским с параметром λ = 2 ст./ч.

Обслуживание одного станка занимает у рабочего в среднем 12 минут, а время обслуживания подчинено экспоненци-альному закону.

Тогда 1/μ = 0,2 ч./ст., т.е. μ = 5 ст./ч., Параметр α = λ/μ = 0,4.

Необходимо определить среднее число автоматов, ожи-дающих обслуживания, коэффициент простоя автомата, ко-эффициент простоя рабочего.

Обслуживающим каналом здесь является рабочий; так как станки обслуживает один рабочий, то n = 1 . Общее число требований не может пре-взойти числа станков, т.е. m = 3 .

Система может находиться в четырех различных состоя-ниях: 1) все станки работают; 2) один стоит и обслуживается рабочим, а два работают; 3) два стоят, один обслуживается, один ждет обслуживания; 4) три стоят, из них один обслу-живается, а два ждут очереди.

Для ответа на поставленные вопросы можно воспользо-ваться формулами (14) и (15).

P1 = P0 6 0,4/2 = 1,2 P0;

P2 = P0 6 0,4 0,4 = 0,96 P0;

P3 = P0 6 0,4 0,4 0,4= 0,384 P0;

Сведем вычисления в таблицу (рис. 1).

∑P k /P 0 = 3,5440

∑ (k-n)P k = 0,4875

∑k P k = 1,2053

Рис. 1. Вычисление характеристик замкнутой СМО.

В этой таблице первым вычисляется третий столбец, т.е. отношения P k /P 0 при k = 0,1,2,3.

Затем, суммируя величины по третьему столбцу и учитывая, что ∑ P k = 1, получаем 1/P 0 = 3,544. Откуда Р 0 ≈ 0,2822.

Умножая значения, стоящие в третьем столбце, на Р 0 , получаем в соответствующих строках значения четвертого столбца.

Величина Р 0 = 0,2822, рав-ная вероятности того, что все автоматы работают, может быть истолкована как вероятность того, что рабочий свобо-ден. Получается, что в рассматриваемом случае рабочий будет свободен более 1/4 всего рабочего времени. Однако это не оз-начает, что «очередь» станков, ожидающих обслуживания, всегда будет отсутствовать. Математическое ожидание числа автоматов, стоящих в очереди, равно

Суммируя значения, стоящие в пятом столбце таблицы, получим среднюю длину очереди M оч. = 0,4875. Следова-тельно, в среднем из трех станков 0,49 станка будет про-стаивать в ожидании, пока освободится рабочий.

Суммируя значения, стоящие в шестом столбце таблицы, получим математическое ожи-дание числа простаивающих станков (ремонтируемых и ожидающих ремонта): М = 1,2053. То есть в среднем 1,2 станка не будет выдавать продукцию.

Ко-эффициент простоя станка равен К пр.об. = M оч. /3 = 0,1625. То есть каждый станок простаивает примерно 0,16 часть рабо-чего времени в ожидании, пока рабочий освободится.

Коэффициент простоя рабочего в данном случае совпадает с P 0 , так как n = 1 (все обслуживающие каналы свободны), поэтому

К пр.кан. = N 0 /n = 0,2822.

Абчук В.А. Экономико-математические методы: Элементарная математика и логика. Методы исследования операций. - СПб.: Союз, 1999. - 320.

Елтаренко Е.А. Исследование операций (системы массового обслуживания, теория игр, модели управления запасами). Учебное пособие. - М.: МИФИ, 2007. - С. 157.

Фомин Г. П. Математические методы и модели в коммерческой дея-тельности: Учебник. — 2-е изд., перераб. и доп. — М.: Финан-сы и статистика, 2005. — 616 с: ил.

Шелобаев С. И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. — М.: ЮНИТИ- ДАНА, 2001. - 367 с.

Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. — М.: ЮНИТИ, 1999. - 391 с.

Расчет показателœей эффективности открытой одноканальной СМО с отказами. Расчет показателœей эффективности открытой многоканальной СМО с отказами. Расчет показателœей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателœей эффективности многоканальной СМО ожиданием.

1. Потоки заявок в СМО

2. Законы обслуживания

3. Критерии качества работы СМО

4.

5. Параметры моделœей очередей. При анализе систем массового

6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

7. II. Модель В – многоканальная система обслуживания.

8. III. Модель С – модель с постоянным временем обслуживания.

9. IV. Модель D – модель с ограниченной популяцией.

Потоки заявок в СМО

Потоки заявок бывают входные и выходные. Входной поток заявок - ϶ᴛᴏ временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. В случае если требования на обслуживание приходят в соответствие, с каким – либо графиком (к примеру, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определœенным) законам. Но, как правило, поступление заявок подчиняется случайным законам. Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий принято называть последовательность событий, следующих одно за другим в случайные моменты времени . В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.
Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всœего, потоки бывают однородными инœеоднородными. Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства. Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства. Схематично неоднородный поток событий должна быть изображен следующим образом
Соответственно можно использовать несколько моделœей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок. Регулярным потоком принято называть поток, в котором события следуют одно за другим через одинаковые промежутки времени. В случае если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока Рекуррентный поток соответственно определяется как поток, для которого всœе функции распределœения интервалов между заявками совпадают, то есть Физически рекуррентный поток представляет собой такую последовательность событий, для которой всœе интервалы между событиями как бы "ведут себя" одинаково, ᴛ.ᴇ. подчиняются одному и тому же закону распределœения. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всœех остальных интервалов. Для характеристики потоков очень часто вводят в рассмотрение вероятность распределœения числа событий в заданном интервале времени , которая определяется следующим образом: где – число событий, появляющихся на интервале . Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.
Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. В случае если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определœенные промежутки времени, имеется самое жесткое последействие. Потоком с ограниченным последействием принято называть такой поток, для которого интервалы между событиями независимы. Поток принято называть стационарным, в случае если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Важно заметить, что для стационарного потока событий среднее число событий в единицу времени постоянно. Ординарным потоком принято называть такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования. Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всœего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределœения в прикладной теории вероятности. Пуассоновский поток описывается следующей формулой: , где – вероятность появления событий за время , – интенсивность потока. Интенсивностью потока называют среднее число событий, которые появляются за единицу времени. Для пуассоновского потока интервалы времени между заявками распределœены по экспоненциальному закону Потоком с ограниченным последействием, для которого интервалы времени между заявками распределœены по нормальному закону, принято называть нормальным потоком.

Законы обслуживания

Режим обслуживания (время обслуживания), так же как и режим поступления заявок, должна быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределœению. Вероятность того, что обслуживание закончится до момента t, равна: где – плотность потока заявок Откуда плотность распределœения времени обслуживания Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределœения Эрланга, когда каждый интервал обслуживания подчиняется закону: где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

Критерии качества работы СМО

Эффективность работы СМО оценивается различными показателями исходя из цепи и типа СМО. Наибольшее распространение получили следующие:

Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

Средняя длительность простоя системы.

Для СМО с очередью добавляются такие характеристики: Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

Для СМО с ограниченным ожиданием в очереди важны всœе перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

На рис. 1 приведены системы обслуживания различной кон­фигурации.

Параметры моделœей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

Наиболее часто используются следующие Технические характери­стики:

1) среднее время, ĸᴏᴛᴏᴩᴏᴇ клиент проводит в очереди;

2) средняя длина очереди;

3) среднее время, ĸᴏᴛᴏᴩᴏᴇ клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

4) среднее число клиентов в системе обслуживания;

5) вероятность того, что система обслуживания окажется незанятой;

6) вероятность определœенного числа клиентов в системе.

Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

1) издержки ожидания в очереди;

2) издержки ожидания в системе;

3) издержки обслуживания.

Модели систем массового обслуживания . Учитывая зависимость отсо­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

А) пуассоновское распределœение вероятностей поступления заявок;

Б) стандартное поведение клиентов;

В) правило обслуживания FIFO (первым пришел - первым об­служен);

Г) единственная фаза обслуживания.

I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

1. Заявки обслуживаются по принципу ʼʼпервым пришел - пер­вым обслуженʼʼ (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

3. Процесс поступления заявок описывается пуассоновским распределœением, причем заявки поступают из неограниченного множества.

4. Время обслуживания описывается экспоненциальным рас­пределœением вероятностей.

5. Темп обслуживания выше темпа поступления заявок.

Пусть λ – число заявок в единицу времени;

μ – число клиентов, обслуживаемых в единицу времени;

n – число заявок в системе.

Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

Формулы для описания системы М/М/1:

Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

Среднее число клиентов в очереди;

Среднее время ожидания клиента в очереди;

Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

Вероятность отсутствия заявок в системе;

Вероятность того, что в системе находится бо­лее чем K заявок.

II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и всœе каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

Время нахождения заявки в очереди;

Время нахождения заявки в системе.

III. Модель С - модель с постоянным временем обслуживания M/D/1.

Некоторые системы имеют Постоянное, а не экспоненциально распределœенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, к примеру, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

Формулы, описывающие модель С:

Средняя длина очереди;

- среднее время ожидания в очереди;

Среднее число клиентов в системе;

Среднее время ожидания в системе.

IV. Модель D - модель с ограниченной популяцией.

В случае если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, к примеру, в случае если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда всœе ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, в случае если количество мест в очере­ди сократить до нуля.

Основные показатели эффективности работы СМО - понятие и виды. Классификация и особенности категории "Основные показатели эффективности работы СМО" 2017, 2018.

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Рассмотренный в предыдущей лекции марковский случайный процесс с дискретными состояниями и непрерывным временем имеет место в системах массового обслуживания (СМО).

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

Примерами систем массового обслуживания могут служить:

  • расчетно-кассовые узлы в банках, на предприятиях;
  • персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;
  • станции технического обслуживания автомобилей; АЗС;
  • аудиторские фирмы;
  • отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчетности предприятий;
  • телефонные станции и т. д.

Узлы

Требования

Больница

Санитары

Пациенты

Производство

Аэропорт

Выходы на взлетно-посадочные полосы

Пункты регистрации

Пассажиры

Рассмотрим схему работы СМО (рис. 1). Система состоит из генератора заявок, диспетчера и узла обслуживания, узла учета отказов (терминатора, уничтожителя заявок). Узел обслуживания в общем случае может иметь несколько каналов обслуживания.

Рис. 1
  1. Генератор заявок – объект, порождающий заявки: улица, цех с установленными агрегатами. На вход поступает поток заявок (поток покупателей в магазин, поток сломавшихся агрегатов (машин, станков) на ремонт, поток посетителей в гардероб, поток машин на АЗС и т. д.).
  2. Диспетчер – человек или устройство, которое знает, что делать с заявкой. Узел, регулирующий и направляющий заявки к каналам обслуживания. Диспетчер:
  • принимает заявки;
  • формирует очередь, если все каналы заняты;
  • направляет их к каналам обслуживания, если есть свободные;
  • дает заявкам отказ (по различным причинам);
  • принимает информацию от узла обслуживания о свободных каналах;
  • следит за временем работы системы.
  1. Очередь – накопитель заявок. Очередь может отсутствовать.
  2. Узел обслуживания состоит из конечного числа каналов обслуживания. Каждый канал имеет 3 состояния: свободен, занят, не работает. Если все каналы заняты, то можно придумать стратегию, кому передавать заявку.
  3. Отказ от обслуживания наступает, если все каналы заняты (некоторые в том числе могут не работать).

Кроме этих основных элементов в СМО в некоторых источниках выделяются также следующие составляющие:

терминатор – уничтожитель трансактов;

склад – накопитель ресурсов и готовой продукции;

счет бухгалтерского учета – для выполнения операций типа «проводка»;

менеджер – распорядитель ресурсов;

Классификация СМО

Первое деление (по наличию очередей):

  • СМО с отказами;
  • СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь, – ограничена или не ограничена . Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);
  • СМО с обслуживанием с приоритетом, т. е. некоторые заявки обслуживаются вне очереди и т. д.

Типы ограничения очереди могут быть комбинированными.

Другая классификация делит СМО по источнику заявок. Порождать заявки (требования) может сама система или некая внешняя среда, существующая независимо от системы.

Естественно, поток заявок, порожденный самой системой, будет зависеть от системы и ее состояния.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Пример замкнутой системы: выдача кассиром зарплаты на предприятии.

По количеству каналов СМО делятся на:

  • одноканальные;
  • многоканальные.

Характеристики системы массового обслуживания

Основными характеристиками системы массового обслуживания любого вида являются:

  • входной поток поступающих требований или заявок на обслуживание;
  • дисциплина очереди;
  • механизм обслуживания.

Входной поток требований

Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание, и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (количество таких требований в каждом очередном поступлении ). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

А i – время поступления между требованиями – независимые одинаково распределенные случайные величины;

E(A) – среднее (МО) время поступления;

λ=1/E(A) – интенсивность поступления требований;

Характеристики входного потока:

  1. Вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание.
  2. Количество требований в каждом очередном поступлении для групповых потоков.

Дисциплина очереди

Очередь – совокупность требований, ожидающих обслуживания.

Очередь имеет имя.

Дисциплина очереди определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • первым пришел – первый обслуживаешься;

first in first out (FIFO)

самый распространенный тип очереди.

Какая структура данных подойдет для описания такой очереди? Массив плох (ограничен). Можно использовать структуру типа СПИСОК.

Список имеет начало и конец. Список состоит из записей. Запись – это ячейка списка. Заявка поступает в конец списка, а выбирается на обслуживание из начала списка. Запись состоит из характеристики заявки и ссылки (указатель, за кем стоит). Кроме этого, если очередь с ограничением на время ожидания, то еще должно быть указано предельное время ожидания.

Вы как программисты должны уметь делать списки двусторонние, односторонние.

Действия со списком:

  • вставить в хвост;
  • взять из начала;
  • удалить из списка по истечении времени ожидания.
  • пришел последним - обслуживаешься первым LIFO (обойма для патронов, тупик на железнодорожной станции, зашел в набитый вагон).

Структура, известная как СТЕК. Может быть описан структурой массив или список;

  • случайный отбор заявок;
  • отбор заявок по критерию приоритетности.

Каждая заявка характеризуется помимо прочего уровнем приоритета и при поступлении помещается не в хвост очереди, а в конец своей приоритетной группы. Диспетчер осуществляет сортировку по приоритету.

Характеристики очереди

  • ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»);
  • длина очереди.

Механизм обслуживания

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся:

  • количество каналов обслуживания (N );
  • продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований);
  • количество требований, удовлетворяемых в результате выполнения каждой такой процедуры (для групповых заявок);
  • вероятность выхода из строя обслуживающего канала;
  • структура обслуживающей системы.

Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

S i – время обслуживания i -го требования;

E(S) – среднее время обслуживания;

μ=1/E(S) – скорость обслуживания требований.

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода из строя обслуживающего канала по истечении некоторого ограниченного интервала времени. Эту характеристику можно моделировать как поток отказов, поступающий в СМО и имеющий приоритет перед всеми другими заявками.

Коэффициент использования СМО

N ·μ – скорость обслуживания в системе, когда заняты все устройства обслуживания.

ρ=λ/(N μ) – называется коэффициентом использования СМО , показывает, насколько задействованы ресурсы системы.

Структура обслуживающей системы

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживани .

Пример. Кассы в магазине.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно . Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Пример. Медицинская комиссия.

Комбинированное обслуживание – обслуживание вкладов в сберкассе: сначала контролер, потом кассир. Как правило, 2 контролера на одного кассира.

Итак, функциональные возможности любой системы массового обслуживания определяются следующими основными факторами :

  • вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • мощностью источника требований;
  • вероятностным распределением времени продолжительности обслуживания;
  • конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • количеством и производительностью обслуживающих каналов;
  • дисциплиной очереди.

Основные критерии эффективности функционирования СМО

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

  • вероятность немедленного обслуживания поступившей заявки (Р обсл =К обс /К пост);
  • вероятность отказа в обслуживании поступившей заявки (P отк =К отк /К пост);

Очевидно, что Р обсл + P отк =1.

Потоки, задержки, обслуживание. Формула Поллачека–Хинчина

Задержка – один из критериев обслуживания СМО, время проведенное заявкой в ожидании обслуживания.

D i – задержка в очереди требования i ;

W i =D i +S i – время нахождения в системе требования i .

(с вероятностью 1) – установившаяся средняя задержка требования в очереди;

(с вероятностью 1) – установившееся среднее время нахождения требования в СМО (waiting).

Q(t) – число требований в очереди в момент времени t;

L(t) число требований в системе в момент времени t (Q(t) плюс число требований, которые находятся на обслуживании в момент времени t.

Тогда показатели (если существуют)

(с вероятностью 1) – установившееся среднее по времени число требований в очереди;

(с вероятностью 1) – установившееся среднее по времени число требований в системе.

Заметим, что ρ<1 – обязательное условие существования d, w, Q и L в системе массового обслуживания.

Если вспомнить, что ρ= λ/(N μ), то видно, что если интенсивность поступления заявок больше, чем N μ, то ρ>1 и естественно, что система не сможет справиться с таким потоком заявок, а следовательно, нельзя говорить о величинах d, w, Q и L.

К наиболее общим и нужным результатам для систем массового обслуживания относятся уравнения сохранения

Следует обратить внимание, что упомянутые выше критерии оценки работы системы могут быть аналитически вычислены для систем массового обслуживания M/M/N (N >1), т. е. систем с Марковскими потоками заявок и обслуживания. Для М/G/ l при любом распределении G и для некоторых других систем. Вообще распределение времени между поступлениями, распределение времени обслуживания или обеих этих величин должно быть экспоненциальным (или разновидностью экспоненциального распределения Эрланга k-го порядка), чтобы аналитическое решение стало возможным.

Кроме этого можно также говорить о таких характеристиках, как:

  • абсолютная пропускная способность системы – А=Р обсл *λ;
  • относительная пропускная способность системы –

Еще один интересный (и наглядный) пример аналитического решения вычисление установившейся средней задержки в очереди для системы массового обслуживания M/G/ 1 по формуле:

.

В России эта формула известна как формула ПоллачекаХинчина, за рубежом эта формула связывается с именем Росса (Ross).

Таким образом, если E(S) имеет большее значение, тогда перегрузка (в данном случае измеряемая как d ) будет большей; чего и следовало ожидать. По формуле можно обнаружить и менее очевидный факт: перегрузка также увеличивается, когда изменчивость распределения времени обслуживания возрастает, даже если среднее время обслуживания остается прежним. Интуитивно это можно объяснить так: дисперсия случайной величины времени обслуживания может принять большое значение (поскольку она должна быть положительной), т. е. единственное устройство обслуживания будет занято длительное время, что приведет к увеличению очереди.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Случайный характер потока заявок (требований), а также, в общем случае, и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса , происходящего в системе массового обслуживания (СМО), различают системы марковские и немарковские . В марковских системах входящий поток требований и выходящий поток обслуженных требований (заявок) являются пуассоновскими. Пуассоновские потоки позволяют легко описать и построить математическую модель системы массового обслуживания. Данные модели имеют достаточно простые решения, поэтому большинство известных приложений теории массового обслуживания используют марковскую схему. В случае немарковских процессов задачи исследования систем массового обслуживания значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

Расчет показателей эффективности открытой одноканальной СМО с отказами. Расчет показателей эффективности открытой многоканальной СМО с отказами. Расчет показателей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателей эффективности многоканальной СМО ожиданием.

1. Потоки заявок в СМО

2. Законы обслуживания

3. Критерии качества работы СМО

4.

5. Параметры моделей очередей. При анализе систем массового

6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

7. II. Модель В – многоканальная система обслуживания.

8. III. Модель С – модель с постоянным временем обслуживания.

9. IV. Модель D – модель с ограниченной популяцией.

Потоки заявок в СМО

Потоки заявок бывают входные и выходные.
Входной поток заявок – это временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. Если требования на обслуживание приходят в соответствие, с каким – либо графиком (например, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определенным) законам. Но, как правило, поступление заявок подчиняется случайным законам.
Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий называется последовательность событий, следующих одно за другим в случайные моменты времени .
В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.


Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всего, потоки могут быть однородными инеоднородными.
Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства.
Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства.
Схематично неоднородный поток событий может быть изображен следующим образом


Соответственно можно использовать несколько моделей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок.
Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени. Если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока

Рекуррентный поток соответственно определяется как поток, для которого все функции распределения интервалов между заявками

совпадают, то есть

Физически рекуррентный поток представляет собой такую последовательность событий, для которой все интервалы между событиями как бы "ведут себя" одинаково, т.е. подчиняются одному и тому же закону распределения. Таким образом, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всех остальных интервалов.
Для характеристики потоков очень часто вводят в рассмотрение вероятность распределения числа событий в заданном интервале времени , которая определяется следующим образом:

где – число событий, появляющихся на интервале .
Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.


Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. Если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определенные промежутки времени, имеется самое жесткое последействие.
Потоком с ограниченным последействием называется такой поток, для которого интервалы между событиями независимы.
Поток называется стационарным, если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока событий среднее число событий в единицу времени постоянно.
Ординарным потоком называется такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.
Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределения в прикладной теории вероятности.
Пуассоновский поток описывается следующей формулой:
,
где – вероятность появления событий за время , – интенсивность потока.
Интенсивностью потока называют среднее число событий, которые появляются за единицу времени.
Для пуассоновского потока интервалы времени между заявками распределены по экспоненциальному закону

Потоком с ограниченным последействием, для которого интервалы времени между заявками распределены по нормальному закону, называется нормальным потоком.

Законы обслуживания

Режим обслуживания (время обслуживания), так же как и режим поступления заявок, может быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределению.
Вероятность того, что обслуживание закончится до момента t, равна:

где – плотность потока заявок
Откуда плотность распределения времени обслуживания

Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределения Эрланга, когда каждый интервал обслуживания подчиняется закону:

где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

Критерии качества работы СМО

Эффективность работы СМО оценивается различными показателями в зависимости от цепи и типа СМО. Наибольшее распространение получили следующие:

Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

Средняя длительность простоя системы.

Для СМО с очередью добавляются такие характеристики:
Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

Для СМО с ограниченным ожиданием в очереди важны все перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

На рис. 1 приведены системы обслуживания различной кон­фигурации.

Параметры моделей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

Наиболее часто используются следующие Технические характери­стики:

1) среднее время, которое клиент проводит в очереди;

2) средняя длина очереди;

3) среднее время, которое клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

4) среднее число клиентов в системе обслуживания;

5) вероятность того, что система обслуживания окажется незанятой;

6) вероятность определенного числа клиентов в системе.

Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

1) издержки ожидания в очереди;

2) издержки ожидания в системе;

3) издержки обслуживания.

Модели систем массового обслуживания . В зависимости от со­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

А) пуассоновское распределение вероятностей поступления заявок;

Б) стандартное поведение клиентов;

В) правило обслуживания FIFO (первым пришел - первым об­служен);

Г) единственная фаза обслуживания.

I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

1. Заявки обслуживаются по принципу «первым пришел - пер­вым обслужен» (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

3. Процесс поступления заявок описывается пуассоновским распределением, причем заявки поступают из неограниченного множества.

4. Время обслуживания описывается экспоненциальным рас­пределением вероятностей.

5. Темп обслуживания выше темпа поступления заявок.

Пусть λ – число заявок в единицу времени;

μ – число клиентов, обслуживаемых в единицу времени;

n – число заявок в системе.

Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

Формулы для описания системы М/М/1:

Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

Среднее число клиентов в очереди;

Среднее время ожидания клиента в очереди;

Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

Вероятность отсутствия заявок в системе;

Вероятность того, что в системе находится бо­лее чем K заявок.

II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и все каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

Время нахождения заявки в очереди;

Время нахождения заявки в системе.

III. Модель С - модель с постоянным временем обслуживания M/D/1.

Некоторые системы имеют Постоянное, а не экспоненциально распределенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, например, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

Формулы, описывающие модель С:

Средняя длина очереди;

- среднее время ожидания в очереди;

Среднее число клиентов в системе;

Среднее время ожидания в системе.

IV. Модель D - модель с ограниченной популяцией.

Если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, например, если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда все ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, если количество мест в очере­ди сократить до нуля.