Постановка задачи. Найти графическим методом максимум целевой функции


Введение

Современный этап развития человечества отличается тем, что на смену века энергетики приходит век информатики. Происходит интенсивное внедрение новых технологий во все сферы человеческой деятельности. Встает реальная проблема перехода в информационное общество, для которого приоритетным должно стать развитие образования. Изменяется и структура знаний в обществе. Все большее значение для практической жизни приобретают фундаментальные знания, способствующие творческому развитию личности. Важна и конструктивность приобретаемых знаний, умение их структурировать в соответствии с поставленной целью. На базе знаний формируются новые информационные ресурсы общества. Формирование и получение новых знаний должно базироваться на строгой методологии системного подхода, в рамках которого отдельное место занимает модельный подход. Возможности модельного подхода крайне многообразны как по используемым формальным моделям, так и по способам реализации методов моделирования. Физическое моделирование позволяет получить достоверные результаты для достаточно простых систем.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

1. Постановка задачи

минимум целевая функция

Решить задачу нахождения минимума целевой функции для системы ограничений, заданной многоугольником решений в соответствии с вариантом №16 задания. Многоугольник решений представлен на рисунке 1:

Рисунок 1 - Многоугольник решений задачи

Система ограничений и целевая функция задачи представлены ниже:

Необходимо решить задачу, используя следующие методы:

Графический метод решения задач ЛП;

Алгебраический метод решения задач ЛП;

Симплекс-метод решения задач ЛП;

Метод отыскания допустимого решения задач ЛП;

Решение двойственной задачи ЛП;

Метод «ветвей и границ» решения целочисленных задач ЛП;

Метод Гомори решения целочисленных задач ЛП;

Метод Балаша решения булевских задач ЛП.

Сравнить результаты решения разными методами сделать соответствующие выводы по работе.

2. Графическое решение задачи линейного программирования

Графический метод решения задач линейного программирования применяется в тех случаях, когда число неизвестных не превышает трех. Удобен для качественного исследования свойств решений и применяется совместно с другими методами (алгебраическим, ветвей и границ и т. д.). Идея метода основана на графическом решении системы линейных неравенств.

Рис. 2 Графическое решение задачи ЛП

Точка минимума

Уравнение прямой проходящей через две точки A1 и A2:

АВ: (0;1); (3;3)

ВС: (3;3); (4;1)

CD: (4;1); (3;0)

EА: (1;0); (0;1)

ЦФ: (0;1); (5;2)

при ограничениях:

Решение задачи линейного программирования алгебраическим симплекс-методом

Применение алгебраического метода решения задачи требует обобщения представления задачи ЛП. Исходную систему ограничений, заданную в виде неравенств преобразуют к стандартной форме записи, когда ограничения заданы в виде равенств. Преобразование системы ограничений к стандартному виду включает в себя следующие этапы:

Преобразовать неравенства таким образом, чтобы слева находились переменные и свободные члены, а справа - 0 т.е. чтобы левая часть была больше или равной нулю;

Ввести дополнительные переменные, число которых равно числу неравенств в системе ограничений;

Введя дополнительные ограничения на неотрицательность добавленных переменных, заменить знаки неравенств на знаки строгих равенств.

При решении задачи ЛП алгебраическим методом добавляется условие: целевая функция должна стремиться к минимуму. Если данное условие не выполняется, необходимо соответствующим образом преобразовать целевую функцию (умножить на -1) и решать задачу минимизации. После того, как решение найдено, подставить значения переменных в исходную функцию и посчитать ее значение.

Решение задачи при использовании алгебраического метода считается оптимальным, когда значения всех, базисных переменных - неотрицательно, и коэффициенты при свободных переменных в уравнении целевой функции также неотрицательны. Если эти условия не выполняются, необходимо преобразовать систему неравенств, выражая одни переменные через другие (меняя свободные и базисные переменные) добиться выполнения вышеприведенных ограничений. Значение всех свободных переменных считается равным нулю.

Алгебраический метод решения задач линейного программирования является одним из самых эффективных методов при решении задач небольшой размерности вручную т.к. не требует большого числа арифметических вычислений. Машинная реализация этого метода сложнее, чем, например, для симплекс-метода, т.к. алгоритм решения алгебраическим методом является в какой то степени эвристическим и эффективность решения во многом зависит от личного опыта.

Свободных переменных

св.пер. - доп. набор

Условия не отрицательности выполнены, следовательно, найдено оптимальное решение.

3. Решение задачи линейного программирования с использованием симплекс-таблицы

Решение: Приведем задачу к стандартному виду для решения с помощью симплекс-таблицы.

Все уравнения системы приведем к виду:

Строим симплекс-таблицу:

В верхний угол каждой клетки таблицы вписываем коэффициенты из системы уравнений;

Выбираем максимальный положительный элемент в строке F, кроме, это будет генеральный столбец;

Для того, чтобы найти генеральный элемент строим отношение для всех положительных. 3/3; 9/1;- минимальное соотношение в строке x3. Следовательно - генеральная строка и =3 - генеральный элемент.

Находим =1/=1/3. Вносим в нижний угол клетки, где находится генеральный элемент;

Во все незаполненные нижние углы генеральной строки вносим произведение значения в верхнем углу клетки на;

Выделяем верхние углы генеральной строки;

Во все нижние углы генерального столбца заносим произведение значения в верхнем углу на - и выделяем полученные значения;

Остальные клетки таблицы заполняются, как произведения соответствующих выделенных элементов;

Затем строим новую таблицу, в которой обозначения клеток элементов генерального столбца и строки меняются местами (x2 и x3);

В верхний угол бывших генеральных строки и столбца записываются значения, которые до этого были в нижнем углу;

В верхний угол остальных клеток записывается сумма значений верхнего и нижнего угла этих клеток в предыдущей таблице

4. Решение задачи линейного программирования методом отыскания допустимого решения

Пусть дана система линейных алгебраических уравнений:

Можно предположить, что все, в противном случае умножаем соответствующее уравнение на -1.

Вводим вспомогательные переменные:

Вводим так же вспомогательную функцию

Будем минимизировать систему при ограничениях (2) и условиях.

ПРАВИЛО ОТЫСКАНИЯ ДОПУСТИМОГО РЕШЕНИЯ: Для отыскания допустимого решения системы (1) минимизируем форму (3) при ограничениях (2), в качестве свободных неизвестных берем xj, в качестве базисных.

При решении задачи симплекс-методом могут возникнуть два случая:

min f=0, тогда все i обязаны быть равными нулю. А получившиеся значения xj будут составлять допустимое решение системы (1).

min f>0, т.е. исходная система не имеет допустимого решения.

Исходная система:

Используется условие задачи предыдущей темы.

Внесем дополнительные переменные:

Найдено допустимое решение исходной задачи: х1 = 3, х2 = 3, F = -12. Основываясь на полученном допустимом решении найдем оптимальное решение исходной задачи, пользуясь симплекс-методом. Для этого построим новую симплекс-таблицу из таблицы полученной выше, удалив строку и строку с целевой функцией вспомогательной задачи:

Анализируя построенную симплекс-таблицу, видим, что оптимальное решение для исходной задачи уже найдено (элементы в строке, соответствующей целевой функции, отрицательны). Таким образом, допустимое решение, найденное при решении вспомогательной задачи совпадает с оптимальным решением исходной задачи:

6. Двойственная задача линейного программирования

Исходная система ограничений и целевая функция задачи показаны на рисунке ниже.

при ограничениях:

Решение: Приведем систему ограничений к стандартному виду:

Задача, двойственная данной будет иметь вид:

Решение двойственной задачи будет выполняться простым симплекс-методом.

Преобразуем целевую функцию так, чтобы решалась задача минимизации, и запишем систему ограничений в стандартной форме для решения симплекс-методом.

y6 = 1 - (-2 y1 + 2y2 +y3 + y4+ y5)

y7 = 5 - (-3y1 - y2 + y3 + y4)

Ф = 0 - (3y1 + 9y2 + 3y3 + y4) ??min

Построим исходную симплекс-таблицу для решения двойственной задачи ЛП.

Второй шаг симплекс-метода

Итак, на третьем шаге симплекс-метода найдено оптимальное решение задачи минимизации со следующими результатами: y2 = -7 /8, y1 = -11/8, Ф = 12. Для того, чтобы найти значение целевой функции двойственной задачи, подставим найденные значения базисных и свободных переменных в функцию максимизации:

Фmax = - Фmin = 3*(-11/8) + 9(-7/8) + 3*0 + 0 = -12

Так как значение целевой функции прямой и двойственной задач совпадают, решение прямой задачи найдено и равно 12.

Fmin = Фmax = -12

7. Решение задачи целочисленного линейного программирования методом «ветвей и границ»

Преобразуем исходную задачу таким образом, чтобы не выполнялось условие целочисленности при решении обычными методами.

Исходный многоугольник решений задачи целочисленного программирования.

Для преобразованного многоугольника решений построим новую систему ограничений.

Запишем систему ограничений в виде равенств, для решения алгебраическим методом.

В результате решения найден оптимальный план задачи: х1 =9/4, х2 = 5/2, F =-41/4. Это решения не отвечает условию целочисленности, поставленному в задаче. Разобьем исходный многоугольник решений на две области, исключив из него область 3

Измененный многоугольник решений задачи

Составим новые системы ограничений для образовавшихся областей многоугольника решений. Левая область представляет собой четырехугольник (трапецию). Система ограничений для левой области многоугольника решений представлена ниже.

Система ограничений для левой области

Правая область представляет собой точку С.

Система ограничений для правой области решений представлена ниже.

Новые системы ограничений представляют из себя две вспомогательные задачи, которые необходимо решить независимо друг от друга. Решим задачу целочисленного программирования для левой области многоугольника решений.

В результате решения найден оптимальный план задачи: х1 = 3, х2 = 3, F = -12. Этот план удовлетворяет условию целочисленности переменных в задаче и может быть принят в качестве оптимального опорного плана для исходной задачи целочисленного линейного программирования. Проводить решение для правой области решений нет смысла. На рисунке ниже представлен ход решения целочисленной задачи линейного программирования в виде дерева.

Ход решения целочисленной задачи линейного программирования методом Гомори.

Во многих практических приложениях представляет большой интерес задача целочисленного программирования, в которой дана система линейных неравенств и линейная форма

Требуется найти целочисленное решение системы (1), которое минимизирует целевую функцию F, причем, все коэффициенты - целые.

Один из методов решения задачи целочисленного программирования предложен Гомори. Идея метода заключается в использовании методов непрерывного линейного программирования, в частности, симплекс-метода.

1)Определяется с помощью симплекс-метода решение задачи (1), (2), у которой снято требование целочисленности решения; если решение оказывается целочисленным, то искомое решение целочисленной задачи будет также найдено;

2) В противном случае, если некоторая координата - не целая, полученное решение задачи проверяется на возможность существования целочисленного решения (наличие целых точек в допустимом многограннике):

если в какой-либо строке с дробным свободным членом, все остальные коэффициенты окажутся целыми, то в допустимом многограннике нет целых, точек и задача целочисленного программирования решения не имеет;

В противном случае вводится дополнительное линейное ограничение, которое отсекает от допустимого многогранника часть, бесперспективную для поиска решения задачи целочисленного программирования;

3) Для построения дополнительного линейного ограничения, выбираем l-тую строку с дробным свободным членом и записываем дополнительное ограничение

где и - соответственно дробные части коэффициентов и свободного

члена. Введем в ограничение (3) вспомогательную переменную:

Определим коэффициенты и, входящие в ограничение (4):

где и - ближайшие целые снизу для и соответственно.

Гомори доказал, что конечное число подобных шагов приводит к такой задаче линейного программирования, решение которой будет целочисленным и, следовательно, искомым.

Решение: Приведем систему линейных ограничений и функцию цели к канонической форме:

Определим оптимальное решение системы линейных ограничений, временно отбросив условие целочисленности. Используем для этого симплекс-метод. Ниже последовательно в таблицах представлены исходное решение задачи, и приведены преобразования исходной таблицы с целью получения оптимального решения задачи:

Решение булевских задач ЛП методом Балаша.

Составить самостоятельно вариант для задачи целочисленного линейного программирования с булевскими переменными с учетом следующих правил: в задаче используется не менее 5 переменных, не менее 4 ограничений, коэффициенты ограничений и целевой функции выбираются произвольно, но таким образом, чтобы система ограничений была совместна. Задание состоит в том, чтобы решить ЗЦЛП с булевскими переменными, используя алгоритм Балаша и определить снижение трудоемкости вычислений по отношению к решению задачи методом полного перебора.

Выполнение ограничений

Значение F

Фильтрующее ограничение:

Определение снижения трудоемкости вычислений

Решение задачи методом полного перебора составляет 6*25=192 вычисленных выражения. Решение задачи методом Балаша составляет 3*6+(25-3)=47 вычисленных выражений. Итого снижение трудоемкости вычислений по отношению к решению задачи методом полного перебора составляет.

Заключение

Процесс проектирования информационных систем, реализующих новую информационную технологию, непрерывно совершенствуется. В центре внимания инженеров-системотехников оказываются все более сложные системы, что затрудняет использование физических моделей и повышает значимость математических моделей и машинного моделирования систем. Машинное моделирование стало эффективным инструментом исследования и проектирования сложных систем. Актуальность математических моделей непрерывно возрастает из-за их гибкости, адекватности реальным процессам, невысокой стоимости реализации на базе современных ПЭВМ. Все большие возможности предоставляются пользователю, т. е. специалисту по моделированию систем средствами вычислительной техники. Особенно эффективно применение моделирования на ранних этапах проектирования автоматизированных систем, когда цена ошибочных решений наиболее значительна.

Современные вычислительные средства позволили существенно увеличить сложность используемых моделей при изучении систем, появилась возможность построения комбинированных, аналитико-имитационных моделей, учитывающих все многообразие факторов, имеющих место в реальных системах, т. е. использованию моделей, более адекватных исследуемым явлениям.

Литература:

1. Лященко И.Н. Линейное и нелинейное программирования / И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова, Н.З.Шор. - К.: «Высшая школа», 1975, 372 с.

2. Методические указания для выполнения курсового проекта по дисциплине «Прикладная математика» для студентов специальности «Компьютерные системы и сети» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков- Севастополь: Изд-во СевНТУ, 2003. - 15 с.

3. Методические указания по изучению дисциплины «Прикладная математика», раздел «Методы глобального поиска и одномерной минимизации» / Сост. А.В.Скатков, И.А.Балакирева, Л.А.Литвинова - Севастополь: Изд-во СевГТУ, 2000. - 31с.

4. Методические указания для изучения дисциплины «Прикладная математика» для студентов специальности «Компьютерные системы и сети» Раздел «Решение задач целочисленного линейного программирования» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков - Севастополь: Изд-во СевНТУ, 2000. - 13 с.

5. Акулич И.Л. Математическое программирование в примерах и задачах:

6. Учеб. пособие для студентом эконом. спец. вузов.-М.: Высш. шк., 1986.- 319с., ил.

7. Андронов С.А. Методы оптимального проектирования: Текст лекций / СПбГУАП. СПб., 2001. 169 с.: ил.

Подобные документы

    Алгоритм решения задач линейного программирования симплекс-методом. Построение математической модели задачи линейного программирования. Решение задачи линейного программирования в Excel. Нахождение прибыли и оптимального плана выпуска продукции.

    курсовая работа , добавлен 21.03.2012

    Графическое решение задач. Составление математической модели. Определение максимального значения целевой функции. Решение симплексным методом с искусственным базисом канонической задачи линейного программирования. Проверка оптимальности решения.

    контрольная работа , добавлен 05.04.2016

    Теоретическая основа линейного программирования. Задачи линейного программирования, методы решения. Анализ оптимального решения. Решение одноиндексной задачи линейного программирования. Постановка задачи и ввод данных. Построение модели и этапы решения.

    курсовая работа , добавлен 09.12.2008

    Построение математической модели. Выбор, обоснование и описание метода решений прямой задачи линейного программирования симплекс-методом, с использованием симплексной таблицы. Составление и решение двойственной задачи. Анализ модели на чувствительность.

    курсовая работа , добавлен 31.10.2014

    Построения математической модели с целью получения максимальной прибыли предприятия, графическое решение задачи. Решение задачи с помощью надстройки SOLVER. Анализ изменений запасов ресурсов. Определение пределов изменения коэффициентов целевой функции.

    курсовая работа , добавлен 17.12.2014

    Математическое программирование. Линейное программирование. Задачи линейного программирования. Графический метод решения задачи линейного программирования. Экономическая постановка задачи линейного программирования. Построение математической модели.

    курсовая работа , добавлен 13.10.2008

    Решение задачи линейного программирования графическим методом, его проверка в MS Excel. Анализ внутренней структуры решения задачи в программе. Оптимизация плана производства. Решение задачи симплекс-методом. Многоканальная система массового обслуживания.

    контрольная работа , добавлен 02.05.2012

    Решение задачи линейного программирования симплекс-методом: постановка задачи, построение экономико-математической модели. Решение транспортной задачи методом потенциалов: построение исходного опорного плана, определение его оптимального значения.

    контрольная работа , добавлен 11.04.2012

    Постановка задачи нелинейного программирования. Определение стационарных точек и их типа. Построение линий уровней, трехмерного графика целевой функции и ограничения. Графическое и аналитическое решение задачи. Руководство пользователя и схема алгоритма.

    курсовая работа , добавлен 17.12.2012

    Анализ решения задачи линейного программирования. Симплексный метод с использованием симплекс-таблиц. Моделирование и решение задач ЛП на ЭВМ. Экономическая интерпретация оптимального решения задачи. Математическая формулировка транспортной задачи.

КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ:

«МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ»

Вариант № 8

1. Решить графическим методом задачу линейного программирования. Найти максимум и минимум функции при заданных ограничениях:

,

.

Решение

Необходимо найти минимальное значение целевой функции и максимальное, при системе ограничений:

9x 1 +3x 2 ≥30, (1)

X 1 +x 2 ≤4, (2)

x 1 +x 2 ≤8, (3)

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи. Обозначим границы области многоугольника решений.

Построим прямую, отвечающую значению функции F = 0: F = 2x 1 +3x 2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление минимизации F(X). Начало вектора – точка (0; 0), конец – точка (2; 3). Будем двигать эту прямую параллельным образом. Поскольку нас интересует минимальное решение, поэтому двигаем прямую до первого касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Прямая
пересекает область в точке C. Так как точка C получена в результате пересечения прямых (4) и (1), то ее координаты удовлетворяют уравнениям этих прямых:
.

Решив систему уравнений, получим: x 1 = 3.3333, x 2 = 0.

Откуда найдем минимальное значение целевой функции: .

Рассмотрим целевую функцию задачи .

Построим прямую, отвечающую значению функции F = 0: F = 2x 1 +3x 2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление максимизации F(X). Начало вектора – точка (0; 0), конец – точка (2; 3). Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Прямая
пересекает область в точке B. Так как точка B получена в результате пересечения прямых (2) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

.

Откуда найдем максимальное значение целевой функции: .

Ответ:
и
.

2 . Решитьзадачу линейного программирования симплекс-методом:

.

Решение

Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.

Определим минимальное значение целевой функции
при следующих условиях-ограничений:
.

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных.

В 1-м неравенстве смысла (≥) вводим базисную переменную x 3 со знаком минус. В 2-м неравенстве смысла (≤) вводим базисную переменнуюx 4 . В 3-м неравенстве смысла (≤) вводим базисную переменную x 5 .

Введем искусственные переменные : в 1-м равенстве вводим переменнуюx 6 ;

Для постановки задачи на минимум целевую функцию запишем так: .

За использование искусственных переменных, вводимых в целевую функцию, накладывается так называемый штраф величиной М, очень большое положительное число, которое обычно не задается.

Полученный базис называется искусственным, а метод решения называется методом искусственного базиса.

Причем искусственные переменные не имеют отношения к содержанию поставленной задачи, однако они позволяют построить стартовую точку, а процесс оптимизации вынуждает эти переменные принимать нулевые значения и обеспечить допустимость оптимального решения.

Из уравнений выражаем искусственные переменные: x 6 = 4-x 1 -x 2 +x 3 , которые подставим в целевую функцию: или.

Матрица коэффициентов
этой системы уравнений имеет вид:
.

Решим систему уравнений относительно базисных переменных: x 6 , x 4 , x 5.

Полагая, что свободные переменные равны 0, получим первый опорный план:

X1 = (0,0,0,2,10,4)

Базисное решение называется допустимым, если оно неотрицательно.

x 1

x 2

x 3

x 4

x 5

x 6

x 6

x 4

x 5

Текущий опорный план не оптимален, так как в индексной строке находятся положительные коэффициенты. В качестве ведущего выберем столбец, соответствующий переменной x 2 , так как это наибольший коэффициент. Вычислим значенияD i и из них выберем наименьшее: min(4: 1 , 2: 2 , 10: 2) = 1.

Следовательно, 2-ая строка является ведущей.

Разрешающий элемент равен (2) и находится на пересечении ведущего столбца и ведущей строки.

x 1

x 2

x 3

x 4

x 5

x 6

x 6

x 4

x 5

Формируем следующую часть симплексной таблицы. Вместо переменной x 4 в план 1 войдет переменная x 2 .

Строка, соответствующая переменной x 2 в плане 1, получена в результате деления всех элементов строки x 4 плана 0 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули.

Таким образом, в новом плане 1 заполнены строка x 2 и столбец x 2 . Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

x 1

x 2

x 3

x 4

x 5

x 6

x 6

x 2

x 5

1 1 / 2 +1 1 / 2 M

Текущий опорный план неоптимален, так как в индексной строке находятся положительные коэффициенты. В качестве ведущего выберем столбец, соответствующий переменной x 1 , так как это наибольший коэффициент. Вычислим значенияD i по строкам как частное от деления:и из них выберем наименьшее: min (3: 1 1 / 2 , - , 8: 2) = 2.

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1 1 / 2) и находится на пересечении ведущего столбца и ведущей строки.

x 1

x 2

x 3

x 4

x 5

x 6

x 6

1 1 / 2

x 2

x 5

-1 1 / 2 +1 1 / 2 M

Формируем следующую часть симплексной таблицы. Вместо переменной x 6 в план 2 войдет переменная x 1 .

Получаем новую симплекс-таблицу:

x 1

x 2

x 3

x 4

x 5

x 6

x 1

x 2

x 5

Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.

Окончательный вариант симплекс-таблицы:

x 1

x 2

x 3

x 4

x 5

x 6

x 1

x 2

x 5

Так как в оптимальном решении отсутствуют искусственные переменные (они равны нулю), то данное решение является допустимым.

Оптимальный план можно записать так: x 1 = 2, x 2 = 2:.

Ответ :
,
.

3. Фирма «Три толстяка» занимается доставкой мясных консервов с трёх складов, расположенных в разных точках города в три магазина. Запасы консервов, имеющиеся на складах, а также объёмы заказов магазинов и тарифы на доставку (в условных денежных единицах) представлены в транспортной таблице.

Найти план перевозок, обеспечивающий наименьшие денежные затраты (первоначальный план перевозок выполнить по методу «северо-западного угла»).

Решение

Проверим необходимое и достаточное условие разрешимости задачи:

= 300 + 300 + 200 = 800 .

= 250 + 400 + 150 = 800.

Условие баланса соблюдается. Запасы равны потребностям. Следовательно, модель транспортной задачи является закрытой.

Занесем исходные данные в распределительную таблицу.

Потребности

Используя метод северо-западного угла, построим первый опорный план транспортной задачи.

План начинается заполняться с верхнего левого угла.

Искомый элемент равен 4. Для этого элемента запасы равны 300, потребности 250. Поскольку минимальным является 250, то вычитаем его: .

300 - 250 = 50

250 - 250 = 0

Искомый элемент равен 2. Для этого элемента запасы равны 50, потребности 400. Поскольку минимальным является 50, то вычитаем его: .

50 - 50 = 0

400 - 50 = 350

Искомый элемент равен 5. Для этого элемента запасы равны 300, потребности 350. Поскольку минимальным является 300, то вычитаем его:

300 - 300 = 0

350 - 300 = 50

Искомый элемент равен 3. Для этого элемента запасы равны 200, потребности 50. Поскольку минимальным является 50, то вычитаем его:

200 - 50 = 150

50 - 50 = 0

Искомый элемент равен 6. Для этого элемента запасы равны 150, потребности 150. Поскольку минимальным является 150, то вычитаем его:

150 - 150 = 0

150 - 150 = 0

Потребности

Тесты для текущего контроля знаний

1. Любая экономико – математическая модель задачи линейного программирования состоит из:

A. целевой функции и системы ограничений

B. целевой функции, системы ограничений и условия неотрицательности переменных

C. системы ограничений и условия неотрицательности переменных

D. целевой функции и условия неотрицательности переменных

A. целевая функция

B. система уравнений

C. система неравенств

D. условие неотрицательности переменных

3. Оптимальное решение задачи математического программирования – это

A. допустимое решение системы ограничений

B. любое решение системы ограничений

C. допустимое решение системы ограничений, приводящее к максимуму или минимуму целевой функции

D. максимальное или минимальное решение системы ограничений

4. Система ограничений называется стандартной, если она содержит

A. все знаки

B. все знаки

C. все знаки

D. все знаки

5. Задача линейного программирования решается графическим способом, если в задаче

A. одна переменная

B. две переменные

C. три переменные

D. четыре переменные

6. Неравенство вида описывает

B. окружность

C. полуплоскость

D. плоскость

7. Максимум или минимум целевой функции находится

A. в начале координат

B. на сторонах выпуклого многоугольника решений

C. внутри выпуклого многоугольника решений

D. в вершинах выпуклого многоугольника решений

8. Каноническим видом ЗЛП называется такой ее вид, в котором система ограничений содержит знаки

A. все знаки

B. все знаки

C. все знаки

D. все знаки

9. Если ограничение задано со знаком «>=», то дополнительная переменная вводится в это ограничение с коэффициентом

B. -1

10. В целевую функцию дополнительные переменные вводятся с коэффициентами

C. 0

A. количество ресурса с номером i, необходимого для изготовления 1 единицы продукции j – го вида

B. неиспользованные ресурсы i - го вида

C. прибыль от реализации 1 единицы продукции j – го вида

D. количество продукции j – го вида

12. Разрешающий столбец при решении ЗЛП на max целевой функции выбирается исходя из условия

A. наибольшее положительное значение коэффициента Cj целевой функции

B. наименьшее положительное значение коэффициента Cj целевой функции

C. наибольшее отрицательное значение коэффициента Cj целевой функции

D. любой столбец коэффициентов при неизвестных

13. Значение целевой функции в таблице с оптимальным планом находится

A. на пересечении строки коэффициентов целевой функции со столбцом коэффициентов при х1

B. на пересечении строки коэффициентов целевой функции со столбцом b

C. в столбце коэффициентов при хn

D. на пересечении строки коэффициентов целевой функции со столбцом первоначального базиса

14. Искусственные переменные в систему ограничений в каноническом виде вводятся с коэффициентом

A. 1

15. Оптимальность плана в симплексной таблице определяется

A. по столбцу b

B. по строке значений целевой функции

C. по разрешающей строке

D. по разрешающему столбцу

16. Дана задача линейного программирования

B. 1

17. Дана задача линейного программирования

Количество искусственных переменных для этой задачи равно

C. 2

18. Если исходная ЗЛП имеет вид

тогда ограничения двойственной задачи

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

19. Если исходная ЗЛП имеет вид

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

20. Коэффициентами при неизвестных целевой функции двойственной задачи являются

A. коэффициенты при неизвестных целевой функции исходной задачи

B. свободные члены системы ограничений исходной задачи

C. неизвестные исходной задачи

D. коэффициенты при неизвестных системы ограничений исходной задачи

21. Если исходная ЗЛП была на максимум целевой функции, то двойственная задача будет

A. тоже на максимум

B. либо на максимум, либо на минимум

C. и на максимум, и на минимум

D. на минимум

22. Связь исходной и двойственной задач заключается в том, что

A. надо решать обе задачи

B. решение одной из них получается из решения другой

C. из решения двойственной задачи нельзя получить решения исходной

D. обе имеют одинаковые решения

23. Если исходная ЗЛП имеет вид

тогда целевая функция двойственной задачи

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

24. Если исходная ЗЛП имеет вид

то количество переменных в двойственной задаче равно

B. 2

25. Модель транспортной задачи закрытая,

A. если

26. Цикл в транспортной задаче – это

A. замкнутая прямоугольная ломаная линия, все вершины которой находятся в занятых клетках

B. замкнутая прямоугольная ломаная линия, все вершины которых находятся свободных клетках

C. замкнутая прямоугольная ломаная линия, одна вершина которой в занятой клетке, остальные в свободных клетках

D. замкнутая прямоугольная ломаная линия, одна вершина которой в свободной клетке, а остальные в занятых клетках

27. Потенциалами транспортной задачи размерности (m*n) называются m+n чисел ui и vj, для которых выполняются условия

A. ui+vj=cij для занятых клеток

B. ui+vj=cij для свободных клеток

C. ui+vj=cij для первых двух столбцов распределительной таблицы

D. ui+vj=cij для первых двух строк распределительной таблицы

28. Оценками транспортной задачи размерности (m+n) называются числа

yij=cij-ui-vj, которые вычисляются

A. для занятых клеток

B. для свободных клеток

C. для первых двух строк распределительной таблицы

D. для первых двух столбцов распределительной таблицы

29. При решении транспортной задачи значение целевой функции должно от итерации к итерации

A. увеличиваться

B. увеличиваться или не меняться

C. увеличиваться на величину любой оценки

D. уменьшаться или не меняться

30. Число занятых клеток невырожденного плана транспортной задачи должно быть равно

C. m+n-1

31. Экономический смысл целевой функции транспортной задачи

A. суммарный объем перевозок

B. суммарная стоимость перевозок

C. суммарные поставки

D. суммарные потребности

Разделим третью строку на ключевой элемент, равный 5, получим третью строку новой таблицы.

Базисным столбцам соответствуют единичные столбцы.

Расчет остальных значений таблицы:

«БП – Базисный План»:

; ;

«х1»: ; ;

«х5»: ; .

Значения индексной строки неотрицательны, следовательно получаем оптимальное решение: , ; .

Ответ: максимальную прибыль от реализации изготовленной продукции, равную 160/3 ед., обеспечивает выпуск только продукции второго типа в количестве 80/9 единиц.


Задание № 2

Дана задача нелинейного программирования. Найти максимум и минимум целевой функции графоаналитическим методом. Составить функцию Лагранжа и показать, что в точках экстремума выполняются достаточные условия минимума (максимума).

Т.к. последняя цифра шифра равна 8, то А=2; В=5.

Т.к. предпоследняя цифра шифра равна 1, то следует выбрать задачу № 1.

Решение:

1) Начертим область, которую задает система неравенств.


Эта область – треугольник АВС с координатами вершин: А(0; 2); В(4; 6) и С(16/3; 14/3).

Уровни целевой функции представляют собой окружности с центром в точке (2; 5). Квадраты радиусов будут являться значениями целевой функции. Тогда по рисунку видно, что минимальное значение целевой функции достигается в точке Н, максимальное – либо в точке А, либо в точке С.

Значение целевой функции в точке А: ;

Значение целевой функции в точке С: ;

Значит, наибольшее значение функции достигается в точке А(0; 2) и равно 13.

Найдем координаты точки Н.

Для этого рассмотрим систему:

ó

ó

Прямая является касательной к окружности, если уравнение имеет единственное решение. Квадратное уравнение имеет единственное решение, если дискриминант равен 0.


Тогда ; ; - минимальное значение функции.

2) Составим функцию Лагранжа для нахождение минимального решения:

При x 1 =2.5; x 2 =4.5 получим:

ó

Система имеет решение при , т.е. достаточные условия экстремума выполняются.

Составим функцию Лагранжа для нахождение максимального решения:

Достаточные условия экстремума:

При x 1 =0; x 2 =2 получим:

ó ó

Система также имеет решение, т.е. достаточные условия экстремума выполняются.

Ответ: минимум целевой функции достигается при ; ; максимум целевой функции достигается при ; .


Задание № 3

Двум предприятиям выделяются средства в количестве d единиц. При выделении первому предприятию на год x единиц средств оно обеспечивает доход k 1 x единиц, а при выделении второму предприятию y единиц средств, оно обеспечивает доход k 1 y единиц. Остаток средств к концу года для первого предприятия равен nx , а для второго my . Как распределить все средства в течение 4-х лет, чтобы общий доход был наибольшим? Задачу решить методом динамического программирования.

i=8, k=1.

A=2200; k 1 =6; k 2 =1; n=0.2; m=0.5.

Решение:

Весь период длительностью 4 года разбиваем на 4 этапа, каждый из которых равен одному году. Пронумеруем этапы начиная с первого года. Пусть Х k и Y k – средства, выделенные соответственно предприятиям А и В на k – том этапе. Тогда сумма Х k + Y k =а k является общим количеством средств, используемых на k – том этапе и оставшиеся от предыдущего этапа k – 1. на первом этапе используются все выделенные средства и а 1 =2200 ед. доход, который будет получен на k – том этапе, при выделении Х k и Y k единиц составит 6Х k + 1Y k . пусть максимальный доход, полученный на последних этапах начиная с k – того этапа составляет f k (а k) ед. запишем функциональное уравнение Беллмана, выражающее принцип оптимальности: каково бы не было начальное состояние и начальное решение последующее решение должно быть оптимальным по отношению к состоянию, получаемому в результате начального состояния:

Для каждого этапа нужно выбрать значение Х k , а значение Y k k – х k . С учетом этого найдем доход на k – том этапе:

Функциональное уравнение Беллмана будет иметь вид:

Рассмотрим все этапы, начиная с последнего.

(т.к. максимум линейной функции достигается в конце отрезка при х 4 = а 4);

Построим на плоскости множество допустимых решений системы линейных неравенств и геометрически найдём минимальное значение целевой функции.

Строим в системе координат х 1 ох 2 прямые

Находим полуплоскости, определяемые системой. Так как неравенства системы выполняется для любой точки из соответствующей полуплоскости, то их достаточно проверить для какой-либо одной точки. Используем точку (0;0). Подставим её координаты в первое неравенство системы. Т.к. , то неравенство определяет полуплоскость, не содержащую точку (0;0). Аналогично определяем остальные полуплоскости. Находим множество допустимых решений как общую часть полученных полуплоскостей - это заштрихованная область.

Строим вектор и перпендикулярно к нему прямую нулевого уровня.


Перемещая прямую (5) в направлении вектора и видим, что у области максимальная точка будет в точке А пересечения прямой (3) и прямой (2). Находим решение системы уравнений:

Значит, получили точку (13;11) и.

Перемещая прямую (5) в направлении вектора и видим, что у области минимальная точка будет в точке В пересечения прямой (1) и прямой (4). Находим решение системы уравнений:

Значит, получили точку (6;6) и.

2. Мебельная фирма производит комбинированные шкафы и компьютерные столики. Их производство ограничено наличием сырья (высококачественных досок, фурнитуры) и временем работы обрабатывающих их станков. Для каждого шкафа требуется 5 м2 досок, для стола - 2 м2. На один шкаф расходуется фурнитуры на 10$, на один столик также на 8$. Фирма может получать от своих поставщиков до 600 м2 досок в месяц и фурнитуры на 2000$. Для каждого шкафа требуется 7 часов работы станков, для стола - 3 часа. В месяц возможно использовать всего 840 часов работы станков.

Сколько комбинированных шкафов и компьютерных столиков фирме следует выпускать в месяц для получения максимальной прибыли, если один шкаф приносит 100$ прибыли, а каждый стол - 50$?

  • 1. Составить математическую модель задачи и решить её симплексным методом.
  • 2. Составить математическую модель двойственной задачи, записать её решение исходя из решения исходной.
  • 3. Установить степень дефицитности используемых ресурсов и обосновать рентабельность оптимального плана.
  • 4. Исследовать возможности дальнейшего увеличения выпуска продукции в зависимости от использования каждого вида ресурсов.
  • 5. Оценить целесообразность введения нового вида продукции - книжных полок, если на изготовление одной полки расходуется 1 м 2 досок и фурнитуры на 5$,и требуется затратить 0,25 часа работы станков и прибыль от реализации одной полки составляет 20$.
  • 1. Построим математическую модель для данной задачи:

Обозначим через x 1 - объём производства шкафов, а х 2 - объём производства столиков. Составим систему ограничений и функцию цели:

Задачу решаем симплекс-методом. Запишем её в каноническом виде:

Запишем данные задачи в виде таблицы:

Таблица 1

Т.к. теперь все дельта больше нуля, то дальнейшее увеличение значения функции цели f невозможно и мы получили оптимальный план.