Определение селекции, основные методы. Методы селекции

У растений оно осуществляется путем принудительного самоопыления перекрестноопыляющихся форм (инцухт ). У животных — это скрещивание особей, имеющих близкую степень родства и, следовательно, генетическое сходство. Инбридинг используется для получения чистых или гомозиготных линий. Сами по себе эти линии не обладают селективной ценностью, поскольку инбридинг сопровождается депрессией развития. Негативный эффект инбридинга объясняют переходом в гомозиготное состояние многих вредных рецессивных генов. Подобное явление, в частности, наблюдается у человека при родственных браках, на основании чего они запрещены. В то же время в природе существуют виды растений и животных, для которых автогамия является нормой (пшеница, ячмень, горох, фасоль), что можно объяснить, только предположив у них наличие механизма, препятствующего выщеплению вредных комбинаций генов.

В селекции инбредные линии растений и животных широко используются для получения межлинейных гибридов. Такие гибриды обладают ярко выраженным гетерозисом, в том числе и в отношении генеративной сферы. В частности, таким способом получают гибридные семена кукурузы, которыми засевают большую часть мировых площадей, отведенных под эту культуру.

На основе инцухта известным саратовским селекционером Е.М. Плачек был создан выдающийся сорт подсолнечника Саратовский 169.

Противоположностью инбридингу является аутбридинг — неродственное скрещивание организмов. Наряду с межпородным и межсортовым скрещиваниями, к нему относят также внутрипородное и внутрисортовое скрещивания, если родители не имели общих предков в 4-6 поколениях. Это наиболее распространенный тип скрещиваний, поскольку гибриды оказываются более жизнеспособными и устойчивыми к вредным воздействиям, т.е. проявляют ту или иную степень гетерозиса. Явление гетерозиса было впервые описано выдающимся немецким гибридизатором XVIII в. И. Кельрейтером. Однако природа этого явления до сих пор полностью не разгадана. Считают, что гетерозис обусловлен преимуществом гетерозиготного состояния по многим генам, а также большим числом благоприятных доминантных аллелей и их взаимодействием.

Существенным моментом, осложняющим использование гетерозиса в селекции, является его затухание в последующих поколениях. В связи с этим перед селекционерами стоит задача разработки способов закрепления гетерозиса у гибридов. Одним из них генетики считают перевод гибридных растений на апомиктичный способ размножения.

Еще одним типом скрещивания, которое используется в селекции, является отдаленная гибридизация . К ней относятся скрещивания между разновидностями, видами и родами. Скрещивание отдаленных в генетическом отношении форм затруднено из-за их несовместимости, которая может проявляться на разных уровнях. Например, у растений при отдаленной гибридизации может отсутствовать рост пыльцевых трубок на рыльце пестика, у животных препятствием могут служить несовпадение сроков размножения или различия в строении органов размножения. Тем не менее, несмотря на существование барьеров, межвидовая гибридизация осуществляется как в природе, так и в эксперименте. Для преодоления нескрещиваемости видов селекционеры разрабатывают специальные методы. Например, гибриды между кукурузой и ее апомиктичным дикорастущим сородичем — трипсакумом получают, укорачивая рыльца кукурузы до длины пыльцевых трубок трипсакума. При отдаленной гибридизации плодовых И.В. Мичуриным были разработаны такие методы преодоления нескрещиваемости, как метод предварительного вегетативного сближения (прививки), метод посредника, опыление смесью пыльцы разных видов и др. Например, чтобы получить гибрид персика с холодоустойчивым монгольским миндалем, он предварительно скрестил миндаль с полукультурным персиком Давида. Получив гибридный посредник, он скрестил его с персиком.

В 20-х гг. ХХ в. в Научно-исследовательском институте сельского хозяйства Юго-Востока в Саратове Г.К. Мейстером были получены первые пшенично-ржаные гибриды, которые высевались на довольно значительных площадях. Здесь же выдающимся селекционером А.П. Шехурдиным на основе скрещивания мягкой и твердой пшеницы получены высококачественные сорта мягкой пшеницы Саррубра, Сарроза, которые послужили донорами генов для других замечательных сортов и возделывались в Поволжье на огромных площадях. В 1930 г. Н.В. Цициным впервые в мире было осуществлено скрещивание пшеницы с пыреем, а вскоре С.М. Верушкиным были получены гибриды между пшеницей и элимусом. Уже к середине 30-х гг. саратовские ученые стали в нашей стране лидерами в области селекции пшеницы и подсолнечника. И в настоящее время сортами пшеницы и подсолнечника, выведенными саратовскими селекционерами, засеваются сотни тысяч гектаров. Созданный Н.Н. Салтыковой сорт твердой озимой пшеницы Янтарь Поволжья удостоен золотой и серебряной медалей ВВЦ.

Методом отдаленной гибридизации в разных странах были получены устойчивые к болезням и вредителям сорта картофеля, табака, хлопка, сахарного тростника.

Отрицательным моментом отдаленной гибридизации является частичная или полная стерильность отдаленных гибридов, вызываемая, в основном, нарушениями мейоза при образовании половых клеток. Нарушения могут возникать как при совпадении, так и при различии чисел хромосом у исходных форм. В первом случае причиной нарушений является отсутствие гомологии хромосомных наборов и нарушение процесса конъюгации, во втором — к этой причине добавляется также образование гамет с несбалансированными числами хромосом. Если даже такие гаметы являются жизнеспособными, то от их слияния в потомстве возникают анеуплоиды, которые часто оказываются нежизнеспособными и подвергаются элиминации. Например, при скрещивании 28-хромосомных и 42-хромосомных видов пшеницы образуются гибриды с 35-ю хромосомами. У гибридов F2 числа хромосом варьируют от 28 до 42. В последующих поколениях растения с несбалансированными числами постепенно элиминируются, и в конце концов остаются только две группы с родительскими кариотипами.

При отдаленной гибридизации в процессе становления гибридов идет формообразовательный процесс: образуются гибридные формы с новыми признаками. Например, в потомстве пшенично-пырейных гибридов появляются многоцветковые формы, ветвистые колосья и др. Эти формы, как правило, генетически неустойчивы, и для их стабилизации требуется длительный период времени. Однако именно отдаленная гибридизация позволяет селекционерам решать задачи, неразрешимые другими методами. Например, все сорта картофеля сильно поражаются различными болезнями и вредителями. Получить устойчивые сорта можно было, только позаимствовав это свойство у дикорастущих видов.

Обязательным этапом любого селекционного процесса, в том числе и с использованием метода гибридизации, является отбор , с помощью которого селекционер закрепляет признаки, необходимые для создания нового сорта или породы.

Ч. Дарвин различал два вида искусственного отбора: бессознательный и методический. На протяжении многих тысячелетий люди вели отбор бессознательно, отбирая лучшие экземпляры растений и животных по интересующим их признакам. Именно благодаря такому отбору были созданы все культурные растения.

При методическом отборе человек заранее ставит себе цель, какие признаки и в каком направлении он будет изменять. Эту форму отбора стали применять с конца XVIII в. и достигли выдающихся результатов в совершенствовании домашних животных и культурных растений.

Отбор может быть массовым и индивидуальным. Массовый отбор — более простой и доступный. При массовом отборе одновременно отбирается большое число особей популяции с нужным признаком, остальные выбраковываются. У растений семена всех отобранных особей объединяют и высевают на одном участке. Массовый отбор может быть однократным и многократным, что определяется, в первую очередь, способом опыления растений: у перекрестников отбор обычно ведется на протяжении нескольких поколений, пока не будет достигнута однородность потомства. Иногда отбор продолжается непрерывно, чтобы избежать потери ценных признаков. Массовым отбором создано большое количество старых сортов сельскохозяйственных растений, например, сорт гречихи Богатырь, созданный в начале ХХ в., и сейчас остается одним из лучших у этой культуры.

Метод индивидуального отбора более сложен и трудоемок, но гораздо более эффективен. Новый сорт при индивидуальном отборе создается из одного единственного элитного экземпляра. Метод предусматривает отбор в потомстве этого растения на протяжении ряда поколений, что делает процедуру создания сорта очень длительной.

Индивидуальный отбор широко используется в селекции животных. В этом случае используют метод проверки производителя по потомству, при которой генетическая ценность производителя определяется на основании качества потомства. Например, качество быков-производителей оценивается на основании продуктивности их дочерей. Другой способ оценки называется сибселекцией. В этом случае оценку производят по продуктивности родственных особей — братьев и сестер.

Наиболее эффективным будет отбор, который осуществляется на фоне среды, максимально выявляющей наследственные возможности организма. Нельзя вести отбор на засухоустойчивость во влажном климате. Часто отбор специально производится в искусственно созданных крайних условиях, т.е. на провокационном фоне.

Отбор и гибридизация являются традиционными методами селекции, которые длительное время играли основную роль в селекционных схемах. Однако успешное развитие генетики в ХХ в. привело к значительному обогащению арсенала селекционных методов. В частности, нашли свое место в селекционных схемах такие генетические явления, как полиплоидия, гаплоидия, цитоплазматическая мужская стерильность (ЦМС) .

Автополиплоиды у многих культур, например у ржи, клевера, мяты, турнепса, используются в качестве исходного материала для создания новых сортов. В ГДР и Швеции в I половине ХХ в. были получены тетраплоидные короткостебельные сорта ржи, имеющие более крупное зерно по сравнению с диплоидными сортами. Академиком Н.В. Цициным была создана тетраплоидная ветвистоколосая рожь, обладающая высокой продуктивностью. В.В. Сахаровым и А.Р. Жебраком получены крупносемянные, с большим содержанием нектара тетраплоидные формы гречихи.

На основе полиплоидии наибольшие результаты достигнуты в селекции сахарной свеклы. Созданы гибридные триплоидные сорта, которые сочетают высокую урожайность с повышенным содержанием сахара в корнеплодах. Одновременно созданы высокоурожайные тетраплоидные сорта и гибриды сахарной и кормовой свеклы. Японским генетиком Г. Кихарой путем скрещивания тетраплоидной и диплоидной форм арбуза был получен бессемянный арбуз, отличающийся высокой урожайностью и превосходными вкусовыми качествами.

В селекции ряда растений нашла применение и другая форма полиплоидии — аллополиплоидия . Аллополиплоиды — это межвидовые гибриды, у которых в два раза и более увеличен набор хромосом. При удвоении диплоидного набора хромосом гибрида, полученного от скрещивания двух разных видов или родов, образуются плодовитые тетраплоиды, которые называются амфидиплоидами. Им свойствен резко выраженный гетерозис, сохраняющийся в последующих поколениях. Амфидиплоидом, в частности, является новая зерновая культура — тритикале. Она получена В.Е. Писаревым путем скрещивания мягкой озимой пшеницы (2n = 42) с озимой рожью (2n = 14). Для удвоения набора хромосом у межродового 28-хромосомного гибрида использовалась обработка растений колхицином — клеточным ядом, блокирующим расхождение хромосом в мейозе. Полученные 56-хромосомные амфидиплоиды тритикале характеризуются высоким содержанием белка, лизина, крупным колосом, быстрым ростом, повышенной устойчивостью к болезням, зимостойкостью. Еще большую селекционную ценность имеют 42-хромосомные Triticale. Они еще более продуктивны и устойчивы к вредным воздействиям.

Использование для искусственного получения полиплоидов колхицина произвело подлинную революцию в области экспериментальной полиплоидии. С его помощью триплоидные и тетраплоидные формы получены более чем у 500 видов растений. Полиплоидизирующим эффектом обладают также некоторые дозы ионизирующих излучений.

Использование явления гаплоидии открыло большие перспективы в области разработки технологии для быстрого создания гомозиготных линий путем удвоения у гаплоидов набора хромосом. Частота спонтанной гаплоидии у растений очень низкая (у кукурузы — один гаплоид на тысячу диплоидов), в связи с чем разработаны способы массового получения гаплоидов. Одним из них является получение гаплоидов через культуру пыльников. Пыльники на стадии микроспор высаживают на искусственную питательную среду, содержащую стимуляторы роста — цитокинины и ауксины. Из микроспор образуются зародышеподобные структуры — эмбриоиды с гаплоидным числом хромосом. Из них в дальнейшем развиваются проростки, дающие после пересадки на новую среду нормальные гаплоидные растения. Иногда развитие сопровождается образованием каллуса с очагами морфогенеза. После пересадки на оптимальную среду из них также формируются эмбриоиды и проростки, вырастающие в нормальные гаплоидные растения.

Путем создания из гаплоидов гомозиготных диплоидных линий и их скрещивания получены ценные гибридные сорта кукурузы, пшеницы, ячменя, рапса, табака и других культур. Использование гаплоидов позволяет сократить срок создания гомозиготных линий в 2-3 раза.

В селекционных схемах по производству гибридных семян кукурузы, пшеницы и ряда других культур использовано явление ЦМС, что позволило упростить и удешевить этот процесс, т.к. была устранена ручная процедура кастрации мужских соцветий при получении гибридов F 1 .

Использование новейших достижений генетики и создание эффективных технологий позволило во много раз повысить продуктивность сортов культурных растений. В 70-х гг. появился термин “зеленая революция“, который отразил значительный скачок в урожайности важнейших сельскохозяйственных культур, достигнутый с помощью новых технологий. По расчетам экономистов вклад генетических методов в прибавку урожая составил 50%. Остальное приходится на использование усовершенствованных приемов обработки земли и достижений агрохимии. Внедрение сложных технологий привело к масштабному культивированию отдельных видов ограниченного числа культур. Это вызвало проблемы, связанные с болезнями и эпидемиями в результате поражения растений разными вредителями. Именно устойчивость растений к этим вредным факторам вышла на первое место в списке признаков для отбора.

Селекция — создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции служит генетика.

Основные методы селекции — отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия.

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор , который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

"Введение в общую биологию и экологию. 9 класс". А.А. Каменский (гдз)

Основные методы селекции растений, животных и микроорганизмов (гибридизация, отбор, полиплоидия, искусственный мутагенез)

Вопрос 1. Перечислите методы селекционной работы.
Основные методы селекции включают отбор, гибридизацию, полиплоидию, искусственный мутагенез.
В основе селекции растений лежит искусственный отбор, когда человек отбирает растения с интересующими его признаками. До ХVI-ХVП вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные, семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении. Только в последние столетия человек, еще не зная законов генетики, стал использовать отбор сознательно и целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени. Также отбор используют в селекции животных.
Для получения новых пород и сортов животных и растений применяют гибридизацию, скрещивая растения с желательными признаками и в дальнейшем, отбирая из потомства, те особи, у которых полезные свойства выражены наиболее сильно. Например, один сорт пшеницы отличается прочным стеблем и устойчив к полеганию, а другой сорт с тонкой соломиной не заражается стеблевой ржавчиной. При скрещивании растений этих двух сортов в потомстве возникают различные комбинации признаков. Но отбирают именно те растения, которые одновременно имеют прочную соломину и не болеют стеблевой ржавчиной. Так создается новый сорт. Гибридизация - естественное или искусственное скрещивание особей, отличающихся по своим признакам и относящихся к разным сортам, породам, штаммам, видам. В результате гибридизации получают гибриды. Гибриды образуются путем объединения наследственного материала генотипически разных организмов и характеризуются новыми признаками или новыми их сочетаниями. Из-за трудностей в получении массового потомства от пары родителей с нужным человеку признаком в селекции животных применяют близкородственное скрещивание, или инбридинг (англ, in - в, внутри; brееding - разведение), при котором между собой скрещиваются особи из одного помета или родительские особи - с собственным потомством. Однако при инбридинге велика вероятность перевода каких-либо неблагоприятных рецессивных аллелей в гомозиготное состояние. Как известно, мутации, в частности, неблагоприятные, обычно рецессивны и редко проявляются в фенотипе, но при близкородственном скрещивании такие мутантные гены перейдут в гомозиготное состояние, и неблагоприятный признак проявится. Для устранения неблагоприятных последствий инбридинга используют аутбридинг (англ. out - вне; brееding - разведение) - скрещивание неродственных форм одного вида. При этом не должно быть общих предков в ближайших 4-6 поколениях.
Во всех случаях гибридизации проводят тщательный индивидуальный отбор производителей для следующих этапов селекции. Для учета характера наследования признаков в селекционных хозяйствах ведут специальные племенные книги. Процесс получения новых пород животных медленный; считается, что для получения новой породы, например, коров, требуется не менее 30- 40 лет. При селекции домашних животных важно заранее определить наследственные качества животных-производителей - самцов по тем признакам, которые фенотипически у них не проявляются. Такими признаками может быть молочность и жирномолочность у быков или яйценоскость у петухов. С этой целью применяют метод определения данного качества животного-производителя по потомству: сначала получают немногочисленное потомство и сравнивают его продуктивность с материнской и со средней продуктивностью данной породы животных. Если продуктивность самок в потомстве окажется повышенной по сравнению с этими показателями у породы, то делают вывод о большой ценности производителя. Такой метод применяют в племенной селекционной работе. В селекции проводят и скрещивание организмов, относящихся к разным видам или даже родам. В этих случаях имеет место отдаленная гибридизация - довольно сложный процесс, так как у организмов, относящихся к разным видам и тем более к разным родам, различный генетический материал (число и строение хромосом). Очень часто такое скрещивание приводит к образованию бесплодных (стерильных) гибридов, не дающих потомства. Однако благодаря кропотливой работе ученых-селекционеров получены межродовые гибриды, способные размножаться. Впервые это удалось сделать Г.Д. Карпеченко при получении капустно-редечного гибрида. В результате отдаленной гибридизации было получено новое культурное растение - тритикале - гибрид пшеницы с рожью (лат. Triticum пшеница и Secale - рожь). Отдаленная гибридизация широко применяется в плодоводстве. Имеются отдалённые гибриды и среди животных.
Полиплоидия - получение полиплоидов, т. е. организмов, у которых число хромосом увеличено в два, три и более раз. В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. В основе явления полиплоидии лежат следующие причины: каждому виду живых организмов присущ строго определенный набор хромосом. В половых клетках все хромосомы различны. Такой набор называется гаплоидным и обозначается буквой п. Клетки тела (соматические) обычно содержат двойной набор хромосом, называемый диплоидным (2n). Если хромосомы, удвоившиеся в процессе деления, не разойдутся в дочерние клетки, а останутся в одном ядре, то возникает явление кратного увеличения числа хромосом, называемое полиплоидией. В сельскохозяйственной практике широко используются триплоидная сахарная свекла, четырехплоидные клевер, рожь и твердая пшеница, а также шестиплоидная мягкая пшеница. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. Одно из таких веществ - колхицин. Применение колхицина для получения искусственных полиплоидов является одним из примеров искусственного мутагенеза, применяемого в селекции растений.
Искусственный мутагенез - метод селекции, основанный на воздействии на организмы мутагенов, вызываю¬щих различные мутации. Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в десятки раз больше антибиотиков, чем исходные формы. Сейчас в мире культивируют более 250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Это сорта кукурузы, ячменя, сои, риса, томатов, подсолнечника, хлопчатника, декоративных растений.
Технологию получения необходимых человеку веществ из живых клеток или с их помощью называют биотехнологией. Чаще всего для биотехнологии используют бактерии, грибы, водоросли. Эти организмы относительно неприхотливы, очень быстро размножаются и способны выделять вещества, применяемые человеком в различных областях хозяйства. Биотехнология применяется в пищевой промышленности, медицине, охране природы и др. С помощью бактерий и грибов получают витамины, гормоны, антибиотики и т.п. К настоящему времени получены новые формы бактерий, способные разрушать нефтепродукты, загрязняющие окружающую среду. Основные методы биотехнологии: клеточная инженерия и генная инженерия. Клеточная инженерия - это выращивание клеток какого-либо организма на искусственных питательных средах, где эти клетки размножаются, растут и выделяют необходимые человеку вещества. Так, например, делаются попытки выращивания культуры клеток желез внутренней секреции для получения гормонов. Сущность генной инженерии состоит в том, что в организм (чаще прокариотный) встраивается ген или группа генов другого организма. В результате можно заставить клетку микроорганизма синтезировать те белки, которые она раньше вырабатывать не могла. Делаются попытки переноса генов, отвечающих за фиксацию азота у азотфиксирующих бактерий, в другие почвенные микроорганизмы. При этом в почву из воздуха будут поступать большие количества азота, что сделает ненужными азотистые удобрения. Получены искусственные мутанты кишечных микробов, в которые встроен ген инсулина - гормона поджелудочной железы, жизненно необходимого людям, больным сахарным диабетом.

Вопрос 2. Чем массовый отбор отличается от индивидуального?
Массовый отбор характеризуется тем, что его проводят только по фенотипу, т.е. с учетом лишь совокупности признаков организма. Из потомства берут особей с нужными признаками и снова скрещивают их между собой. Массовый отбор обычно применяют для перекрестно опыляемых растений и для животных. Направлен этот отбор на поддержание данной породы или определенного сорта на заданном хозяйственном уровне.
При индивидуальном отборе выбирают отдельную особь и при последующих самоопылении у растений или близко¬родственных скрещиваниях у животных выводят чистые линии. Чистые линии - группы генетически однородных (гомозиготных) организмов - являются ценным материалом селекции.

Вопрос 3. Что такое гетерозис?
Гетерозис проявляется в том, что гибриды обладают выдающимися качествами (большим ростом, весом, устойчивостью к заболеваниям и т. п.) по сравнению с родительскими формами. Если провести перекрестное опыление между разными «чистыми» линиями растений, то в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации часто приводит к эффекту гетерозиса: гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. К сожалению, эффект гетерозисной мощности бывает сильным только в первом гибридном поколении, а в следующих поколениях постепенно снижается.
Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

Подробное решение параграф § 32 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Вспомните!

Что такое селекция?

Приведите примеры известных вам пород животных и сортов растений.

Сорта яблок Антоновка, груша Северянка, породы собак: ротвейлер, карликовый пудель, колли.

Вопросы для повторения и задания

1. Что такое селекция?

Селекция (от лат. selectio - отбор) - наука о создании новых и улучшении существующих сортов растений, пород животных и штаммов микроорганизмов. Одновременно под селекцией понимают и сам процесс создания сортов, пород и штаммов. Теоретической основой селекции является генетика.

2. Что называют породой, сортом, штаммом?

Порода, сорт или штамм - это совокупность особей одного вида, искусственно созданная человеком и характеризующаяся определёнными наследственными свойствами.

5. Какие сложности возникают при постановке межвидовых скрещиваний?

Отдалённая гибридизация заключается в скрещивании разных видов. В растениеводстве с помощью отдалённой гибридизации создана новая зерновая культура - тритикале, гибрид ржи с пшеницей. Эта культура сочетает многие свойства пшеницы (высокие хлебопекарные качества) и ржи (способность расти на бедных песчаных почвах). Классическим примером межвидовых гибридов в животноводстве является мул, полученный при скрещивании осла с кобылицей, который значительно превосходит родителей по выносливости и работоспособности. В Казахстане при скрещивании диких горных баранов-архаров с тонкорунными овцами была создана знаменитая архаромериносная порода овец. Однако применение межвидовых скрещиваний имеет определённые сложности, потому что получаемые гибриды часто оказываются бесплодными (стерильными) или низкоплодовитыми. Стерильность гибридов связана с отсутствием у них парных гомологичных хромосом. Это делает невозможным процесс конъюгации. Следовательно, мейоз не может завершиться, и половые клетки не образуются.

6. Получают ли и используют ли в вашем регионе межвидовые гибриды? Используя дополнительные источники информации, выясните, гибридами каких видов являются такие организмы, как бестер, хонорик, лошак, рафанобрассика. Какой интерес представляют они для сельского хозяйства?

Подумайте! Вспомните!

2. Почему для каждого региона нужны свои сорта растений и породы животных? Какие сорта и породы характерны для вашего региона? В чём их особенности и преимущества?

Так как условия среды в различных регионах разные, и сорта и породы должны быть приспособлены к конкретным условиям. Особенности растениеводства Южного Урала

3. Из большого разнообразия видов животных, обитающих на Земле, человек отобрал для одомашнивания сравнительно немного видов. Как вы считаете, чем это объясняется?

Процесс одомашнивания диких животных начинается с искусственной селекции отдельных индивидов для получения потомства с определенными признаками, необходимыми человеку. Индивиды, как правило, выбираются в соответствии с определёнными желаемыми характеристиками, включая снижение агрессивности по отношению к человеку и представителям собственного вида. В этом отношении принято говорить об укрощении дикого вида. Целью одомашнивания является использование животного в сельском хозяйстве в качестве сельскохозяйственного животного или в качестве домашнего питомца. Если эта цель достигнута, можно говорить об одомашненном животном. Одомашнивание животного коренным образом изменяет условия для дальнейшего развития вида. Естественное эволюционное развитие заменяется искусственной селекцией по критериям разведения. Таким образом, в рамках одомашнивания меняются генетические свойства вида.

4. Гетерозис в последующих поколениях обычно не сохраняется, затухает. Почему это происходит?

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении у гибридов повышается жизнеспособность и наблюдается мощное развитие. Явление превосходства гибридов по своим свойствам родительских форм получило название гетерозиса, или гибридной силы. Проявляется в первом поколении, а во втором затухает.

5. Как вы думаете, почему лигры рождаются только в зоопарках и не встречаются в дикой природе? Объясните свою точку зрения.

Лигры - межвидовые гибриды между львом и тигрицей - выглядят как огромные львы с размытыми полосами. Следовательно, его родители относятся к одному и тому же биологическому роду пантер, но разным видам. Внешне он заметно отличается от своего противоположного гибрида, тигрольва. Является крупнейшим представителем семейства кошачьих, существующих в настоящее время. Выглядит как гигантский лев с размытыми полосами. Лигры не встречаются в природе главным образом потому, что в естественной среде львы и тигры почти не имеют шансов встретиться: современный ареал льва включает в основном центральную и южную Африку (хотя в Индии существует последняя уцелевшая популяция азиатских львов), в то время как тигр - исключительно азиатский вид. Поэтому скрещивание видов происходит, когда животные долгое время живут в одном вольере или клетке (например, в зоопарке или цирке), но потомство дают лишь 1-2 % пар, из-за чего в мире сегодня числится не более двух десятков лигров.

6. Как вы считаете, может ли применяться массовый отбор при разведении животных? Докажите свое мнение.

Не применяют. массовый отбор - это отбор по фенотипу. Индивидуальный - по генотипу. Производители у животных - особи с хорошо прописанной родословной т.е. генотип по нужным признакам достаточно хорошо известен. Да и особенности животных - необходимо время для достижения половой зрелости, небольшое число потомства (по сравнению с растениями - сейчас можно считать решенной проблемой - искусственное осеменение, суррогатные самки) и невозможность бесполого размножения.

7. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию об истории селекции с древних времён до настоящего времени.

Селекция как способ выведения пород домашних животных и сортов культурных растений существует издавна. Около 8000-9000 лет назад с появлением сельского хозяйства на Ближнем Востоке, а позже в Европе и Азии началось развитие растениеводства и животноводства. Уже с тех времен люди стали заниматься искусственным отбором с целью выведения пород животных и сортов растений с хозяйственно-ценными качествами. О первых селекционных мероприятиях, известных еще почти 6000 лет назад в Эламе (Двуречье), можно судить по изображе¬нию родословной лошадей, обнаруженной на печатке. Существуют также сведения, что арабы задолго до новой эры применяли искусственное опыление финиковых пальм. В Римской империи сохранились документы с подробным описанием приемов, используемых при разведении животных. В трудах ученых Древнего Китая и Древнего Рима имеются указания на значение отбора колосьев у злаков и даются рекомендации по проведению такого отбора.

На первых порах селекционные мероприятия ограничивались отбором. Он носил бессознательный характер, велся длительное время (10-15 лет). Селекционеры, не имея теоретической базы, руководствовались опытом и интуицией. Они учитывали полезные свойства родительских особей, но целенаправленно проводить селекцию не могли. Результаты скрещивания часто оказывались неожиданными, и в потомстве не обнаруживалось ожидаемого признака. Тем не менее, безвестные селекционеры оставили в наследство немало ценных сортов культурных растений и пород домашних животных. Например, ряд лучших сортов хлопчатника, возделываемых ныне в России и США, позаимствован у крестьян старых мексиканских деревень. Методом бессознательного отбора выведены сорта льна-долгунца в некоторых районах Пско¬ва: низкорослые растения шли на хозяйственные нужды, а семена высоких использовались на посев. Известны сорта озимой (например, Крымка, Полтавка, Сандомирка) и яровой (Улька, Гирка, Сыр-Бидай и др.) пшеницы с ценными хозяйственными качествами, выведенные в давние времена.

Однако отбор по хозяйственно-полезным признакам и свойствам без учета механизмов их наследуемости и изменчивости нередко давал нежелательные результаты. К примеру, отбор по экстерьеру тонкорунных овец на комолость приводил к появлению крипторхизма; избавление от пегости на шее у романовских овец ослабляло их жизнеспособность; повышение оброслости шерстью у овец сопровождалось снижением их веса. Не удавалось вывести и чистую линию виандоттов (порода кур) с розовидным гребнем; несмотря на выбраковывание цыплят с листовидным гребнем, они появлялись в потомстве. Очевидно, порода состояла из генерозигот по этому гену, так как гомозиготы обладали сниженной плодовитостью.

Все это свидетельствовало о том, что желаемый ре¬зультат нельзя получить без теоретических знаний. С конца XVIII - начала XIX в. работы селекционеров носили уже научный характер. Главной задачей селекции стало изучение генетики таких признаков, как продуктивность животных и урожайность растений. Разрешение задач селекции невозможно без знаний, касающихся генетического анализа, т. е. без знаний типа наследования признаков (доминантный или рецессивный), типа доминирования, характера наследования (аутосомное или сцепленное с полом, независимое или сцепленное), типа и характера взаимодействия генов в онтогенезе. Главное внимание селекционеры должны уделять проблемам взаимоотношения генотипа и среды, ибо от факторов последней во многом зависит экспрес¬сивность и пенетрантность изучаемых признаков.

8. Существуют ли в вашем регионе селекционные станции или центры? Какие исследования они проводят? Каковы их достижения? Вместе с учителем организуйте экскурсию на такую станцию.

Ю-У НИИ плодоовощеводства и картофелеводства, г. Челябинск

Эх, яблочко, ранеточка...

В 1931 году по инициативе И. В. Мичурина было создано первое на Южном Урале научно-исследовательское учреждение по садоводству - Уральская зональная плодово-ягодная опытная станция. Организатором этой станции был Валерий Павлович Ярушин.

А уже в следующем году начались научные исследования по селекции и подбору сортов, пригодных для выращивания в суровых условиях Челябинской и Курганской областей, в том числе и входивших в них тогда Камышловском и Каменск-Уральском районах ныне Свердловской области. Ученые приступили к обследованию и сбору лучших форм плодово-ягодных культур восточнее Уральского хребта. В 1934 году сотрудники станции зарегистрировали крупный массив дикорастущей вишни - 2270 га - в Карагайской лесной даче (Анненский бор). В том же году научная экспедиция, возглавляемая доктором сельскохозяйственных наук Э. П. Сюбаровой (БелНИИ плодоводства) и челябинским ученым М. Н. Саламатовым, обследовала заросли дикой степной вишни в Верхнеуфалейском и Полтавском районах Челябинской области. Одновременно были завезены обширные коллекции сливы с Дальнего Востока, из Канады, Северной Америки, средней полосы России, Поволжья, карзинские сливы из Сибири. Из отобранного материала в 1937 году ученые выделили сорта и предложили первый уральский сортимент ягодных культур.

В те годы, как в народе, так и агрономической науке, считалось, что из-за сурового климата с морозными и продолжительными зимами, садоводство на Урале невозможно. Южноуральским ученым потребовалось всего двадцать лет - по селекционным меркам весьма небольшой срок, чтобы опровергнуть это широко распространенное мнение. Благодаря селекции и изучению новых сортов плодово-ягодных культур на челябинской опытной станции, у нас стало стремительно развиваться садоводство.

Первые коллективные сады в области появились вскоре после войны. В 1948 году образовались "Тракторосад", "Дружба" в Металлургическом районе, "Локомотив" в Советском районе, сады Магнитогорского металлургического комбината. Их появлению предшествовала длительная и вязкая борьба в коридорах тогдашней власти с противниками создания таких садов. Тем не менее, коллективное садоводство развивалось и развивается до сих пор. В настоящее время садоводы производят основную часть плодоовощной продукции.

К началу 50-х годов нашими учеными были собраны и изучались 442 сортообразца яблони, в том числе 210 сортов урало-сибирской селекции. Первые официально оформленные авторскими свидетельствами сорта плодово-ягодной опытной станции были именно яблони. Основой довоенного сортимента стали местные ранетки. Они отличаются приспособленностью к уральскому и сибирскому климату, высокой урожайностью и малыми размерами плодов весом от 15 до 50 г. Старшее поколение еще помнит эти яркие красивые яблочки-ранетки - Любимец, Анисик омский, Пониклое. Они казались тогда пределом мечтаний, особенно для детворы. Но к 60-м годам в активе института было уже 25 районированных сортов:14 яблонь, 4 груши, 4 сливы и 3 ягодных культуры.

В 1964 году Уральская зональная плодово-ягодная опытная станция была переименована в Челябинскую плодоовощную селекционную станцию им. И. В. Мичурина. К тому времени в области уже успешно работал специализированный трест "Плодопром", который возглавлял Всеволод Иванович Назаров. Тесное сотрудничество науки и производства, увлеченность и энтузиазм их сотрудников подняли южноуральское садоводство на невиданные высоты. При поддержке руководителей области были созданы плодовые питомники: "Смолинский" в пригороде Челябинска, "Мичуринский" в Карталах, "Радужный" в Магнитогорске, "Тюбелясский" в горнозаводской зоне. При Смолинском и Мичуринском плодопитомниках были организованы государственные сортоиспытательные участки.

Именно тогда, в 50-60-е годы в колхозах и совхозах, находящихся при МТС, закладывались небольшие сады от 20 до 100 га. Некоторые из них сохранились до сих пор. На пике развития садоводства области общественные сады занимали у нас площадь 8 тысяч гектаров, а сама отрасль была в целом прибыльной.

В пятидесятые годы в нашей области началась также работа по научному обеспечению картофелеводства. К началу 80-х годов Челябинская плодоовощная селекционная станция им. И. В. Мичурина имела в своем активе 29 собственных сортов плодово-ягодных культур и картофеля, занесенных в Государственный реестр селекционных достижений, допущенных к использованию.

Ученые станции начали использовать в селекции растений мировую коллекцию форм плодово-ягодных культур и картофеля из Всесоюзного института растениеводства и других научно-исследовательских учреждений, в том числе зарубежных. В селекционный процесс вовлекался генетический фонд, внедрялись новые селекционные технологии, позволяющие сокращать селекционный процесс, возросла подготовка кадров высшей квалификации. Научные разработки южноуральских ученых стали внедряться в хозяйствах Челябинской, Курганской, Кустанайской, Оренбургской и других областях, в Республике Башкортостан.

Новое имя - новые цели

В ноябре 1991-го по решению правительства РФ Челябинская плодоовощная опытная станция им. И. В. Мичурина была преобразована в Южно-Уральский НИИ плодоовощеводства и картофелеводства. Изменилось не только название. Перед институтом были поставлены более серьезные цели и направления научно-исследовательской деятельности. Помимо селекции плодово-ягодных культур и картофеля, жизнь потребовала создания новых ресурсосберегающих экологически чистых технологий селекции и возделывания этих культур, научных исследований по гибридизации, а также производства элитных саженцев новых перспективных сортов садовых культур и семян картофеля на оздоровленной, безвирусной основе с применением биотехнологии.

За весь период деятельности института, начиная с Уральской зональной плодово-ягодной станции, челябинскими селекционерами создано более 200 сортов плодово-ягодных культур, 18 сортов картофеля, разработаны технологии промышленного и любительского садоводства, технологии производства картофеля с урожайностью до 70 т/га.

В государственный реестр селекционных достижений, допущенных к использованию, в разные годы было внесено 110 сортов. Об уровне научно-исследовательской работы говорит тот факт, что на сегодняшний день институт имеет более 100 авторских свидетельств и патентов на сорта и изобретения.

Впервые на Южном Урале созданы модели интенсивного сорта плодовых, ягодных культур, картофеля до 2020 года, разработаны схемы селекции на продуктивность, зимостойкость, в т.ч. устойчивость цветков к весенним заморозкам, качество продукции, иммунитет. Институт располагает богатым генетическим фондом садовых культур, который насчитывает 64 тысячи гибридных растений, в т.ч. 39 - плодовых, 25 тысяч сеянцев ягодных культур. Объемы гибридных скрещиваний составляют 45 тысяч цветков.

Научные исследования по селекции и агротехнике садовых культур и картофеля ведутся в творческом содружестве с ведущими научно-исследовательскими институтами и опытными станциями России, ближнего и дальнего зарубежья.

На сегодняшний день институт имеет селекционный сад площадью более 100 гектаров. Именно здесь сосредоточена основная научная деятельность южноуральских селекционеров.

Яблоня. Впервые в мировой практике садоводства селекционеры института по оригинально разработанной методике вывели сорта естественных карликов с высотой деревьев в 1,5-2,5 м. При размножении их на клоновых вегетативно размножаемых карликовых подвоях, они становятся естественными стланцами (0,8-1,5 м).

Груша - удивительная культура на Урале. Ежегодно плодоносит. Плоды вкусные, сладкие, пригодные для переработки. Привлечение в селекцию отборных форм уссурийской груши позволило создать сорта, отличающиеся высокой зимостойкостью и продуктивностью, высокими вкусовыми качествами плодов, моногенной устойчивостью к парше и полевой устойчивостью к грушевому галловому клещу.

Абрикос и слива. Выведены местные сорта и выделены отборные формы, отличающиеся повышенной зимостойкостью плодовых почек и высоким качеством плодов.

Вишня. Накоплены экспериментальные данные для создания генотипов, устойчивых к коккомикозу. Продолжается выделение доноров с геном моноустойчивости к коккомикозу и выявление форм степной вишни с полевой устойчивостью к коккомикозу. С этой целью и для пополнения коллекции проведены экспедиции по обследованию дикоросов вишни на территории Башкирии, Челябинской и Курганской областей. Отобраны формы степной и лесной вишни, устойчивые к коккомикозу, крупноплодные, хорошим вкусом плодов.

Ягодные культуры. Ведутся исследования по селекции новых сортов, устойчивых к неблагоприятным факторам среды, высокозимостойких, с повышенной устойчивостью цветков к весенним заморозкам, высокопродуктивных, с отличным качеством плодов. Составлены модели оптимального сорта ягодных культур с учетом технологических запросов селекции 2020-2025 годов. Разработаны технологии возделывания шиповника, крыжовника, жимолости, смородины, технология размножения смородины в пленочных теплицах.

Вернуть былую славу

Реформы, проводимые в аграрном секторе России с начала 90-х годов, оказались разрушительными для садоводства. Как отрасль народного хозяйства оно фактически перестало существовать. Только в Челябинской области доля промышленного садоводства с 65% снизилась до 1%. Почти не осталось плодоносящих насаждений, опытно-производственные плодопитомники практически прекратили свою деятельность, а их продукция удовлетворяет спрос рынка всего на 12-15%.

В области отсутствует целевая программа развития промышленного садоводства, основанная на достоверных материалах инвентаризации насаждений и новых разработках научных учреждений последних лет.

В этом нет вины науки. Ученые Южно-Уральского научно-исследовательского института плодоовощеводства и картофелеводства не раз предлагали сформировать научные основы возрождения отрасли. Однако состояние макроэкономики и чиновничий консерватизм не дают возможности продвинуться вперед. Расчет на то, что коллективное любительское садоводство (т.е. частный сектор) восполнит потери промышленного садоводства, не оправдывается. Да и не может оправдаться. Не смотря на то, что ЮУНИИПОК ежегодно производит более 60 тысяч саженцев плодовых и ягодных культур для населения, частный сектор страдает от недостатка посадочного материала, особенно новых сортов, потребность в котором удовлетворяется на 47-50%. Эту нишу пытаются заполнить мелкие производители саженцев - частники. Но качество их посадочного материала часто не выдерживает никакой критики по всем параметрам.

Реально ли возродить общественное садоводство в новых экономических условиях?

Вполне, считают южноуральские ученые и селекционеры. Но для этого на государственном и областном уровне, по их мнению, необходимо решить самые насущные вопросы:

С площадей под садами от начала подготовки территорий и до вступления в плодоношение насаждений отменить налог на землю

На возвратной основе выделять капитальные вложения для посадки многолетних насаждений

На промышленных предприятиях области организовать производство специальной техники для садоводства

Необходимы законы по защите отечественного производителя на собственном рынке

Стимулировать малый бизнес для организации переработки продукции садоводства

В системе профтехобразования необходимо организовать подготовку кадров для садоводства

Весьма актуально и объединение научного потенциала уральских ученых-аграрников. Для этих целей необходимо создание Уральского научно-методического центра с размещением его в Челябинске. Польза от такого объединения огромная. Доказательством тому координационный совет по картофелю, созданный в апреле 2000 года по инициативе ГНУ ЮУНИИПОК на общественных началах. За 8 лет совместной работы институты картофелеводства провели мощную мобилизацию генофонда, пополнили коллекции, договорились о комбинациях скрещивания, регулярно обмениваются информацией, исходным и селекционным материалом. Практика координационного совета показала, что эта форма работы чрезвычайно эффективна, жизнеспособна и поэтому заслуживает развития и совершенствования.

Начата работа и по объединению садоводческих учреждений. Подписано многостороннее соглашение между шестью научными учреждениями Уральского и прилегающих к нему регионов - ГНУ ЮУНИИПОК, БашНИИСХ, Удмуртский НИИСХ, Костанайский НИИСХ, Казахский НИИКОХ, Карабалыкская опытная станция.

Аграрная наука сегодня переживает трудные времена, но она жива и готова внести свой вклад в возрождение сельскохозяйственного производства, в том числе и южноуральского промышленного садоводства.

Основными методами селекции являются отбор , гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез .

Отбор и его творческая роль . В основе селекционного процесса лежит искусственный отбор . В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор - это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа. Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200-250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу. Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е. способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы. Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции . Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу. Инбридинг - это близкородственное (внутрипородное или внутрисортовое), а аутбридинг - неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец - дочь, мать - сын, двоюродные братья - сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса.

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов. Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полипюидия и отдаленная гибридизация . При создании новых сортов растений селекционерами широко используется метод автополиплодии , который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же. Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта. Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы. Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации , т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале . Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2п « 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных - редкость. Так, советскому ученому генетику Б. JI. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Спонтанный и индуцированный мутагенез . Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов. Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.