Степенная функция, ее свойства и график. Степенная функция

Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

По многочисленным просьбам читателей кликабельное оглавление :

Кроме того, есть сверхкраткий конспект по теме
– освойте 16 видов графиков, изучив ШЕСТЬ страниц!

Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

И сразу начинаем:

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей .

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
1 единица = 2 клетки (чертеж слева).

Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

Графики и основные свойства элементарных функций

Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:


А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики .

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

Вспоминаем некоторые свойства функции .

Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

Выполним чертеж:


Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции () справедливо следующее:

Если , то ветви параболы направлены вверх .

Если , то ветви параболы направлены вниз .

Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

График функции

Он представляет собой одну из ветвей параболы . Выполним чертеж:


Основные свойства функции :

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида () представляет собой две ветви гиперболы .

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях .

Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Принципиально так же выглядят графики функций , и т. д.

Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

Основные свойства функции :

Область определения :

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма : .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой .

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения : , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Национальный научно-исследовательский университет

Кафедра прикладной геологии

Реферат по высшей математике

На тему: «Основные элементарные функции,

их свойства и графики»

Выполнил:

Проверил:

преподаватель

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции:

1. Область определения - множество (R) всех действительных чисел.

2. Область значений - множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

4. Является функцией общего вида.

, на интервале xÎ [-3;3]
, на интервале xÎ [-3;3]

Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)= и возрастает на промежутке

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).


, на интервале xÎ [-3;3]

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.


, на интервале xÎ [-3;3]

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)=
, на интервале xÎ
, на интервале xÎ [-3;3]

Логарифмическая функция у = log a x обладает следующими свойствами:

1. Область определения D(x)Î (0; + ∞).

2. Область значений E(y) Î (- ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.


; на интервале xÎ
; на интервале xÎ

Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

Функция y = sin (х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая; основной период равен 2π.

4. Функция нечетная.

5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

График функции у = sin (х) изображен на рисунке 11.

Урок и презентация на тему: "Степенные функции. Свойства. Графики"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Степенные функции, область определения.

Ребята, на прошлом уроке мы узнали, как работать с числами с рациональным показателем степени. На этом уроке мы рассмотрим степенные функции и ограничимся случаем, когда показатель степени рациональный.
Мы будем рассматривать функции вида: $y=x^{\frac{m}{n}}$.
Рассмотрим сначала функции, у которых показатель степени $\frac{m}{n}>1$.
Пусть нам дана конкретная функция $y=x^2*5$.
Согласно определению, которое мы дали на прошлом уроке: если $x≥0$, то есть область определения нашей функции - это луч ${x}$. Давайте схематично изобразим наш график функции.

Свойства функции $y=x^{\frac{m}{n}}$, $0 2. Не является ни четной, ни нечетной.
3. Возрастает на $$,
б) $(2,10)$,
в) на луче $$.
Решение.
Ребята, вы помните как мы находили наибольшее и наименьшее значение функции на отрезке в 10 классе?
Правильно, мы использовали производную. Давайте решим наш пример и повторим алгоритм поиска наименьшего и наибольшего значения.
1. Найдем производную заданной функции:
$y"=\frac{16}{5}*\frac{5}{2}x^{\frac{3}{2}}-x^3=8x^{\frac{3}{2}}-x^3=8\sqrt{x^3}-x^3$.
2. Производная существует на всей области определения исходной функции, тогда критических точек нет. Найдем стационарные точки:
$y"=8\sqrt{x^3}-x^3=0$.
$8*\sqrt{x^3}=x^3$.
$64x^3=x^6$.
$x^6-64x^3=0$.
$x^3(x^3-64)=0$.
$x_1=0$ и $x_2=\sqrt{64}=4$.
Заданному отрезку принадлежит только одно решение $x_2=4$.
Построим таблицу значений нашей функции на концах отрезка и в точке экстремума:
Ответ: $y_{наим.}=-862,65$ при $x=9$; $y_{наиб.}=38,4$ при $x=4$.

Пример. Решить уравнение: $x^{\frac{4}{3}}=24-x$.
Решение. График функции $y=x^{\frac{4}{3}}$ возрастает, а график функции $у=24-х$ убывает. Ребята, мы с вами знаем: если одна функция возрастает, а другая убывает, то они пересекаются только в одной точке, то есть у нас только одно решение.
Заметим:
$8^{\frac{4}{3}}=\sqrt{8^4}=(\sqrt{8})^4=2^4=16$.
$24-8=16$.
То есть при $х=8$ мы получили верное равенство $16=16$, это и есть решение нашего уравнения.
Ответ: $х=8$.

Пример.
Построить график функции: $y=(x-3)^\frac{3}{4}+2$.
Решение.
График нашей функции получается из графика функции $y=x^{\frac{3}{4}}$, смещением его на 3 единицы вправо и 2 единицы вверх.

Пример. Составить уравнение касательной к прямой $y=x^{-\frac{4}{5}}$ в точке $х=1$.
Решение. Уравнение касательной определяется известной нам формулой:
$y=f(a)+f"(a)(x-a)$.
В нашем случае $a=1$.
$f(a)=f(1)=1^{-\frac{4}{5}}=1$.
Найдем производную:
$y"=-\frac{4}{5}x^{-\frac{9}{5}}$.
Вычислим:
$f"(a)=-\frac{4}{5}*1^{-\frac{9}{5}}=-\frac{4}{5}$.
Найдем уравнение касательной:
$y=1-\frac{4}{5}(x-1)=-\frac{4}{5}x+1\frac{4}{5}$.
Ответ: $y=-\frac{4}{5}x+1\frac{4}{5}$.

Задачи для самостоятельного решения

1. Найти наибольшее и наименьшее значение функции: $y=x^\frac{4}{3}$ на отрезке:
а) $$.
б) $(4,50)$.
в) на луче $$.
3. Решить уравнение: $x^{\frac{1}{4}}=18-x$.
4. Построить график функции: $y=(x+1)^{\frac{3}{2}}-1$.
5. Составить уравнение касательной к прямой $y=x^{-\frac{3}{7}}$ в точке $х=1$.

Степенная функция, ее свойства и график Демонстрационный материал Урок-лекция Понятие функции. Свойства функции. Степенная функция, ее свойства и график. 10 класс Все права защищены. Copyright с Copyright с




Ход урока: Повторение. Функция. Свойства функций. Изучение нового материала. 1. Определение степенной функции.Определение степенной функции. 2. Свойства и графики степенных функций.Свойства и графики степенных функций. Закрепление изученного материала. Устный счет. Устный счет. Итог урока. Задание на дом.Задание на дом.






Область определения и область значений функции Все значения независимой переменной образуют область определения функции х y=f(x) f Область определения функции Область значений функции Все значения, которые принимает зависимая переменная образуют область значений функции Функция. Свойства функции


График функции Пусть задана функция где хУ у х,75 3 0,6 4 0,5 График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции. Функция. Свойства функции


У х Область определения и область значений функции 4 y=f(x) Область определения функции: Область значений функции: Функция. Свойства функции


Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется четной, если f(-x) = f(x) для любого х из области определения функции Функция. Свойства функции


Нечетная функция у х y=f(x) График нечетной функции симметричен относительно начала координат О(0;0) Функция у=f(x) называется нечетной, если f(-x) = -f(x) для любого х из области определения функции Функция. Свойства функции


Определение степенной функции Функция, где р – заданное действительное число, называется степенной. р у=х р Р= х у 0 Ход урока








Степенная функция х у 1.Областью определения и областью значений степенных функций вида, где n – натуральное число, являются все действительные числа. 2. Эти функции – нечетные. График их симметричен относительно начала координат. Свойства и графики степенной функции




Степенные функции с рациональным положительным показателем Область определения- все положительные числа и число 0. Область значений функций с таким показателем – также все положительные числа и число 0. Эти функции не являются ни четными ни нечетными. у х Свойства и графики степенной функции


Степенная функция с рациональным отрицательным показателем. Областью определения и областью значений таких функций являются все положительные числа. Функции не являются ни четными ни нечетными. Такие функции убывают на всей своей области определения. у х Свойства и графики степенной функции Ход урока