Пример математической модели. Определение, классификация и особенности

Этапы создания математических моделей

В общем случае под математической моделью объекта (системы) понимается любое математическое описание, отражающее с требуемой точностью поведения объекта (системы) в реальных условиях. Математическая модель отражает записанную на языке математики совокупность знаний, представлений и гипотез исследователя о моделируемом объекте. Поскольку эти знания никогда не бывают абсолютными, то модель лишь приближенно учитывает поведение реального объекта.

Математическая модель системы – это совокупность соотношений (формул, неравенств, уравнений, логических соотношений), определяющих характеристики состояний системы в зависимости от ее внутренних параметров, начальных условий, входных сигналов, случайных факторов и времени.

Процесс создания математической модели можно разбить на этапы отраженные на рис. 3.2.

Рис. 3.2 Этапы создания математической модели

1. Постановка проблемы и ее качественный анализ. Этот этап включает:

· выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных;

· изучение структуры объекта и основных зависимостей, связывающих его элементы;

· формирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это – этап формализации проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше факторов (т.е. входных и выходных переменных состояния) учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно не только учитывать реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели нередко рост затрат на моделирование может превысить рост эффекта от внедрения моделей в задачи управления).

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент – доказательство существования решений в сформулированной модели (теорема существования). Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменений и т.д.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Здесь приобретают актуальности различные методы обработки данных, решения разнообразных уравнений, вычисления интегралов и т.п. Нередко расчеты по математической модели носят многовариантный, имитационный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные «модельные» эксперименты, изучая «поведение» модели при различных изменениях некоторых условий.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, об адекватности модели, о степени ее практической применимости. Математические методы проверки результатов могут выявлять некорректности построения модели и тем самым сужать класс потенциально правильных моделей.

Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки исходной постановки задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Поскольку современные математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают:

· снимают и объединяют условия, уменьшают число учитываемых факторов.

· нелинейные соотношения заменяют линейными и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, пополняемой новыми условиями, включающей уточненные математические зависимости.

2.2.1 С точки зрения математический подхода “Задача – это модель и алгоритм ее применения в рамках некоторой математической теории” Для применения математических методов исследования требуется построить математическую модель задачи. Математическая модель задачи – это специальная логическая конструкция, целенаправленно описывающая в терминах математической теории объективный процесс или явление, лежащие в основе конкретной задачи. Процесс решения такой модели является своеобразным аналогом мыслительного процесса специалиста, принимающего решение.

Модель есть образ реального исследуемого объекта или явления, созданный при помощи определенного набора средств. Модели значительно облегчают понимание объектов (явлений), позволяют прогнозировать их поведение в интересующих нас условиях, применять унифицированные методы анализа. В модели концентрируются наиболее важные, с точки зрения рассматриваемой проблемы, признаки (свойства) изучаемого объекта (явления). Целью моделирования является создание достаточно точного, полного, лаконичного и удобного для восприятия и анализа описания.

Элементами математической модели являются переменные, параметры, связи (математические) и информация.

Общая квалификация математических моделей, как правило, производится по следующим признакам:

Поведению моделей во времени;

Видам входной информации,

Параметров, выражений, конструкций, составляющих математическую модель;

Структуре математической модели;

Типу используемого математического аппарата.

Согласно данной классификации математические модели бывают динамическими (время играет роль независимой переменной, и поведение системы меняется во времени); статическими (независящими от времени); квазистатическими или дискретно-событийными (поведение системы меняется от одного статического состояния к другому согласно внешним воздействиям). Если эти элементы модели достаточно точно установлены и поведение системы можно точно определить, то модель - детерминированная, в противном случае - стохастическая . Если информация и параметры являются непрерывными величинами, а математические связи устойчивы, то модель непрерывная , в противном случае - дискретная . Если параметры модели фиксированы и не изменяются в процессе моделирования согласно поведению объекта моделирования, то это модель с фиксированными параметрами , в противном случае - модель с изменяющимися во времени или в пространстве параметрами . Математическая модель может быть сложной, комплексной , иерархической , если можно найти элементарные подсистемы, составляющие её. Это очень важный вопрос, поскольку его решение позволяет значительно упростить моделирование, например, оперативное управление распределенными системами, особенно если модель можно представить в виде древовидной или сетевой структуры. По типу используемого математического аппарата будем говорить об аналитических, вероятностно-статистических и нечетких моделях.

Основные требования, предъявляемые к модели:

Адекватность (достоверность);

Полнота;

Неизбыточность;

Приемлемая трудоемкость.

Адекватность и полнота означают, что модель должна обладать всеми существенными (с точки зрения решаемой задачи) признаками объекта моделирования и с достаточной степенью точности не отличаться от него по этим признакам. Сюда же, в частности, относится проблема адекватности критерия оптимальности целям функционирования моделируемой системы. Относительно требования неизбыточности модель не должна быть «засорена» множеством мелких, второстепенных факторов, которые лишь усложняют математический анализ и делает результаты исследования трудно обозримыми. Приемлемая трудоемкость означает, что затраты на создание модели должны соответствовать установленным ограничениям на ресурсы и эффект от использования модели должен превышать затраты на ее построение. При этом при оценке издержек на моделирование следует учитывать затраты времени и усилий всех участников, задействованных как непосредственно в построении модели, так и сборе необходимой информации, расходы и время на обучение, стоимость обработки и хранения информации. Указанные требования к модели противоречивы. Например, с одной стороны, она должна быть достаточно полной, а с другой - достаточно простой и малозатратной. То есть создание математических моделей –это во многом творчество, требующее наличие соответствующих математических и прикладных знаний, опыта и квалификации.

2.2.2 Применительно к проблеме принятия решения можно говорить о модели ЗПР, модели среды принятия решения(описательной модели проблемной ситуации), модели процесса принятия решения, модели компьютерной системы принятия решения (системы поддержки принятия решений).

При определении модели конкретной ЗПР следует оценить ее относительно классификационных признаков, выделенных нами в рамках рассмотренной ранее системы классификации ЗПР и по результатам такой оценки определить модель ЗПР в виде кортежа соответствующих характеристик. Например, общая формальная модель ЗПР для индивидуального ЛПР может быть представлена в виде кортежа

;

а для группы ЛПР в виде кортежа

< So, T, R, S, G, B, A, К, F(f), L, A* >,

где So – проблемная ситуация; T –время для принятия решения; R – имеющиеся для принятия решения ресурсы; S = (S 1 , …, S n) – множество допустимых ситуаций, определяющих предметную область и тем самым уточняющих проблемную ситуацию So; G=(G 1 ,…,G k) – множество целей, преследуемых при принятии решения; B=(B 1 ,…,B L) – множество ограничений; A=(A 1 ,…,A m) – множество альтернативных вариантов решения; f – функция предпочтения ЛПР; K – критерии выбора; F(f) – функция группового предпочтения; L – принцип согласования индивидуальных предпочтений для формирования группового предпочтения; A* – оптимальное решение.

Поясним наличие в модели критериев выбора K и функции предпочтения. Опыт показывает, что в терминах критериев выбора чаще всего не удается выразить всю гамму «пристрастий», «вкусов» и предпочтений конкретного ЛПР. С помощью множества частных критериев, как правило возникающих при рассмотрения реальных ЗПР, лишь намечаются определенные цели, которые нередко оказываются весьма противоречивыми. Эти цели одновременно, как правило, достигнуты быть не могут, и поэтому требуется определенная дополнительная информация для осуществления компромисса. Иначе говоря, если ограничиться лишь множеством возможных решений и векторным критерием, то ЗПР оказывается «недоопределенной». Эта «недоопределенность» сказывается затем в слабой логической обоснованности выбора эффективного решения на основе векторного критерия. Для того чтобы осуществить обоснованный выбор, следует помимо векторного критерия располагать какими-то дополнительными сведениями о предпочтениях ЛПР. С этой целью необходимо включить в многокритериальную задачу функцию, описывающую отношения существующих предпочтений.

Для обозначения предпочтения решения А’ перед решением A” часто используется запись А’A”.Следует отметить, что не всякие два возможных решения А’ и A” связаны соотношением А’A” либо соотношениемA”А’. Могут существовать такие пары решений, что ЛПР не в состоянии отдать предпочтение какому-то одному из них.На практике способность ЛПР определить отношение предпочтения для любой пары допустимых альтернатив встречаются крайне редко (например, из-за невозможности абсолютно полно и точно определить последствия принимаемых решений).

При определении отношения предпочтения следует обеспечить выполнение двух следующих условий:

Отношение предпочтения является строгим в том смысле, что ни для какого допустимого решения А’ невозможно выполнение условия вида А’A’ - поскольку ни одно решение не может быть лучше самого себя;

Если А’A” и А”A’’’, то А’A’’’(свойство транзитивности).

Часто (например, при принятии решений в условиях управления иерархическими распределенными средами) возникает потребность в моделировании процесса принятия решения. Процесс принятия решений схематически представляется в виде так называемого дерева решений. Построение такого дерева базируются на декомпозиции процесса принятия решения - выделении самостоятельных функциональных подпроцессови более частных задач, а также установления взаимосвязи между ними, в результате чего общий процесс принятия решений представляется в виде решения последовательности взаимосвязанных иерархических локальных ЗПР. Основными принципами декомпозиции являются относительная самостоятельность каждого из подпроцессов (т.е. наличие конкретного объекта управления); наличие соответствующего набора функций и ЗПР с четко выраженными локальными целями принятия решения, согласующимися с общими целями принятия решения для системы в целом; оптимизация состава включенных в подпроцесс элементов. Этот вопрос будет рассмотрен позднее, при рассмотрении проблемы принятия решения в рамках проблемы оперативного менеджмента качества.

2.2.3 Основными этапами общего процесса моделирования являются:

1) анализ поставленной задачи;

2)анализ объекта моделирования и его среды с точки зрения поставленной задачи;

3) построение(синтез) модели;

4) проверка построенной модели на достоверность;

5) применение модели;

6)обновление модели(по мере необходимости).

1) Перед построении модели сначала необходимо определить главное назначением модели - какие выходные данные нужно получить, используя модель, чтобы помочь ЛПР разрешить стоящую перед ним проблему.

Затем следует определить, какая информация требуется для построения модели и какие нужны сведения на выходе. Кроме того, следует оценить расходы на создание модели и реакцию людей, которые должны будут ее использовать. Модель, затраты на построение и использование которой превышает получаемые от нее выгоды, никому не нужна, а слишком сложная модель может быть не понятна пользователям и не будет применяться на практике.

2) В основу модели кладется описание объекта, формируемое (в соответствии с решаемой задачи и доступной информации) на основе выделения составляющих объект элементов, выявления связи между ними, определения существенные для рассматриваемой задачи характеристик и параметров. На этом же этапе формируются, подлежащие последующей проверке гипотезы о закономерностях, присущих изучаемому объекту, о характере влияния на объект изменения тех или иных параметров и связей между элементами, изучаются взаимосвязи, определяющие возможные последствия принимаемых решений, а также устраняется нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями

3) Сущность математического моделирования состоит в подборе математических схем, адекватно описывающих процессы, происходящие в действительности.

При построении математической модели явление каким-то образом упрощается, схематизируется; из бесчисленного множества факторов, влияющих на явление, выделяется сравнительно небольшое количество важнейших, и полученная схема описывается с помощью того или другого математического аппарата. Общих способов построения математических моделей не существует. В каждом конкретном случае модель строится, исходя из поставленной задачи, доступных исходных данных, требуемой точности решения, личных предпочтений аналитика, создающего модель.

При построении математической модели выполняются следующие виды деятельности:

–анализ всех элементов системы, влияющих на эффективность принимаемых решений и оценка степени влияния каждого из них на функционирование организации при различных вариантах решений;

– исключение из перечня элементов, не влияющих (или несущественно влияющих)на выбор вариантов решений;

– предварительная группировка некоторых взаимосвязанных элементов для упрощения модели (например, расходы по аренде, содержанию помещений и другие объединить в условно-постоянные расходы);

– определение перечня элементов после уточнения их постоянного или переменного характера влияния на систему (в составе переменных элементов устанавливаются, в свою очередь, подэлементы системы, влияющие на их величину; например, транспортные расходы зависят от объема перемещенных товаров, расстояния, стоимости горючего и др.);

– закрепление за каждым подэлементом определенного символа и составление соответствующих математических конструкций.

Математическая модель обычно строится с ориентацией на предполагаемый метод решения задачи. С другой стороны, в процессе проведения математического исследования или интерпретации решения может понадобиться уточнить или даже существенно изменить математическую модель.

Как уже отмечалось выше, математические модели, применяемые в настоящее время в задачах принятия решений, можно грубо подразделить на три класса: аналитические, статистические и основанные на нечеткой формализации.

Для первых характерно установление формульных, аналитических зависимостей между параметрами задачи, записанных в любом виде: алгебраические уравнения, обыкновенные дифференциальные уравнения, уравнения с частными производными и т. д. Обычно с помощью аналитических моделей удается с удовлетворительной точностью описать какие-то сугубо технические процессы, в основу которых положены известные физические законы.

Использование статистических моделей предполагает наличие соответствующих вероятностно-статистических данных и закономерностей.

Использование моделей, основанных на нечеткой формализации, оправдано в случае отсутствия данных, позволяющих использовать два первых типа моделей.

Построенная модель должна быть подвергнута соответствующему анализу с целью обоснования. Наиболее важный момент - доказательство существования или получения решения в рамках сформулированной модели. Если это условие не выполняется, то следует скорректировать либо постановку задачи, либо способы ее математической формализации.

4) На практике почти всегда необходима проверка модели на достоверность. Во-первых, надо определить степень соответствия модели реальному явлению, установить, все ли существенные факторы реальной ситуации учтены в модели. Во-вторых, следует понять, насколько моделирование действительно помогает решить проблему. Желательно проверить модель на ситуации, имевшей место в прошлом.

Успешный результат сравнения (оценки) исследуемого объекта с моделью свидетельствует о достаточной степени изученности объекта, о правильности принципов, положенных в основу моделирования, и о том, что созданная модель работоспособна.

Часто первые результаты моделирования не удовлетворяют предъявленным требованиям. Это требует проведения дополнительных исследовании и соответствующего изменения модели.

5) Относительно применения модели следует учитывать, что основная причина недостаточно широкого использования моделей заключается в том, что руководители, для которых они создаются, часто не вполне понимают получаемые результаты и потому боятся их применять. Причиной является недостаток у них знаний в этой области. Для борьбы с этим системным аналитикам следует уделять значительно больше времени ознакомлению руководителей с возможностями и методикой использования моделей.

6) Обновление модели производится, если руководству потребуются выходные данные вболее удобной форме или дополнительные данные. Обновление модели может также потребоваться в случае изменения целей организации и соответствующих имкритериев принятия решений, либо при получении дополнительной информации, позволяющей уточнить, усовершенствовать текущую модель. Последняя ситуация связана с проблемой недостаточности, неточности априорной информации используемой для построения модели. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но на это может не хватать времени или это может оказаться слишком дорого. Информационные ограничения являются основной причиной недостоверности предпосылок, положенных в основу построения модели. Нередко возникают ситуации, когда невозможно получить информацию по всем важным факторам и использовать ее в модели. Следует соблюдать осторожность в отношении использования предположений, которые не могут быть точно оценены и объективно проверены (например, не поддается проверке предположение о росте продаж в будущем году на определенную сумму).

2.2.4 При построении модели следует учитывать следующие рекомендации:

Обычно сначала определяется основная более грубая конструкция (тип, общая схема) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей);

Следует избегать ненужной детализации модели, так как это излишне усложняет модель. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей, учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта);

Одна из важных особенностей математических моделей -потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой задачей, необходимо предварительно проанализировать возможность использования для ее решения уже известных моделей (или отдельных их составляющих);

Необходимо стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта.

Положительными характеристиками моделирования также являются:

– применение более совершенных проверенных практикой технологий принятия решения;

– высокая степень обоснованности решений;

– сокращение сроков принятия решений;

– возможность выполнения обратной операции.

Особенность обратной операции состоит в том, что, имея модель и исходные данные, можно не только принять решение, но и сориентироваться на требуемый результат и определить, какие исходные данные для этого необходимы. Так, например, ориентируясь на получение прибыли в объеме N, можно установить и количественные значения других показателей, прямо и косвенно влияющих на достижение планируемого результата (получение новых знаний о ситуации (объекте), отсутствующих ранее; формулировку выводов, которые невозможно получить при самых содержательных логических рассуждениях).

При построении математической модели системы можно выделить несколько этапов.

1-й этап. Постановка задачи. Этапу предшествует возникновение ситуаций или проблем, осознание которых приводит к мысли их обобщения или решения для последующего достижения какого-либо эффекта. Исходя из этого, объект описывается, отмечаются вопросы, подлежащие решению, и ставится цель исследования. Здесь необходимо уяснить, что мы хотим получить в результате исследований. Предварительно нужно оценить, нельзя ли получить эти результаты другим, более дешевым или доступным путем.

2-й этап. Определение задачи. Исследователь старается определить, к какому виду относится объект, описывает параметры состояния объекта, переменные, характеристики, факторы внешней среды. Необходимо познать закономерности внутренней организации объекта, очертить границы объекта, построить его структуру. Эта работа называется идентификацией системы. Отсюда выбирается задача исследования, которая может решать вопросы: оптимизации, сравнения, оценки, прогноза, анализа чувствительности, выявления функциональных соотношений и т.п.

Концептуальная модель позволяет оценить положение системы во внешней среде, выявить необходимые ресурсы для ее функционирования, влияние факторов внешней среды и то, что мы ожидаем на выходе.

Необходимость проведения исследования возникает из реальных ситуаций, складывающихся в процессе работы системы, когда они в чем-либо начинают не удовлетворять каким-либо старым или новым требованиям. Если недостатки очевидны и известны методы их устранения, то нет необходимости в исследованиях.

Исходя из задачи исследования, можно определить назначение математической модели, которая должна быть построена для исследования. Такие модели могут решать задачи:

· выявления функциональных соотношений, заключающихся в определении количественных зависимостей между входными фактора ми модели и выходными характеристиками исследуемого объекта;



· анализа чувствительности, заключающегося в установлении факторов, которые в большей степени влияют на интересующие исследователя выходные характеристики системы;

· прогноза - оценки поведения системы при некотором предполагаемом сочетании внешних условий;

· оценки - определения, насколько хорошо исследуемый объект будет соответствовать некоторым критериям;

· сравнения, заключающегося в сопоставлении ограниченного числа альтернативных вариантов систем или же в сопоставлении нескольких предлагаемых принципов или методов действия;

· оптимизации, состоящей в точном определении такого сочетания переменных управления, при которых обеспечивается экстремальное значение целевой функции.

Выбор задачи определяет процесс создания и экспериментальной проверки модели.

Любое исследование должно начинаться с построения плана,включающего обследование системы и анализ ее функционирования. В плане должны быть предусмотрены:

· описание функций, реализуемых объектом;

· определение взаимодействий всех систем и элементов объекта;

· определение зависимости между входными и выходными переменными и влияние переменных управляющих воздействий на эти зависимости;

· определение экономических показателей функционирования системы.

Результаты обследования системы и окружающей среды представляются в виде описания процесса функционирования, которое используется для идентификации системы. Идентифицировать систему - значит выявить и изучить ее, а также:

Получить более полную характеристику системы и ее поведения;

Познать объективные закономерности ее внутренней организации;

Очертить ее границы;

Указать на вход, процесс и выход;

Определить ограничения на них;

Построить ее структурную и математическую модели;

Описать ее на каком-либо формальном абстрактном языке;

Определить цели, принуждающие связи, критерии действия системы.

После идентификации системы строится концептуальная модель,являющаяся «идеологической» основой будущей математической модели. Именно в ней отражается состав критериев оптимальности и ограничений, определяющих целевую направленность модели. Перевод на этапе формализации качественных зависимостей в количественные преобразует критерий оптимальности в целевую функцию, ограничения - в уравнения связи, концептуальную модель - в математическую.

На основе концептуальной модели можно построить факторную модель, которая устанавливает логическую связь между параметрами объекта, входными и выходными переменными, факторами внешней среды и параметрами управления, а также учитывать обратные связи в системе.

3-й этап. Составление математической модели. Вид математической модели в значительной степени зависит от цели исследования. Математическая модель может быть в виде математического выражения, представляющего собой алгебраическое уравнение, или неравенство, не имеющее разветвления вычислительного процесса при определении любых переменных состояния модели, целевой функции и уравнений связи.

Для построения такой модели формулируются следующие понятия:

· критерий оптимальности - показатель, выбираемый исследователем, имеющий, как правило, экологический смысл, который служит для формализации конкретной цели управления объектом исследования и выражаемый при помощи целевой функции;

· целевая функция - характеристика объекта, установленная из условия дальнейшего поиска критерия оптимальности, математически связывающая между собой те или иные факторы объекта исследования. Целевая функция и критерий оптимальности - разные понятия. Они могут быть описаны функциями одного и того же вида или же разными функциями;

· ограничения - пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внутренние и внешние свойства объекта. Ограничения определяют область исследования, протекания процессов, пределы изменения параметров и факторов объекта.

Следующим этапом построения системы является формирование математической модели, включающее в себя несколько видов работ: математическую формализацию, численное представление, анализ модели и выбор метода ее решения.

Математическая формализация осуществляется по концептуальной модели. При формализации рассматривают три основные ситуации:

1) известны уравнения, описывающие поведение объекта. В этом случае решением прямой задачи можно найти реакцию объекта на заданный входной сигнал;

2) обратная задача, когда по заданному математическому описанию и известной реакции необходимо найти входной сигнал, вызывающий этот отклик;

3)математическое описание объекта неизвестно, но имеются или могут быть заданы совокупности входных и соответствующих им выходных сигналов. В этом случае имеем дело с задачей идентификации объекта.

При моделировании производственно-экологических объектов в третьей ситуации при решении задачи идентификации используется подход, предложенный Н. Винером, и известный как метод «черного ящика». В качестве «черного ящика» рассматривается объект в целом, вследствие его сложности. Так как внутреннее устройство объекта неизвестно, мы можем изучить «черный ящик», найдя входы и выходы. Сопоставляя входы и выходы, можно написать соотношение

Y = АХ,

где X - вектор входных параметров; Y - вектор выходных параметров; А - оператор объекта, преобразующий Х в Y. Для описания объекта в виде математической зависимости в задачах идентификации используются методы регрессивного анализа. При этом возможно описание объекта множеством математических моделей, так как нельзя вынести обоснованного суждения о его внутреннем устройстве.

Основой выбора метода математического описания является знание физической природы функционирования описываемого объекта достаточно широкого круга эколого-математических методов, возможностей и особенностей ЭВМ, на которой планируется проведение моделирования. Для многих рассматриваемых явлений имеется достаточно много известных математических описаний и типовых математических моделей. При развитой системе математического обеспечения ЭВМ целый ряд процедур моделирования можно осуществит с помощью стандартных программ.

Оригинальные математические модели можно написать на основе проведенных исследований систем и апробированных в реалы ной обстановке. Для проведения новых исследований такие модели корректируются под новые условия.

Математические модели элементарных процессов, физической природа которых известна, записываются в виде тех формул и зависимостей, которые установлены для этих процессов. Как правило, статические задачи выражаются в виде алгебраических выражений, динамические - в виде дифференциальных или конечно-разностных уравнений.

Численное представление модели производится для подготовки ее к реализации на ЭВМ. Задание числовых значений трудностей не представляет. Осложнения встречаются при компактном представлении обширной статистической информации и результатов экспериментов.

Основными методами преобразования табличных значений к аналитическому виду являются: интерполяция, аппроксимация и экстраполяция.

Интерполяция - приближенное или точное нахождение какой-либо величины по известным отдельным значениям этой же или других величин, связанных с ней.

Аппроксимация - замена одних математических объектов другими, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов.

Экстраполяция - продолжение функции за пределы ее области определения, при котором продолженная функция принадлежит заданному классу. Экстраполяция функции обычно производится с помощью формул, в которых использована информация о поведении функций в некотором конечном наборе точек, называемых узлами экстраполяции, принадлежащими к области определения.

Следующим этапом построения является анализ полученной модели и выбор метода ее решения. Основой для вычисления значений выходных характеристик модели служит составленный на ее базе алгоритм решения задачи на ЭВМ. Разработка и программирование такого алгоритма, как правило, не встречают принципиальных трудностей.

Более сложной является организация вычислительного процесса для определения выходных характеристик, лежащих в допустимых областях, особенно для многофакторных моделей. Еще сложнее - поиск решений по оптимизационным моделям. Самая совершенная и адекватная описываемому объекту математическая модель без нахождения оптимального значения бесполезна, она не может быть использована.

Основную роль при разработке алгоритма поиска оптимальны решений играют характер факторов математической модели, чисуи критериев оптимальности, вид целевой функции и уравнений связи Вид целевой функции и ограничений определяет выбор одного и трех основных методов решения эколого-математических моделей:

· аналитического исследования;

· исследования при помощи численных методов;

· исследования алгоритмических моделей с помощью методов экспериментальной оптимизации на ЭВМ.

Аналитические методы отличаются тем, что помимо точного значения искомых переменных они могут давать оптимальное решение в виде готовой формулы, куда входят характеристики внешней среды и начальные условия, которые исследователь может изменять в широких пределах, не меняя самой формулы.

Численные методы дают возможность получить решение путем многократного вычисления по определенному алгоритму, реализующему тот или иной численный метод. В качестве исходных данных для вычисления используются числовые значения параметре объекта, внешней среды и начальных условий. Численные методы являются итеративными процедурами: для проведения следующего шага расчетов (при новом значении управляемых переменных) пользуются результаты предыдущих расчетов, что позволяет получать в процессе вычислений улучшенные результаты и тем самым находить оптимальное решение.

Свойства конкретной алгоритмической модели, на которой базируется алгоритм поиска оптимального решения, например ее линейность или выпуклость, могут быть определены только в процессе экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы экспериментальной оптимизации на ЭВМ. При использовании этих метод производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все действия по разработке алгоритма и программы оптимизации выполняет разработчик модели.

Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.

Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения модели, ее дальнейшего использования, а также все ограничения и допущения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, избежать ошибок при интерпретации ее результатов.

· 4-й этап . Вычисления. При решении задачи необходимо тщательно разобраться с размерностью всех величин, входящих в математическую модель, и определить границы (пределы), в которых будет лежать искомая целевая функция, а также требуемую точность вычислений. Если возможно, то вычисления проводятся при неизменных условиях по несколько раз, чтобы убедиться, что целевая функция не изменяется.

· 5-й этап . Выдача результатов. Результаты исследования объекта могут выдаваться в устной или письменной форме. Они должны включать в себя краткое описание объекта исследования, цели исследования, математическую модель, допущения, принятые при выборе математической модели, основные результаты вычислений, обобщения и выводы.

Понятие математической модели

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе – настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель – это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где - расстояние в метрах, - время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

– такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому, где - мощность излучения звезды, - постоянная, - площадь поверхности звезды, а - температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где - высота в метрах, - время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где – это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где - время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула – это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ – задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию – то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 499 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Если цель моделирования ясна, то возникает следующая задача – задача построения математической модели. На этом этапе исходные предположения переводятся на четкий однозначный язык количественных отношений и устраняются нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями.

Построение математической модели выполняется в следующей последовательности :

1) выбор вида моделей и подмоделей;

2) проектирование структуры и состава моделей (подмоделей);

3) разработка отдельных подмоделей;

4) сборка модели в целом;

5) идентификация параметров моделей и подготовка исходных данных;

6) проверка достоверности модели системы.

На первом и втором подэтапах выполняется формализация описания системы: устанавливаются ее структура и существенные зависимости между элементами. Основная задача этих двух подэтапов – получение математического описания процессов в моделируемой системе и её структурной схемы, которая должна быть идентична структурной схеме промышленной системы.

При большой сложности системы первоначально производится разбиение процесса функционирования системы на отдельные достаточно автономные подпроцессы. Таким образом, модель функционально подразделяется на подмодели, каждая из которых в свою очередь может быть разбита на еще более мелкие элементы.

Для правильно построенной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства.

Разработка отдельных подмоделей состоит в составлении их математического описания: в установлении связей между параметрами процесса и выявлении их граничных и начальных условий, а также в формализации процесса в виде системы математических соотношений, характеризующих изучаемый объект (технологический процесс). При составлении математического описания используется либо теоретический, либо статистический подход (см. п.2.2.4).

При выполнении этого этапа особенно важно выбрать математическую модель минимально необходимой сложности. Если модель сложной системы образуется простым объединением полных моделей подсистем нижних уровней, то может возникнуть диспропорция между требуемой точностью и фактической сложностью модели. Эта диспропорция может быть устранена загрублением моделей низшего уровня (после детального автономного исследования их). Возможными вариантами такого загрубления являются:

Сведение детальных описаний многокомпонентного процесса к главной составляющей с поправочными коэффициентами;

Укрупнение состояний и фаз процессов;

Аппроксимация выявленных зависимостей;

Усреднение характеристик процессов по их аргументам;

Замораживание медленно меняющихся параметров;

Снижение требований к точности итераций;

Пренебрежение взаимной зависимостью переменных;

Для выведенных математических соотношений на следующем подэтапе выполняется идентификация их параметров. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Подготовка исходных данных состоит в сборе и обработке результатов наблюдений за изучаемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений. Эти исходные данные, полученные в результате проведения исследования на реальной системе, будут использоваться в качестве параметров модели при реализации ее на ЭВМ.

Проверка достоверности модели системы является первой из проверок, выполняемых на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью будут получены результаты, совпадающие с теми, которые могли бы быть получены при проведении натурного эксперимента с реальной системой. Поэтому определение достоверности модели устанавливает степень доверия к результатам, полученным методом моделирования. Проверка модели на рассматриваемом подэтапе должна дать ответ на вопрос, насколько логическая схема модели системы и используемые математические соотношения отражают замысел модели, сформированный на первом этапе. При этом проверяются возможность решения поставленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений.

Только после того, как разработчик убеждается путем соответствующей проверки в правильности всех этих положений, можно считать, что разработанная логическая схема модели системы пригодна для дальнейшей работы по реализации модели на ЭВМ.