Средняя квадратическая стандартная ошибка выборки пояснение для. Средняя ошибка выборки

    Формула доверительной вероятности при оценке генераль ной доли признака. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной доли признака.

  1. Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.

Построение доверительного интервала для гeнеральной средней и гeнеральной доли по большим выборкам . Для построения доверительных интервалов для параметров генеральных совокупностей м.б. реализованы 2 подхода, основанных на знании точного (при данном объеме выборки n) или асимптотического (при n → ∞) распределения выборочных характеристик (или некоторых функций от них). Первый подход реализован далее при построении интервальных оценок параметров для малых выборок. В данном параграфе рассматривается второй подход, применимый для больших выборок (порядка сотен наблюдений).

Теорема . Вер-ть того, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превзойдет число Δ > 0 (по абсолютной величине), равна:

Где

,

Где
.

Ф(t) - функция (интеграл вероятностей) Лапласа.

Формулы получили название формул доверительной вер-ти для средней и доли .

Среднее квадратическое отклонение выборочной средней и выборочной долисобственно-случайной выборки называетсясредней квадратической (стандартной) ошибкой выборки (для бесповторной выборки обозначаем соответственно и).

Следствие 1 . При заданной доверительной вер-ти γ предельная ошибка выборки равна t-кратной величине средней квадратической ошибки, где Ф(t) = γ, т.е.

,

.

Следствие 2 . Интервальные оценки (доверительные интервалы) для генеральной средней и генеральной доли могут быть найдены по формулам:

,

.

  1. Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.

Для проведения выборочного наблюдения весьма важно правильно установить объем выборки n, к-ый в значительной степени определяет необходимые при этом временные, трудовые и стоимостные затраты для определения n необходимо задать надежность (доверительную вер-ть) оценки γ и точность (предельную ошибку выборки) Δ.

Если найден объем повторной выборки n, то объем соответствующей бесповторной выборки n" можно определить по формуле:

.

Т.к.
, то при одних и тех же точности и надежности оценок объем бесповторной выборки n" всегда меньше объема повторной выборки n.

  1. Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.

Определение . Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Различают простую и сложную статистические гипотезы . Простая гипотеза , в отличие от сложной, полностью определяет теоретическую функцию распределения СВ.

Проверяемую гипотезу обычно называют нулевой (или основной ) и обозначают Н 0 . Наряду с нулевой гипотезой рассматривают альтернативную , или конкурирующую , гипотезу H 1 , являющуюся логическим отрицанием Н 0 . Нулевая и альтернативная гипотезы представляют собой 2 возможности выбора, осуществляемого в задачах проверки статистических гипотез.

Суть проверки статистической гипотезы заключается в том, что используется специально составленная выборочная характеристика (статистика)
, полученная по выборке
, точное или приближенное распределение которой известно.

Затем по этому выборочному распределению определяется критическое значение - такое, что если гипотеза Н 0 верна, то вер-ть
мала; так что в соответствии с принципом практической уверенности в условиях данного исследования событие
можно (с некоторым риском) считать практически невозможным. Поэтому, если в данном конкретном случае обнаруживается отклонение
, то гипотеза Н 0 отвергается, в то время как появление значения
, считается совместимым с гипотезой Н 0 , которая тогда принимается (точнее, не отвергается). Правило, по которому гипотеза Н 0 отвергается или принимается, называется статистическим критерием или статистическим тестом .

Принцип практической уверенности:

Если вер-ть события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической д-ти вести себя так, как будто событие А вообще невозможно.

Т.о., множество возможных значений статистики - критерия (критической статистики) разбивается на 2 непересекающихся подмножества:критическую область (область отклонения гипотезы) W и область допустимых значений (область принятия гипотезы) . Если фактически наблюдаемое значение статистики критерияпопадает в критическую область W, то гипотезу Н 0 отвергают. При этом возможны четыре случая:

Определение . Вероятность α допустить ошибку l-го рода, т.е. отвергнуть гипотезу Н 0 , когда она верна, называется уровнем значимости , или размером критерия .

Вероятность допустить ошибку 2-го рода, т.е. принять гипотезу Н 0 , когда она неверна, обычно обозначают β.

Определение . Вероятность (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н 0 , когда она неверна, называется мощностью (или функцией мощности ) критерия .

Следует предпочесть ту критическую область, при которой мощность критерия будет наибольшей.

Между показателями выборочной совокупности и искомыми показателями (параметрами) генеральной совокупности, как правило, существуют некоторые разногласия, которые называют ошибками выборки. Общая ошибка выборочной характеристики состоит из ошибок двух родов: ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации свойственны любому статистическому наблюдению и появление их может быть вызвано невнимательностью регистратора, неточностью подсчетов, несовершенством измерительных приборов и т.д.

Ошибки репрезентативности присущи только выборочному наблюдению и обусловлены самой его природой поскольку как бы тщательно и правильно не проводился отбор единиц средние и относительные показатели выборочной совокупности всегда будут в какой-то степени отличаться от соответствующих показателей генеральной совокупности.

Различают систематические и случайные ошибки репрезентативности. Систематические ошибки репрезентативности - это неточности, которые возникают вследствие несоблюдения условий отбора единиц в выборочную совокупность, не предоставление равной возможности каждой единице генеральной совокупности попасть в выборку. Случайные ошибки репрезентативности - это погрешности, которые возникают вследствие того, что выборочная совокупность точно не воспроизводит характеристики генеральной совокупности (среднее, долю, дисперсию и др.) в силу несплошного характера обследования.

При соблюдении принципа случайного отбора размер ошибки выборки прежде всего зависит от численности выборки. Чем больше численность выборки при прочих равных условиях, тем меньше величина ошибки выборки. При большой численности выборки отчетливее проявляется действие закона больших чисел, согласно которому: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии выборочные характеристики (средняя доля) будут сколь угодно мало отличаться от соответствующих генеральных характеристик.

Размеры ошибки выборки также непосредственно связаны со степенью варьирования изучаемого признака, а степень варьирования, как отмечалось выше, в статистике характеризуется размером дисперсии (рассеяния): чем меньше дисперсия, тем меньше ошибка выборки, тем более надежные статистические выводы. Поэтому на практике дисперсию отождествляют с ошибкой выборки.

Поскольку параметр генеральной совокупности есть искомая величина и он неизвестен, нужно ориентироваться не на конкретную ошибку, а среднюю из всех возможных выборок.

Если из генеральной совокупности отобрать несколько выборочных совокупностей, то каждая из полученных выборок даст разное значение конкретной ошибки.

Средняя квадратическая величина исчисленная из всех возможных значений конкретных ошибок (;) составит:

где *и - выборочные средние; х - генеральная средняя;)] - численность выборок по величине є1 = ~си - х.

Среднее квадратическое отклонение выборочных средних от генеральной средней называют средней ошибкой выборки.

Зависимость величины ошибки выборки от ее численности и от степени варьирования признака находит выражение в формуле средней ошибки выборки /и.

Квадрат средней ошибки (дисперсия выборочных средних) прямо пропорционален дисперсии Сто и обратно пропорционален численности выборки п:

где - дисперсия признака в генеральной совокупности.

Отсюда среднюю ошибку в общем виде определяют по формуле:

Итак, определив по выборке среднее квадратичное отклонение, можно установить значение средней ошибки выборки, величина которой, как следует из формулы, тем больше, чем больше вариация случайной величины и тем меньше, чем больше численность выборки.

Поэтому по мере роста объема выборки размер средней ошибки уменьшается. Если, например, нужно уменьшить среднюю ошибку выборки в два раза, то численность выборки следует увеличить в четыре раза, если надо уменьшить ошибку выборки в три раза, то объем выборки следует увеличить в девять раз и т. д.

В практических расчетах применяются две формулы средней ошибки выборки для средней и для доли.

При выборочном изучении средних показателей формула средней ошибки такая:

При изучении относительных показателей (частных признаков) формула средней ошибки имеет вид:

где г - доля признака в генеральной совокупности.

Применение приведенных формул средней ошибки предполагает, что известны генеральная дисперсия и генеральная доля. Однако в действительности эти показатели неизвестны и вычислить их невозможно из-за отсутствия данных относительно генеральной совокупности. Поэтому возникает потребность замены генеральной дисперсии и генеральной доли другими, близкими к ним, величинами.

В математической статистике доказано, что такими величинами могут быть выборочная дисперсия(ст) и выборочная доля (со).

С учетом сказанного формулы средней ошибки могут быть записаны так:

Эти формулы дают возможность определить среднюю ошибку при повторной выборке. Применения простой случайной повторной выборки в практике является ограниченным. Прежде всего практически нецелесообразно, а иногда невозможно повторное обследование тех же единиц. Применение бесповторного отбора вместо повторного диктуется также требованием повышения степени точности и надежности выборки. Поэтому на практике чаще используют способ бесповторного случайного отбора. По этому способу отбора единица совокупности, отобранная в выборку, в дальнейшем отборе не участвует. Единицы отбирают из генеральной совокупности, уменьшенной на количество ранее отобранных единиц. Поэтому в связи с изменением численности генеральной совокупности после каждого отбора и вероятности отбора для единиц, что остались, в формулы средней ошибки выборки вводится поправочный множитель

где N - численность генеральной совокупности; п - численность выборки. При достаточно большом значении N можно единицей в знаменателе пренебречь. Тогда

Следовательно, формулы средней ошибки выборки для бесповторного отбора для средней и для доли соответственно имеют вид:

Поскольку п всегда меньше М, то дополнительный множитель всегда меньше единицы. Следовательно, абсолютное значение ошибки выборки при бесповторном отборе всегда будет меньше, чем при повторном.

Если численность выборки достаточно велика, то величина 1 ^ близка к единице, а потому ею можно пренебречь. Тогда среднюю ошибку случайного бесповторного отбора определяют по формуле собственно-случайной повторной выборки.

Рассчитаем для нашего примера среднюю ошибку для урожайности и доли участков с урожайностью 25 ц/га и более.

Средняя ошибка выборки

а) средней урожайности ячменя

Средняя урожайность ячменя в генеральной совокупности х -Г^ = 25,1 ± 0,12 ц/га, то есть находится в пределах от 24,98 до 25,22 ц/га.

Доля участков с урожайностью 25 ц/га и более в генеральной совокупности р

Т-^Г = 0,80 ± 0,07, т.е. находится в пределах от 73 до 87%.

Средняя ошибка выборки показывает возможные отклонения характеристик выборочной совокупности от характеристик генеральной совокупности. Вместе с тем при проведении выборочного наблюдения перед исследователями часто стоит задача расчета не только средней ошибки, но и определение предельной возможной ошибки выборки. Зная среднюю ошибку, можно определить границы, за которые не выйдет величина ошибки выборки. Однако утверждать, что эти отклонения не превысят заданной величины, можно не с абсолютной достоверностью, а лишь с определенной степенью вероятности. Уровень вероятности, что принимается при определении возможных пределов, в которых содержатся значения параметров генеральной совокупности, называется доверительным уровнем вероятности.

Доверительная вероятность - это довольно высокая и, такая, что практически считается осуществленной в каждом конкретном случае, вероятность, что гарантирует получение надежных статистических выводов. Обозначим ее через Г а вероятность превысить этот уровень - а. Итак, а =1 - Р Вероятность а называют уровнем значимости (существенности), который характеризует относительное число ошибочных выводов в общем числе выводов и определяется как разница между единицей и доверительной вероятностью, что принимается.

Уровень доверительной вероятности устанавливает исследователь исходя из степени ответственности и характера задач, которые решаются. В статистических исследованиях в экономике чаще всего принимается уровень доверительной вероятности Г = 0,95; Р = 0,99 (соответственно уровень значимости а = 0,05; а = 0,01) реже Г = 0,999. Например, доверительная вероятность Г = 0,99 означает, что ошибка оценки в 99 случаях из 100 не превысит установленной величины и только в одном случае из 100 может достичь вычисленного значения, или превысить его.

Ошибка выборки, исчисленная с заданной степенью надежной вероятности, называется предельной ошибкой выборки Ер.

Рассмотрим, как устанавливается величина возможной предельной ошибки выборки. Величина ер связана с нормированным отклонением и, которое определяется как отношение предельной ошибки выборки ер к средней ошибки и:

Для удобства расчетов отклонения случайной величины от ее среднего значения обычно выражают в единицах среднего квадратического отклонения. Выражение

называют нормированным отклонением. в В статистической литературе и называют коэффициентом доверия, или коэффициентом кратности средней ошибки выборки.

Так, нормированное отклонение выборочной средней можно определить по формуле:

и _є_р_

Из выражения 1 можно найти возможную предельную ошибку выборки

ер = и/л.

Подставив вместо г. в ее значение, приведем формулы предельных ошибок выборки для средней и для доли при бесповторном случайном отборе:

Следовательно, предельная ошибка выборки зависит от величины средней ошибки и нормированного отклонения и равна ± кратному числу средних ошибок выборки.

Средняя и предельная ошибки выборки - именованные величины и выражаются в тех же единицах, что и средняя арифметическая и среднее квадратическое отклонения.

Нормированное отклонение функционально связано с вероятностью. Для нахождения значений и составлены специальные таблицы (доб.2), по которым можно найти значение и при заданном уровне доверительной вероятности и значения вероятности при известном и.

Приведем значения и и соответствующие им вероятности для выборок с численностью п > 30, что чаще всего используется в практических расчетах:

Следовательно, при и = 1 вероятность отклонения выборочных характеристик от генеральных на величину однократной средней ошибки выборки равна 0,6827. Это означает, что в среднем с каждой 1000 выборок 683 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более, чем на величину однократной средней ошибки. При и = 2 вероятность равна 0,9545. в Это означает, что с каждого 1000 выборок 954 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более чем на двукратную среднюю ошибку выборки и т.д.

Однако в связи с тем, что, как правило, проводится только одна выборка, то мы говорим, что, например, с вероятностью 0,9545 можно гарантировать, что размеры предельной ошибки не превысят двукратную среднюю ошибку выборки.

Математически доказано, что отношение ошибки выборки к средней ошибки, как правило, не превышает ± 3д при достаточно большой численности п, несмотря на то, что ошибка выборки может приобретать любые значения. Другими словами можно сказать, что при достаточно высокой вероятности суждения (Р = 0,9973) предельная ошибка выборки, как правило, не превышает трех средних ошибок выборки. Поэтому величину Ер = 3д можно принять за предел возможной ошибки выборки.

Определим для нашего примера предельную ошибку выборки для средней урожайности и доли участков с урожайностью 25 ц/га и более. Доверительный уровень вероятности примем равным Р = 0,9545. в По таблице (прил .2) найдем значения и = 2. Средние ошибки выборки для урожайности и доли участков с урожайностью 25 ц/га и больше были найдены ранее и соответственно составляли: Ц~ = ±0,12 ц/га; МР = ± 0,07.

Предельная ошибка средней урожайности ячменя:

Итак, разница между выборочной средней урожайностью и генеральной средней будет не больше 0,24 ц/га. Пределы средней урожайности в генеральной совокупности: х = х ±есть~ = 25,1 + 0,24, то есть от 24,86 до 25,34 ц/га.

Предельная ошибка доли участков с урожайностью 25 ц/га и более:

Следовательно, предельная ошибка в определении доли участков с урожайностью 25 ц/га и больше не превысит 14%, то есть удельный вес участков с указанной урожайностью в генеральной совокупности находится в пределах: г = а> ± ер = 0,80 ± 0,14, то есть от 66 до 94%.

Понятие и расчет ошибки выборки.

Задачей выборочного наблюдения является дача верных представлений о сводных показателях всей совокупности на основе некоторой их части, подвергнутой наблюдению. Возможное отклонение выборочной доли и выборочной средней от доли и средней в генеральной совокупности называется ошибкойвыборки или ошибкойрепрезентативности. Чем больше величина этой ошибки, тем больше показатели выборочного наблюдения отличаются от показателей генеральной совокупности.

Различаются:

Ошибки выборки;

Ошибки регистрации.

Ошибки регистрации возникают при неправильном установлении факта в процессе наблюдения. Они свойственны как сплошному наблюдению, так и выборочному, но в выборочном их меньше.

По природе ошибки бывают:

Тенденциозные – преднамеренные, т.е. были отобраны либо лучшие, либо худшие единицы совокупности. При этом наблюдения теряют смысл;

Случайные – основной организационный принцип выборочного наблюдения состоит в том, чтобы не допустить преднамеренного отбора, т.е. обеспечить строгое соблюдение принципа случайного отбора.

Общим правилом случайного отбора является: у отдельных единиц генеральной совокупности должны быть совершенно одинаковые условия и возможности упасть в число единиц, входящих в выборку. Это характеризует независимость результата выборки от воли наблюдателя. Воля же наблюдателя порождает тенденциозные ошибки. Ошибка выборки при случайном отборе носит случайный характер. Она характеризует размеры отклонений генеральных характеристик от выборочных.

В связи с тем, что признаки в изучаемой совокупности варьируют, то состав единиц, попавших в выборку, может не совпадать с составом единиц всей совокупности. Это означает, что Р и не совпадают с W и . Возможное расхождение между этими характеристиками определяется ошибкой выборки, которая определяется по формуле:

где - генеральная дисперсия.

где - выборочная дисперсия.

Отсюда видно, где генеральная дисперсия отличается от выборочной дисперсии в раз.

Существует повторный и бесповторный отбор. Сущность повторного отбора состоит в том, что каждая, попавшая в выборку единица, после наблюдения возвращается в генеральную совокупность и может быть исследована повторно. При повторном отборе средняя ошибка выборки рассчитывается:

Для показателя доли альтернативного признака дисперсия выборки определяется по формуле:

На практике повторный отбор применяется редко. При бесповторном отборе, численность генеральной совокупности N в ходе выборки сокращается, формула средней ошибки выборки для количественного признака имеет вид:



, тогда

Одно из возможных значений, в которых может находиться доля изучаемого признака равно:

где - ошибка выборки альтернативного признака.

Пример .

При выборочном обследовании 10 % изделий партии готовой продукции по методу без повторного отбора получены следующие данные о содержании влаг в образцах.

Определить средний % влажности, дисперсию, среднее квадратическое отклонение, с вероятностью 0,954 возможные пределы, в которых ожидается ср. % влажности всей готовой продукции, с вероятность 0,987 возможные пределы удельного веса стандартной продукции при условии, что к нестандартной партии относятся изделия с влажностью до 13 и выше 19 %.

Лишь с определенной вероятностью можно утверждать, что генеральная доля от выборочной доли и генеральная средняя от выборочной средней, отклоняются в t раз.

В статистике эти отклонения называются предельнымиошибкамивыборки и обозначаются .

Вероятность суждений можно повысить или понизить в t раз. При вероятности 0,683 , при 0,954 , при 0,987 , тогда показатели генеральной совокупности по показателям выборки определяются.

Ошибки систематические и случайные

Модульная единица 2 Ошибки выборки

Поскольку выборка охватывает, как правило, весьма незначительную часть генеральной совокупности, то следует предполагать, что будут иметь место различия между оценкой и характеристикой генеральной совокупности, которую эта оценка отображает. Эти различия получили название ошибок отображения или ошибок репрезентативности. Ошибки репрезентативности подразделяются на два типа: систематические и случайные.

Систематические ошибки - это постоянное завышение или занижение значения оценки по сравнению с характеристикой генеральной совокупности. Причиной появления систематической ошибки является несоблюдение принципа равновероятности попадания каждой единицы генеральной совокупности в выборку, то есть выборка формируется из преимущественно «худших» (или « лучших») представителей генеральной совокупности. Соблюдение принципа равновозможности попадания каждой единицы в выборку позволяет полностью исключить этот тип ошибок.

Случайные ошибки – это меняющиеся от выборки к выборке по знаку и величине различия между оценкой и оцениваемой характеристикой генеральной совокупности. Причина возникновения случайных ошибок- игра случая при формировании выборки, составляющей лишь часть генеральной совокупности. Этот тип ошибок органически присущ выборочному методу. Исключить их полностью нельзя, задача состоит в том, чтобы предсказать их возможную величину и свести их к минимуму. Порядок связанных в связи с этим действий вытекает из рассмотрения трех видов случайных ошибок: конкретной, средней и предельной.

2.2.1 Конкретная ошибка – это ошибка одной проведенной выборки. Если средняя по этой выборке () является оценкой для генеральной средней (0) и, если предположить, что эта генеральная средняя нам известна, то разница = -0 и будет конкретной ошибкой этой выборки. Если из этой генеральной совокупности выборку повторим многократно, то каждый раз получим новую величину конкретной ошибки: …, и так далее. Относительно этих конкретных ошибок можно сказать следующее: некоторые из них будут совпадать между собой по величине и знаку, то есть имеет место распределение ошибок, часть из них будет равна 0, наблюдается совпадение оценки и параметра генеральной совокупности;

2.2.2 Средняя ошибка – это средняя квадратическая из всех возможных по воле случая конкретных ошибок оценки: , где - величина меняющихся конкретных ошибок; частота (вероятность) встречаемости той или иной конкретной ошибки. Средняя ошибка выборки показывает насколько в среднем можно ошибиться, если на основе оценки делается суждение о параметре генеральной совокупности. Приведенная формула раскрывает содержание средней ошибки, но она не может быть использована для практических расчетов, хотя бы потому, что предполагает знание параметра генеральной совокупности, что само по себе исключает необходимость выборки.



Практические расчеты средней ошибки оценки основываются на той предпосылке, что она (средняя ошибка) по сути является средним квадратическим отклонением всех возможных значений оценки. Эта предпосылка позволяет получить алгоритмы расчета средней ошибки, опирающиеся на данные одной единственной выборки. В частности средняя ошибка выборочной средней может быть установлена на основе следующих рассуждений. Имеется выборка (,… ) состоящая из единиц. По выборке в качестве оценки генеральной средней определена выборочная средняя . Каждое значение(,… ) , стоящее под знаком суммы, следует рассматривать как независимую случайную величину, поскольку при бесконечном повторении выборки первая, вторая и т.д. единицы могут принимать любые значения из присутствующих в генеральной совокупности. Следовательно Поскольку, как известно, дисперсия суммы независимых случайных величин равна сумме дисперсий, то . Отсюда следует, что средняя ошибка для выборочной средней будет равная и находится она в обратной зависимости от численности выборки (через корень квадратный из нее) и в прямой от среднего квадратического отклонения признака в генеральной совокупности. Это логично, поскольку выборочная средняя является состоятельной оценкой для генеральной средней и по мере увеличения численности выборки приближается по своему значению к оцениваемому параметру генеральной совокупности. Прямая зависимость средней ошибки от колеблемости признака обусловлена тем, что чем больше изменчивость признака в генеральной совокупности, тем сложнее на основе выборки построить адекватную модель генеральной совокупности. На практике среднее квадратическое отклонение признака по генеральной совокупности заменяется его оценкой по выборке, и тогда формула для расчета средней ошибки выборочной средней приобретает вид:, при этом учитывая смещенность выборочной дисперсии , выборочное среднее квадратическое отклонение рассчитывается по формуле = . Так как символом n обозначена численность выборки. ,то в знаменателе при расчете среднего квадратического отклонения должна использоваться не численность выборки (n), а так называемое число степеней свободы (n-1). Под числом степеней свободы понимается число единиц в совокупности, которые могут свободно варьировать (изменяться), если по совокупности определена какая-либо характеристика. В нашем случае, поскольку по выборке определена ее средняя, свободно варьировать могут единицы.

В таблице 2.2 приведены формулы для расчета средних ошибок различных выборочных оценок. Как видно из этой таблицы, величина средней ошибки по всем оценкам находится в обратной связи с численностью выборки и в прямой с колеблемостью. Это можно сказать и относительно средней ошибки выборочной доли (частости). Под корнем стоит дисперсия альтернативного признака, установленная по выборке ()

Приведенные в таблице 2.2 формулы относятся к так называемому случайному, повторному отбору единиц в выборку. При других способах отбора, о которых речь пойдет ниже, формулы будут несколько видоизменяться.

Таблица 2.2

Формулы для расчета средних ошибок выборочных оценок

2.2.3 Предельная ошибка выборки Знание оценки и ее средней ошибки в ряде случаев совершенно недостаточно. Например, при использовании гормонов при кормлении животных знать только средний размер неразложившихся их вредных остатков и среднюю ошибку, значит подвергать потребителей продукции серьезной опасности. Здесь настоятельно напрашивается необходимость определения максимальной (предельной ошибки ). При использовании выборочного метода предельная ошибка устанавливается не в виде конкретной величины, а виде равных границ

(интервалов) в ту и другую сторону от значения оценки.

Определение границ предельной ошибки основывается на особенностях распределения конкретных ошибок. Для так называемых больших выборок, численность которых более 30 единиц () , конкретные ошибки распределяются в соответствии с нормальным законом распределения; при малых выборках () конкретные ошибки распределяются в соответствии с законом распределения Госсета

(Стьюдента). Применительно к конкретным ошибкам выборочной средней функция нормального распределения имеет вид: , где - плотность вероятности появления тех или иных значений , при условии, что , где выборочные средние; - генеральная средняя, - средняя ошибка для выборочной средней. Поскольку средняя ошибка () является величиной постоянной, то в соответствии с нормальным законом распределяются конкретные ошибки , выраженные в долях средней ошибки, или так называемых нормированных отклонениях.

Взяв интеграл функции нормального распределения, можно установить вероятность того, что ошибка будет заключена в некотором интервале изменения t и вероятность того, что ошибка выйдет за пределы этого интервала (обратное событие). Например, вероятность того, что ошибка не превысит половину средней ошибки (в ту и другую сторону от генеральной средней) составляет 0,3829, что ошибка будет заключена в пределах одной средней ошибки - 0,6827, 2-х средних ошибок -0,9545 и так далее.

Взаимосвязь между уровнем вероятности и интервалом изменения t (а в конечном счете интервалом изменения ошибки) позволяет подойти к определению интервала (или границ) предельной ошибки, увязав его величину с вероятностью осуществления.. Вероятность осуществления -это вероятность того, что ошибка будет находится в некотором интервале. Вероятность осуществления будет «доверительной» в том случае, если противоположное событие (ошибка будет находится вне интервала) имеет такую вероятность появления, которой можно пренебречь. Поэтому доверительный уровень вероятности устанавливают, как правило, не ниже 0,90 (вероятность противоположного события равна 0,10). Чем больше негативных последствий имеет появление ошибок вне установленного интервала, тем выше должен быть доверительный уровень вероятности (0,95; 0,99 ; 0,999 и так далее).

Выбрав доверительный уровень вероятности по таблице интеграла вероятности нормального распределения, следует найти соответствующее значение t, а затем используя выражение =определить интервал предельной ошибки . Смысл полученной величины в следующем – с принятым доверительным уровнем вероятности предельная ошибка выборочной средней не превысит величину .

Для установления границ предельной ошибки на основе больших выборок для других оценок (дисперсии, среднего квадратического отклонения, доли и так далее) используется выше рассмотренный подход, с учетом того, что для определения средней ошибки для каждой оценки используется свой алгоритм.

Что касается малых выборок () то, как уже говорилось, распределение ошибок оценок соответствует в этом случае распределению t - Стьюдента. Особенность этого распределения состоит в том, что в качестве параметра в нем, наряду с ошибкой, присутствует численность выборки,вернее не численность выборки, а число степеней свободы При увеличении численности выборки распределение t-Стьюдента приближается к нормальному, а при эти распределения практически совпадают. Сопоставляя значения величины t-Стьюдента и t - нормального распределения при одной и той же доверительной вероятности можно сказать, что величина t-Стьюдента всегда больше t - нормального распределения, причем, различия возрастают с уменьшением численности выборки и с повышением доверительного уровня вероятности. Следовательно, при использовании малых выборок имеют место по сравнению с выборками большими, более широкие границы предельной ошибки, причем, эти границы расширяются с уменьшением численности выборки и повышением доверительного уровня вероятности.

Как мы уже знаем, репрезентативность - свойство выборочной совокупности представлять характеристику генеральной. Если совпадения нет, говорят об ошибке репрезентативности - мере отклонения статистической структуры выборки от структуры соответствующей генеральной совокупности. Предположим, что средний ежемесячный семейный доход пенсионеров в генеральной совокупности составляет 2 тыс. руб., а в выборочной - 6 тыс. руб. Это означает, что социолог опрашивал только зажиточную часть пенсионеров, а в его исследование вкралась ошибка репрезентативности. Иными словами, ошибкой репрезентативности называется расхождение между двумя совокупностями - генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получения информации о генеральной совокупности.

Наряду с термином «ошибка репрезентативности» в отечественной литературе можно встретить другой - «ошибка выборки». Иногда они употребляются как синонимы, а иногда «ошибка выборки» используется вместо «ошибки репрезентативности» как количественно более точное понятие.

Ошибка выборки - отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.

На практике ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. В социологии при обследованиях взрослого населения чаще всего используют данные переписей населения, текущего статистического учета, результаты предшествующих опросов. В качестве контрольных параметров обычно применяются социально-демографические признаки. Сравнение средних генеральной и выборочной совокупностей, на основе этого определение ошибки выборки и ее уменьшение называется контролированием репрезентативности. Поскольку сравнение своих и чужих данных можно сделать по завершении исследования, такой способ контроля называется апостериорным, т.е. осуществляемым после опыта.

В опросах Института Дж. Гэллапа репрезентативность контролируется по имеющимся в национальных переписях данным о распределении населения по полу, возрасту, образованию, доходу, профессии, расовой принадлежности, месту проживания, величине населенного пункта. Всероссийский центр изучения общественного мнения (ВЦИОМ) использует для подобных целей такие показатели, как пол, возраст, образование, тип поселения, семейное положение, сфера занятости, должностной статус респондента, которые заимствуются в Государственном комитете по статистике РФ. В том и другом случае генеральная совокупность известна. Ошибку выборки невозможно установить, если неизвестны значения переменной в выборочной и генеральной совокупностях.

Специалисты ВЦИОМ обеспечивают при анализе данных тщательный ремонт выборки, чтобы минимизировать отклонения, возникшие на этапе полевых работ. Особенно сильные смещения наблюдаются по параметрам пола и возраста. Объясняется это тем, что женщины и люди с высшим образованием больше времени проводят дома и легче идут на контакт с интервьюером, т.е. являются легко достижимой группой по сравнению с мужчинами и людьми «необразованными»35.

Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки.

Ошибки выборки подразделяются на два типа - случайные и систематические. Случайная ошибка - это вероятность того, что выборочная средняя выйдет (или не выйдет) за пределы заданного интервала. К случайным ошибкам относят статистические погрешности, присущие самому выборочному методу. Они уменьшаются при возрастании объема выборочной совокупности.

Второй тип ошибок выборки - систематические ошибки. Если социолог решил узнать мнение всех жителей города о проводимой местными органами власти социальной политике, а опросил только тех, у кого есть телефон, то возникает предумышленное смещение выборки в пользу зажиточных слоев, т.е. систематическая ошибка.

Таким образом, систематические ошибки - результат деятельности самого исследователя. Они наиболее опасны, поскольку приводят к довольно значительным смещениям результатов исследования. Систематические ошибки считаются страшнее случайных еще и потому, что они не поддаются контролю и измерению.

Они возникают, когда, например: 1) выборка не соответствует задачам исследования (социолог решил изучить только работающих пенсионеров, а опросил всех подряд); 2) налицо незнание характера генеральной совокупности (социолог думал, что 70% всех пенсионеров не работает, а оказалось, что не работает только 10%); 3) отбираются только «выигрышные» элементы генеральной совокупности (например, только обеспеченные пенсионеры).

Внимание! В отличие от случайных ошибок систематические ошибки при возрастании объема выборки не уменьшаются.

Обобщив все случаи, когда происходят систематические ошибки, методисты составили их реестр. Они полагают, что источником неконтролируемых перекосов в распределении выборочных наблюдений могут быть следующие факторы:
♦ нарушены методические и методологические правила проведения социологического исследования;
♦ выбраны неадекватные способы формирования выборочной совокупности, методы сбора и расчета данных;
♦ произошла замена требуемых единиц наблюдения другими, более доступными;
♦ отмечен неполный охват выборочной совокупности (недополучение анкет, неполное их заполнение, труднодоступность единиц наблюдения).

Намеренные ошибки социолог допускает редко. Чаще ошибки возникают из-за того, что социологу плохо известна структура генеральной совокупности: распределение людей по возрасту, профессии, доходам и т.д.

Систематические ошибки легче предупредить (по сравнению со случайными), но их очень трудно устранить. Предупреждать систематические ошибки, точно предвидя их источники, лучше всего заранее - в самом начале исследования.

Вот некоторые способы избежать ошибок выборки:
♦ каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;
♦ отбор желательно производить из однородных совокупностей;
♦ надо знать характеристики генеральной совокупности;
♦ при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.

Если выборочная совокупность (или просто выборка) составлена правильно, то социолог получает надежные результаты, харастеризующие всю генеральную совокупность. Если она составлена неправильно, то ошибка, возникшая на этапе составления выборки, на каждом следующем этапе проведения социологического исследования приумножается и достигает в конечном счете такой величины, которая перевешивает ценность проведенного исследования. Говорят, что от такого исследования больше вреда, нежели пользы.

Подобные ошибки могут произойти только с выборочной совокупностыо. Чтобы избежать или уменьшить вероятность ошибки, самый простой способ - увеличивать размеры выборки (в идеале до объема генеральной: когда обе совокупности совпадут, ошибка выборки вообще исчезнет). Экономически такой метод невозможен. Остается другой путь - совершенствовать математические методы составления выборки. Они то и применяются на практике. Таков первый канал проникновения в социологию математики. Второй канал - математическая обработка данных.

Особенно важной проблема ошибок становится в маркетинговых исследованиях, где используются не очень большие выборки. Обычно они составляют несколько сотен, реже - тысячу респондентов. Здесь исходным пунктом расчета выборки выступает вопрос об определении размеров выборочной совокупности. Численность выборочной совокупности зависит от двух факторов: 1) стоимости сбора информации и 2) стремления к определенной степени статистической достоверности результатов, которую надеется получить исследователь. Конечно, даже не искушенные в статистике и социологии люди интуитивно понимают, что чем больше размеры выборки, т.е. чем ближе они к размерам генеральной совокупности в целом, тем более надежны и достоверны полученные данные. Однако выше мы уже говорили о практической невозможности сплошных опросов в тех случаях, когда они проводятся на объектах, численность которых превышает десятки, сотни тысяч и даже миллионы. Понятно, что стоимость сбора информации (включающая оплату тиражирования инструментария, труда анкетеров, полевых менеджеров и операторов по компьютерному вводу) зависит от той суммы, которую готов выделить заказчик, и слабо зависит от исследователей. Что же касается второго фактора, то мы остановимся на нем чуть подробнее.

Итак, чем больше величина выборки, тем меньше возможная ошибка. Хотя необходимо отметить, что при желании увеличить точность вдвое вам придется увеличить выборку не в два, а в четыре раза. Например, чтобы сделать в два раза более точной оценку данных, полученных путем опроса 400 человек, вам потребуется опросить не 800, а 1600 человек. Впрочем, вряд ли маркетинговое исследование испытывает нужду в стопроцентной точности. Если пивовару необходимо узнать, какая часть потребителей пива предпочитает именно его марку, а не сорт его конкурента, - 60% или 40%, то на его планы никак не повлияет разница между 57%, 60 или 63%.

Ошибка выборки может зависеть не только от ее величины, но и от степени различий между отдельными единицами внутри генеральной совокупности, которую мы исследуем. Например, если нам нужно узнать, какое количество пива потребляется, то мы обнаружим, что внутри нашей генеральной совокупности нормы потребления у различных людей существенно различаются (гетерогенная генеральная совокупность). В другом случае мы будем изучать потребление хлеба и установим, что у разных людей оно различается гораздо менее существенно {гомогенная генеральная совокупность). Чем больше различия (или гетерогенность) внутри генеральной совокупности, тем больше величина возможной ошибки выборки. Указанная закономерность лишь подтверждает то, что нам подсказывает простой здравый смысл. Таким образом, как справедливо утверждает В. Ядов, «численность (объем) выборки зависит от уровня однородности или разнородности изучаемых объектов. Чем более они однородны, тем меньшая численность может обеспечить статистически достоверные выводы».

Определение объема выборки зависит также от уровня доверительного интервала допустимой статистической ошибки. Здесь имеются в виду так называемые случайные ошибки, которые связаны с природой любых статистических погрешностей. В.И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5%-ной ошибки:
Это означает,что если вы, опросив, предположим, 400 человек в районном городе, где численность взрослого платежеспособного населения составляет 100 тыс. человек, выявили, что 33% опрошенных покупателей предпочитают продукцию местного мясокомбината, то с 95%-ной вероятностью можете утверждать, что постоянными покупателями этой продукции являются 33+5% (т.е. от 28 до 38%) жителей этого города.

Можно также воспользоваться расчетами института Гэллапа для оценки соотношения размеров выборки и ошибки выборки.