Пределы лопиталя. Калькулятор онлайн.Решение пределов

Представьте стаю воробьёв с выпученными глазами. Нет, это не гром, не ураган и даже не маленький мальчик с рогаткой в руках. Просто в самую гущу птенчиков летит огромное-огромное пушечное ядро. Именно так правила Лопиталя расправляются с пределами, в которых имеет место неопределённость или .

Правила Лопиталя – очень мощный метод, позволяющий быстро и эффективно устранить указанные неопределенности, не случайно в сборниках задач, на контрольных работах, зачётах часто встречается устойчивый штамп: «вычислить предел, не пользуясь правилом Лопиталя ». Выделенное жирным шрифтом требование можно с чистой совестью приписать и к любому пределу уроков Пределы. Примеры решений , Замечательные пределы . Методы решения пределов , Замечательные эквивалентности , где встречается неопределённость «ноль на ноль» либо «бесконечность на бесконечность». Даже если задание сформулировано коротко – «вычислить пределы», то негласно подразумевается, что вы будете пользоваться всем, чем угодно, но только не правилами Лопиталя.

Всего правил два, и они очень похожи друг на друга, как по сути, так и по способу применения. Кроме непосредственных примеров по теме, мы изучим и дополнительный материал, который будет полезен в ходе дальнейшего изучения математического анализа.

Сразу оговорюсь, что правила будут приведены в лаконичном «практическом» виде, и если вам предстоит сдавать теорию, рекомендую обратиться к учебнику за более строгими выкладками.

Первое правило Лопиталя

Рассмотрим функции , которые бесконечно малЫ в некоторой точке . Если существует предел их отношений , то в целях устранения неопределённости можно взять две производные – от числителя и от знаменателя. При этом: , то есть .

Примечание : предел тоже должен существовать, в противном случае правило не применимо.

Что следует из вышесказанного?

Во-первых, необходимо уметь находить производные функций , и чем лучше – тем лучше =)

Во-вторых, производные берутся ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. Пожалуйста, не путайте с правилом дифференцирования частного !!!

И, в-третьих, «икс» может стремиться куда угодно, в том числе, к бесконечности – лишь бы была неопределённость .

Вернёмся к Примеру 5 первой статьи о пределах , в котором был получен следующий результат:

К неопределённости 0:0 применим первое правило Лопиталя:

Как видите, дифференцирование числителя и знаменателя привело нас к ответу с пол оборота: нашли две простые производные, подставили в них «двойку», и оказалось, что неопределённость бесследно исчезла!

Не редкость, когда правила Лопиталя приходится применять последовательно два или бОльшее количество раз (это относится и ко второму правилу). Вытащим на ретро-вечер Пример 2 урока о замечательных пределах :

На двухъярусной кровати снова прохлаждаются два бублика. Применим правило Лопиталя:

Обратите внимание, что на первом шаге в знаменателе берётся производная сложной функции . После этого проводим ряд промежуточных упрощений, в частности, избавляемся от косинуса, указывая, что он стремится к единице. Неопределённость не устранена, поэтому применяем правило Лопиталя ещё раз (вторая строчка).

Я специально подобрал не самый простой пример, чтобы вы провели небольшое самотестирование. Если не совсем понятно, как найдены производные , следует усилить свою технику дифференцирования, если не понятен фокус с косинусом, пожалуйста, вернитесь к замечательным пределам . Не вижу особого смысла в пошаговых комментариях, так как о производных и пределах я уже рассказал достаточно подробно. Новизна статьи состоит в самих правилах и некоторых технических приёмах решения.

Как уже отмечалось, в большинстве случаев правила Лопиталя использовать не нужно, но их зачастую целесообразно применять для черновой проверки решения. Зачастую, но далеко не всегда. Так, например, только что рассмотренный пример значительно выгоднее проверить через замечательные эквивалентности .

Второе правило Лопиталя

Брат-2 борется с двумя спящими восьмёрками . Аналогично:

Если существует предел отношения бесконечно больших в точке функций: , то в целях устранения неопределённости можно взять две производные – ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. При этом: , то есть при дифференцировании числителя и знаменателя значение предела не меняется .

Примечание : предел должен существовать

Опять же, в различных практических примерах значение может быть разным , в том числе, бесконечным. Важно, чтобы была неопределённость .

Проверим Пример №3 первого урока: . Используем второе правило Лопиталя:

Коль скоро речь зашла о великанах, разберём два каноничных предела:

Пример 1

Вычислить предел

Получить ответ «обычными» методами непросто, поэтому для раскрытия неопределённости «бесконечность на бесконечность» используем правило Лопиталя:

Таким образом, линейная функция более высокого порядка роста , чем логарифм с основанием бОльшим единицы ( и т.д.). Разумеется, «иксы» в старших степенях тоже будут «перетягивать» такие логарифмы. Действительно, функция растёт достаточно медленно и её график является более пологим относительно того же «икса».

Пример 2

Вычислить предел

Ещё один примелькавшийся кадр. В целях устранения неопределённости , используем правило Лопиталя, причём, два раза подряд:

Показательная функция, с основанием, бОльшим единицы ( и т.д.) более высокого порядка роста , чем степенная функция с положительной степенью .

Похожие пределы встречаются в ходе полного исследования функции , а именно, при нахождении асимптот графиков . Также замечаются они и в некоторых задачах по теории вероятностей . Советую взять на заметку два рассмотренных примера, это один из немногих случаев, когда лучше дифференцирования числителя и знаменателя ничего нет.

Далее по тексту я не буду разграничивать первое и второе правило Лопиталя, это было сделано только в целях структурирования статьи. Вообще, с моей точки зрения, несколько вредно излишне нумеровать математические аксиомы, теоремы, правила, свойства, поскольку фразы вроде «согласно следствию 3 по теореме 19…» информативны только в рамках того или иного учебника. В другом источнике информации то же самое будет «следствием 2 и теоремой 3». Такие высказывания формальны и удобны разве что самим авторам. В идеале лучше ссылаться на суть математического факта. Исключение – исторически устоявшиеся термины, например, первый замечательный предел или второй замечательный предел .

Продолжаем разрабатывать тему, которую нам подкинул член Парижской академии наук маркиз Гийом Франсуа де Лопиталь. Статья приобретает ярко выраженную практическую окраску и в достаточно распространённом задании требуется:

Для разминки разберёмся с парой небольших воробушков:

Пример 3

Предел можно предварительно упростить, избавившись от косинуса, однако проявим уважение к условию и сразу продифференцируем числитель и знаменатель:

В самом процессе нахождения производных нет чего-то нестандартного, так, в знаменателе использовано обычное правило дифференцирования произведения .

Рассмотренный пример разруливается и через замечательные пределы , похожий случай разобран в конце статьи Сложные пределы .

Пример 4

Вычислить предел по правилу Лопиталя

Это пример для самостоятельного решения. Нормально пошутил =)

Типична ситуация, когда после дифференцирования получаются трех- или четырёхэтажные дроби:

Пример 5

Вычислить предел, используя правило Лопиталя

Напрашивается применение замечательной эквивалентности , но путь жёстко предопределён по условию:

После дифференцирования настоятельно рекомендую избавляться от многоэтажности дроби и проводить максимальные упрощения . Конечно, более подготовленные студенты могут пропустить последний шаг и сразу записать: , но в некоторых пределах запутаются даже отличники.

Пример 6

Вычислить предел, используя правило Лопиталя

Пример 7

Вычислить предел, используя правило Лопиталя

Это примеры для самостоятельного решения. В Примере 7 можно ничего не упрощать, слишком уж простой получается после дифференцирования дробь. А вот в Примере 8 после применения правила Лопиталя крайне желательно избавиться от трёхэтажности, поскольку вычисления будут не самыми удобными. Полное решение и ответ в конце урока. Если возникли затруднения – тригонометрическая таблица в помощь.

И, упрощения совершенно необходимы, когда после дифференцирования неопределённость не устранена .

Пример 8

Вычислить предел, используя правило Лопиталя

Поехали:

Интересно, что первоначальная неопределённость после первого дифференцирования превратилась в неопределённость , и правило Лопиталя невозмутимо применяется дальше. Также заметьте, как после каждого «подхода» устраняется четырёхэтажная дробь, а константы выносятся за знак предела. В более простых примерах константы удобнее не выносить, но когда предел сложный, упрощаем всё-всё-всё. Коварство решённого примера состоит ещё и в том, что при , а , поэтому в ходе ликвидации синусов немудрено запутаться в знаках. В предпоследней строчке синусы можно было и не убивать, но пример довольно тяжелый, простительно.

На днях мне попалось любопытное задание:

Пример 9

Если честно, немного засомневался, чему будет равен данный предел. Как демонстрировалось выше, «икс» более высокого порядка роста, чем логарифм, но «перетянет» ли он логарифм в кубе? Постарайтесь выяснить самостоятельно, за кем будет победа.

Да, правила Лопиталя – это не только пальба по воробьям из пушки, но ещё и кропотливая работа….

В целях применения правил Лопиталя к бубликам или уставшим восьмёркам сводятся неопределённости вида .

Расправа с неопределённостью подробно разобрана в Примерах №№9-13 урока Методы решения пределов . Давайте для проформы ещё один:

Пример 10

Вычислить предел функции, используя правило Лопиталя

На первом шаге приводим выражение к общему знаменателю, трансформируя тем самым неопределённость в неопределённость . А затем заряжаем правило Лопиталя:

Здесь, к слову, тот случай, когда четырёхэтажное выражение трогать бессмысленно.

Неопределённость тоже не сопротивляется превращению в или :

Пример 11

Вычислить предел функции с помощью правила Лопиталя

Предел здесь односторонний, и о таких пределах уже шла речь в методичке Графики и свойства функций . Как вы помните, графика «классического» логарифма не существует слева от оси , таким образом, мы можем приближаться к нулю только справа.

Правила Лопиталя для односторонних пределов работают, но сначала необходимо разобраться с неопределённостью . На первом шаге делаем дробь трёхэтажной, получая неопределённость , далее решение идёт по шаблонной схеме:

После дифференцирования числителя и знаменателя избавляемся от четырёхэтажной дроби, чтобы провести упрощения. В результате нарисовалась неопределённость . Повторяем трюк: снова делаем дробь трёхэтажной и к полученной неопределённости применяем правило Лопиталя ещё раз:

Готово.

Исходный предел можно было попытаться свести к двум бубликам:

Но, во-первых, производная в знаменателе труднее, а во-вторых, ничего хорошего из этого не выйдет.

Таким образом, перед решением похожих примеров нужно проанализировать (устно либо на черновике), К КАКОЙ неопределённости выгоднее свести – к «нулю на ноль» или к «бесконечности на бесконечность».

В свою очередь на огонёк подтягиваются собутыльники и более экзотические товарищи . Метод трансформации прост и стандартен.

Пусть при $x\to a$ функции $f(x)$ и $\varphi(x)$ обе бесконечно малые или обе бесконечно большие. Тогда их отношение не определено в точке $x=a$ , и в этом случае говорят, что оно представляет собой неопределенность типа $\left[\frac{0}{0}\right]$ или соответственно. Это отношение может иметь конечный или бесконечный предел в точке $x=a$ . Нахождение этого предела называется раскрытием неопределенности.

t_E1_p217_1
Теорема (Теорема Лопиталя-Бернулли.)
Пусть в некоторой окрестности $P$ точки $x=a$ функции $f(x)$ и $g(x)$ дифференцируемы всюду, кроме, может быть, самой точки $x=a$ , и пусть $g"(x)\neq0$ на $P$ . Если функции $f(x)$ и $\varphi(x)$ являются одновременно либо бесконечно малыми, либо бесконечно большими при $x\to a$ и при этом существует предел отношения $\frac{f"(x)}{\varphi"(x)}$ их производных при $x\to a$ , то тогда существует также и предел отношения $\frac{f(x)}{g(x)}$ самих функций, причем

(1)

\begin{align} \lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}. \end{align}

Правило () применимо и в случае, когда $a=\infty$ .

m_KR_p156_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$ .)
В силу теоремы () существует общий способ нахождения предела отношений двух функций, основанный на равенстве
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}.$$
Этот способ называется правилом Лопиталя .
Если для производных $f"(x)$ и $g"(x)$ выполняются условия теоремы (), то правило Лопиталя можно применять повторно:
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}=\lim\limits_{x\to a}\frac{f""(x)}{g""(x)}.$$
При этом на каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приемами вычисления пределов.

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}.$$
Используя формулу (), получаем: $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}=\left[\frac{0}{0}\right]=\lim\limits_{x\to0}\frac{2e^{2x}}{\frac{1}{1+25x^2}\cdot5}=\frac{2}{5},$$ поскольку $e^{2x}\to1$ и $\frac{1}{1+25x^2}\to1$ при $x\to0$ .

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to\infty}\frac{\ln2x}{x^3}.$$
Применяя дважды формулу (), получаем: $$\lim\limits_{x\to+\infty}\frac{\ln^2x}{x^3}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{\frac{2\ln x}{x}}{3x^2}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\ln x}{x^3}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{3x^2}=0.$$

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}.$$
Используем формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to 0}\frac{\frac{1}{\cos^2x}-\cos x}{3x^2}=\frac{1}{3}\lim\limits_{x\to0}\frac{1-\cos^3x}{x^2\cos^2x}.$$
Освободим знаменатель дроби от множителя $\cos^2x$ , поскольку он имеет предел $1$ при $x\to0$ . Развернем стоящую в числителе разность кубов и освободим числитель от сомножителя $(1+\cos x+\cos^2x)$ , имеющего предел $3$ при $x\to0$ . После этих упрощений получаем $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}.$$
Применим снова формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}=\lim\limits_{x\to0}\frac{\sin x}{2x}.$$
Используя первый замечательный предел, получаем окончательный ответ $\frac{1}{2}$ , уже не прибегая к правилу Лопиталя.

m_E1_p219_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left$ .)
Для вычисления $\lim\limits_{x\to a}f(x)g(x)$ , где $f(x)$ — бесконечно малая, а $g(x)$ — бесконечно большая функции при $x\to a$ , следует преобразовать произведение к виду $\frac{f(x)}{1/g(x)}$ (неопределенность типа $\left[\frac{0}{0}\right]$ ) или к виду $\frac{g(x)}{1/f(x)}$ (неопределенность типа $\left[\frac{\infty}{\infty}\right]$ ) и далее использовать правило Лопиталя.

e_E1_p219_1

Пример
Найти $$\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}.$$
Имеем: $$\begin{array}{c}\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}=\left=\lim\limits_{x\to1}\frac{\sin(x-1)}{\cot\frac{\pi x}{2}}=\left[\frac{0}{0}\right]=\\=\lim\limits_{x\to1}\frac{\cos(x-1)}{-\frac{\pi}{2}\frac{1}{\sin^2\frac{\pi x}{2}}}=-\frac{2}{\pi}\lim\limits_{x\to1}\cos(x-1)\sin^2\frac{\pi x}{2}=-\frac{2}{\pi}.\end{array}$$

m_E1_p220_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left[\infty-\infty\right]$ .)
Для вычисления $\lim\limits_{x\to a}(f(x)-g(x))$ , где $f(x)$ и $g(x)$ — бесконечно большие функции при $x\to a$ , следует преобразовать разность к виду $f(x)\left(1-\frac{g(x)}{f(x)}\right)$ , затем раскрыть неопределенность $\frac{g(x)}{f(x)}$ типа $\left[\frac{\infty}{\infty}\right]$ . Если $\lim\limits_{x\to a}\frac{g(x)}{f(x)}\neq1$ , то $\lim\limits_{x\to a}(f(x)-\varphi(x))=\infty$ . Если же $\lim\limits_{x\to a}\frac{\varphi(x)}{f(x)}=1$ , то получаем неопределенность типа $[\infty\cdot0]$ , рассмотренную ранее.

e_E1_p220_1

Пример
Найти $$\lim\limits_{x\to+\infty}(x-\ln^3x).$$
Имеем: $$\lim\limits_{x\to+\infty}(x-\ln^3x)=[\infty-\infty]=\lim\limits_{x\to+\infty}x\left(1-\frac{\ln^3x}{x}\right).$$
Так как $$\begin{array}{c}\lim\limits_{x\to+\infty}\frac{\ln^3x}{x}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{3\ln^2x\cdot\frac{1}{x}}{1}=3\lim\limits_{x\to+\infty}\frac{\ln^2x}{x}=\\=3\lim\limits_{x\to+\infty}\frac{2\ln x\cdot\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{\ln x}{x}=6\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{1}{x}=0,\end{array}$$ то $$\lim\limits_{x\to+\infty}(x-\ln^3x)=+\infty.$$

m_E1_p221_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left$ , $\left[\infty^0\right]$ , $\left$ .)
Во всех трех случаях имеется в виду вычисление предела выражения $\left(f(x)\right)^{g(x)}$ , где $f(x)$ есть в первом случае бесконечно малая, во втором случае — бесконечно большая, в третьем случае — функция, имеющая предел равный единице. Функция же $g(x)$ в первых двух случаях является бесконечно малой, а в третьем случае — бесконечно большой.
Логарифмируя выражение $\left(f(x)\right)^{g(x)}$ , получим равенство
$$\ln y=g(x)\ln f(x).$$
Найдем предел $\ln y$ , после чего найдем предел $y$ . Во всех трех случаях $\ln y$ является неопределенностью типа $$ , метод раскрытия которой изложен ранее.

e_E1_p221_1

Пример
Найти $$\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}.$$
Введем обозначение $y=\left(1+\frac{1}{x}\right)^{2x}$ . Тогда $\ln y=2x\ln\left(1+\frac{1}{x}\right)$ является неопределенностью $[\infty\cdot0]$ . Преобразуя выражение $\ln y$ к виду $\ln y=2\frac{\ln\left(1+\frac{1}{x}\right)}{1/x}$ , находим по правилу Лопиталя $$\lim\limits_{x\to+\infty}\ln y=2\lim\limits_{x\to+\infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}=2\lim\limits_{x\to+\infty}\frac{1}{1+\frac{1}{x}}=2.$$
Следовательно, $$\lim\limits_{x\to+\infty}y=\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}=e^2.$$

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя . Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли . Сформулировал его швейцарский математик Иоганн Бернулли , а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0 . Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0 :

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0 :

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:

Пример 2

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а , то правило Лопиталя можно применять несколько раз.

Найдем предел (n натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам . Они с радостью помогут разобраться в тонкостях решения.

Правило Лопиталя (п. Л.) облегчает вычисление пределов функций. Например, надо найти предел функции, которая является отношением функций стремящихся к нулю. Т.е. отношение функций это неопределенность 0/0. Раскрыть ее поможет . В пределе отношение функций можно заменить отношением производных этих функций. Т.е. надо производную числителя разделить на производную знаменателя и от этой дроби взять предел.

1. Неопределенность 0/0. Первое п.Л.

Если = 0, то , если последний существует.

2. Неопределенность вида ∞/∞ Второе п. Л.

Нахождение пределов такого типа называется раскрытием неопределенностей.

Если = ∞, то , если последний существует.

3. Неопределенности 0⋅∞, ∞- ∞, 1 ∞ и 0 0 сводятся к неопределенностям 0/0 и ∞/∞ путем преобразований. Такая запись служит для краткого указания случая при отыскании предела. Каждая неопределенность раскрывается по своему. Правило Лопиталя можно применять несколько раз, пока не избавимся от неопределенности. Применение правила Лопиталя приносит пользу тогда, когда отношение производных удается преобразовать к более удобному виду легче, чем отношение функций.

  • 0⋅∞ произведение двух функций, первая стремится к нулю, вторая к бесконечности;
  • ∞- ∞ разность функций, стремящихся к бесконечности;
  • 1 ∞ степень, ее основание стремится к единице, а показатель к бесконечности;
  • ∞ 0 степень, ее основание стремится к бесконечности, а степень к нулю;
  • 0 0 степень, ее основание стремится к 0 и показатель тоже стремятся к нулю.

Пример 1. В этом примере неопределенность 0/0

Пример 2. Здесь ∞/∞

В этих примерах производные числителя делим на производные знаменателя и подставляем предельное значение вместо х.

Пример 3. Вид неопределенности 0⋅∞ .

Неопределенность 0⋅∞ преобразуем к ∞/∞, для этого х переносим в знаменатель в виде дроби 1/x , в числителе пишем производную от числителя, а в знаменателе производную от знаменателя.

Пример 4 Вычислить предел функции

Здесь неопределенность вида ∞ 0 Сначала логарифмируем функцию, затем найдем от нее предел

Для получения ответа надо е возвести в степень -1, получим e -1 .

Пример 5. Вычислить предел от если x → 0

Решение. Вид неопределенности ∞ -∞ Приведя дробь к общему знаменателю перейдем от ∞-∞ к 0/0. Применим правило Лопиталя, однако снова получим неопределенность 0/0, поэтому п. Л. надо применить второй раз. Решение имеет вид:

= = = =
= =

Пример 6 Решить

Решение. Вид неопределенности ∞/∞, раскрыв ее получим

В случаях 3), 4), 5) сначала логарифмируют функцию и находят предел логарифма, а затем искомый предел е возводим в полученную степень.

Пример 7. Вычислить предел

Решение. Здесь вид неопределенности 1 ∞ . Обозначим A =

Тогда lnA = = = = 2.

Основание логарифма е, поэтому для получения ответа надо е возвести в квадрат, получим e 2 .

Иногда бывают случаи, когда отношение функций имеет предел, в отличие от отношения производных, которое не имеет его.

Рассмотрим пример:

Т.к. sinx ограничен, а х неограниченно растет, второй член равен 0.

Эта функция не имеет предела, т.к. она постоянно колеблется между 0 и 2, к этому примеру неприменимо п. Л.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0