Теоретический материал по модулям "теория вероятности и математическая статистика".

Cтраница 2


Графически закон распределения дискретной величины задается в виде так называемого многоугольника распределения.  

Графическое изображение ряда распределения (см. рис. 5) называется многоугольником распределения.  

Для характеристики закона распределения прерывной случайной величины часто применяют ряд (таблицу) и многоугольник распределения.  

Для его изображения в прямоугольной системе координат строят точки (У Pi) (x - i Pa) и соединяют их отрезками прямых. Многоугольник распределения дает приближенное наглядное представление о характере распределения случайной величины.  

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (х /, р, а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

M (xn; pn) (лс - - возможные значения Xt pi - соответствующие вероятности) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.  

Рассмотрим распределение вероятностей суммы очков на игральных костях. На рисунках ниже приведены многоугольники распределения для случая одной, двух и трех костей.  

В этом случае вместо многоугольника распределения случайной величны строится функция плотности распределения, которая получила название дифференциальной функции распределения и представляет собой дифференциальный закон распределения. В теории вероятностей под плотностью распределения случайной величины х (х Хг) понимают предел отношения вероятности попадания величины х в интервал (х, х - - Ах) к Ах, когда Ал; стремится к нулю. Кроме дифференциальной функции для характеристики распределения случайной величины применяется интегральная функция распределения, которую часто называют просто функцией распределения или интегральным законом распределения.  

При таком построении относительные частоты попадания в интервалы будут равны площадям соответствующих столбиков гистограммы, подобно тому, как вероятности равны площадям соответствующих криволинейных трапеций Если предполагаемое теоретическое распределение хорошо согласуется с опытом, то при достаточно большом п и удач - ном выборе интервалов (YJ-I, у. Иногда еще для наглядности сравнения строят многоугольник распределения, соединяя последовательно середины верхних оснований столбиков гистограммы.  

Придавая т различные значения от 0 до я, получают вероятности PQ, Р РЧ - Рп, которые наносятся на график. Дано р; я11, построить многоугольник распределения вероятностей.  

Законом распределения дискретной случайной величины называют любое соответствие между возможными ее значениями и их вероятностями. Закон можно задать таблично (ряд распределения), графически (многоугольник распределения и др.) и аналитически.  

Нахождение кривой распределения, другими словами, установление распределения самой случайной величины, дает возможность более глубоко исследовать явление, далеко не полно выражаемое данным конкретным рядом распределения. Представив на чертеже как найденную выравнивающую кривую распределения, так и многоугольник распределения, построенный на основе частичной совокупности, исследователь может ясно видеть характерные особенности, присущие изучаемому явлению. Благодаря этому статистический анализ задерживает внимание исследователя на отклонениях наблюденных данных от некоторого закономерного изменения явления, и перед исследователем возникает задача - выяснить причины этих отклонений.  

Затем из середины интервалов проводятся абсциссы (в масштабе), соответствующие числу месяцев с расходом в данном интервале. Концы этих абсцисс соединяются и, таким образом, получается полигон, или многоугольник распределения.  

Точки, дающие графическое представление закона распределения дискретной случайной величины на координатной плоскости значения величины - вероятность значений, обычно соединяют отрезками прямых и называют получающуюся при этом геометрическую фигуру многоугольником распределения. На рис. 3 в таблице 46 (а также на рисунках 4 и 5) как раз изображены многоугольники распределений.  

Опытом называется всякое осуществление определенных условий и действий при которых наблюдается изучаемое случайное явление. Опыты можно характеризовать качественно и количественно. Случайной называется величина, которая в результате опыта может принимать то или иное значение., причем заранее не известно какое именно.

Случайные величины принято обозначать (X,Y,Z), а соответствующие им значения (x,y,z)

Дискретными называются случайные величины принимающие отдельные изолированные друг от друга значения, которые можно переоценить. Непрерывными величины возможные значение которых непрерывно заполняют некоторый диапазон. Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими им вероятности. Ряд и многоугольник распределения. Простейшей формой закона распределения дискретной величины является ряд распределения. Графической интерпретацией ряда распределения является многоугольник распределения.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 13.Дискретная случайная величина. Многоугольник распределения. Операции со случайными величинами, пример.:

  1. 13. Дискретная случайная величина и закон ее распределения. Многоугольник распределения. Операции со случайными величинами. Пример.
  2. Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.
  3. 14. Случайные величины, их виды. Закон распределения вероятностей дискретной случайной величины (ДСВ). Способы здания случайных величин (СВ).
  4. 16. Закон распределения дискретной случайной величины. Числовые характеристики дискретной случайной величины: математическое ожидание, дисперсия и среднее квадратическое отклонение.
  5. Математические операции над дискретными случайными ве­личинами и примеры построения законов распределения для КХ,Х"1, X + К, XV по заданным распределениям независимых случай­ных величин X и У.
  6. Понятие случайной величины. Закон распределения дискретной случ. величины. Математич операции над случ. величинами.

Задача 14. В денежной лотерее разыгрывается 1 выигрыш в 1000000 руб., 10 выигрышей по 100000 руб. и 100 выигрышей по 1000 руб. при общем числе билетов 10000. Найти закон распределения случайного выигрыша Х для владельца одного лотерейного билета.

Решение . Возможные значения для Х : х 1 = 0; х 2 = 1000; х 3 = 100000;

х 4 = 1000000. Вероятности их соответственно равны: р 2 = 0,01; р 3 = 0,001; р 4 = 0,0001; р 1 = 1 – 0,01 – 0,001 – 0,0001 = 0,9889.

Следовательно, закон распределения выигрыша Х может быть задан следующей таблицей:

Построить многоугольник распределения.

Решение . Построим прямоугольную систему координат, причем по оси абсцисс будем откладывать возможные значения х i , а по оси ординат – соответствующие вероятности р i . Построим точки М 1 (1;0,2), М 2 (3;0,1), М 3 (6;0,4) и М 4 (8;0,3). Соединив эти точки отрезками прямых, получим искомый многоугольник распределения.

§2. Числовые характеристики случайных величин

Случайная величина полностью характеризуется своим законом распределения. Осредненное описание случайной величины можно получить при использовании ее числовых характеристик

2.1. Математическое ожидание. Дисперсия.

Пусть случайная величина может принимать значения с вероятностями соответственно .

Определение. Математическим ожиданием дискретной случайной величинаы называется сумма произведений всех ее возможных значений на соответствующие вероятности:

.

Свойства математического ожидания.

Рассеяние случайной величины около среднего значения характеризуют дисперсия и среднеквадратическое отклонение.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычислений используется следующая формула

Свойства дисперсии.

2. , где взаимно независимые случайные величины.

3. Среднеквадратическое отклонение .

Задача 16. Найти математическое ожидание случайной величины Z = X+ 2Y , если известны математические ожидания случайных величин X и Y : М (Х ) = 5, М (Y ) = 3.

Решение . Используем свойства математического ожидания. Тогда получаем:

М (Х+ 2Y ) = М (Х ) + М (2Y ) = М (Х ) + 2М (Y ) = 5 + 2 . 3 = 11.

Задача 17. Дисперсия случайной величины Х равна 3. Найти дисперсию случайных величин: а) –3Х; б) 4Х + 3.

Решение . Применим свойства 3, 4 и 2 дисперсии. Имеем:

а) D (–3Х ) = (–3) 2 D (Х ) = 9 D (Х ) = 9 . 3 = 27;

б) D (4 Х + 3) = D (4Х ) + D (3) = 16D (Х ) + 0 = 16 . 3 = 48.

Задача 18. Дана независимая случайная величина Y – число очков, выпавших при бросании игральной кости. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины Y .

Решение. Таблица распределения случайной величины Y имеет вид:

Y
р 1/6 1/6 1/6 1/6 1/6 1/6

Тогда М (Y ) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6+ 4 · 1/6+ 5 · 1/6+ 6 · 1/6 = 3,5;

D (Y ) = (1 – 3,5) 2 · 1/6 +(2 – 3,5) 2 · /6 + (3 – 3,5) 2 · 1/6 + (4 – 3,5) 2 · /6 +(5 – –3,5) 2 · 1/6 + (6 – 3,5) 2. · 1/6 = 2,917; σ (Y ) 2,917 = 1,708.

Случайные величины: дискретные и непрерывные.

При проведении стохастического эксперимента формируется пространство элементарных событий – возможных исходов этого эксперимента. Считают, что на этом пространстве элементарных событий задана случайная величина X, если задан закон (правило) по которому каждому элементарному событию сопоставляется число. Таким образом, случайную величину X можно рассматривать, как функцию, заданную на пространстве элементарных событий.

■ Случайная величина - величина, которая при каж­дом испытании прини­мает то или иное числовое значение (на­перед неизвестно, какое именно), зависящее от случайных при­чин, которые заранее не могут быть учтены. Случайные величины обозначают за­главными буквами латинского алфавита, а возможные значе­ния случайной величины – малыми. Так, при бросании игрального кубика проис­ходит событие, связанное с числом x , где x – выпавшее число очков. Число очков – случайная величина, а числа 1, 2, 3, 4, 5, 6 – возможные значе­ния этой величины. Расстояние, которое пролетит снаряд при выстреле из орудия – тоже случайная величина (зависит от установки при­цела, силы и направления ветра, температуры и других факто­ров), а возможные значения этой величины принадлежат неко­торому промежутку (a; b).

■ Дискретная случайная величина – случайная величина, которая принимает отдельные, изо­лированные возмож­ные значения с определенными вероятно­стями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным.

■ Непрерывная случайная величина – случайная величина, которая может принимать все значения из некоторого конечного или бесконечного проме­жутка. Число возможных значений непрерывной случайной величины – беско­нечно.

Например, число выпавших очков при бросании кубика, балльная оценка за кон­трольную работу – дискретные случайные величины; рас­стояние, которое пролетает снаряд при стрельбе из орудия, по­грешность измерений показателя времени усвоения учебного мате­риала, рост и вес человека – непрерывные случайные величины.

Закон распределения случайной величины – соответствие между возмож­ными значениями случайной величины и их вероятностями, т.е. каждому воз­можному значению x i ставится в соответствие ве­роятность p i , с которой случайная величина может принять это значение. Закон распределения случайной величины может быть задан таблично (в форме таблицы), аналитиче­ски (в виде формулы) играфически.

Пусть дискретная случайная величина X принимает значения x 1 , x 2 , …, x n с ве­роятностями p 1 , p 2 , …, p n соответственно, т.е. P(X=x 1) = p 1 , P(X=x 2) = p 2 , …, P(X=x n) = p n . При табличном задании закона распределения этой величины первая строка таблицы содержит воз­можные значения x 1 , x 2 , …, x n , а вторая – их вероятности

X x 1 x 2 x n
p p 1 p 2 p n

В результате испытания дискретная случайная величина X принимает одно и только одно из воз­можных значений, поэтому события X=x 1 , X=x 2 , …, X=x n образуют полную группу попарно несовместных событий, и, значит, сумма вероятностей этих событий равна единице, т.е. p 1 + p 2 +… + p n =1.

Закон распределения дискретной случайной величины. Многоугольник (полигон) распределения.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1. Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x), определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3. Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины:

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X).

· Для наглядности представления вариационного ряда большое значение имеют его графические изображения. Графически вариационный ряд может быть изображён в виде полигона, гистограммы и кумуляты.

· Полигон распределения (дословно – многоугольник распределения) называют ломанную, которая строится в прямоугольной системе координат. Величина признака откладывается на оси абсцисс, соответствующие частоты (или относительные частоты ) – по оси ординат. Точки (или ) соединяют отрезками прямых и получают полигон распределения. Чаще всего полигоны применяются для изображения дискретных вариационных рядов, но их можно применять также и для интервальных рядов. В этом случае на оси абсцисс откладываются точки, соответствующие серединам данных интервалов.

Случайная величина – это величина, которая в результате опыта принимает заранее неизвестное значение.

    Количество студентов, присутствующих на лекции.

    Количество домов, сданных в эксплуатацию в текущем месяце.

    Температура окружающей среды.

    Вес осколка разорвавшегося снаряда.

Случайные величины делятся на дискретные и непрерывные.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные друг от друга значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или счетным.

Непрерывной называют случайную величину, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

В приведенных примерах: 1 и 2 – дискретные случайные величины, 3 и 4 – непрерывные случайные величины.

В дальнейшем, вместо слов «случайная величина» часто будем пользоваться сокращением с. в.

Как правило, случайные величины будем обозначать большими буквами, а их возможные значения – маленькими.

В теоретико-множественной трактовке основных понятий теории вероятностей случайная величина Х есть функция элементарного события: Х =φ(ω), где ω – элементарное событие принадлежащее пространству Ω (ω  Ω). При этом множество Ξ возможных значений с. в. Х состоит из всех значений, которые принимает функция φ(ω).

Законом распределения случайной величины называется любое правило (таблица, функция), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она примет какое-то значение или попадет на какой-то интервал).

Формы задания законов распределения случайных величин. Ряд распределения.

Это таблица в верхней строке которой перечислены в порядке возрастания все возможные значения случайной величины Х: х 1 , х 2 , ..., х n , а в нижней – вероятности этих значений: p 1 , p 2 , ..., p n , где p i = Р{Х = x i }.

Так как события {Х = x 1 }, {Х = x 2 }, ... несовместны и образуют полную группу, то сумма всех вероятностей, стоящих в нижней строке ряда распределения, равна единице

Ряд распеделения используется для задания закона распределения только дискретных случайных величин.

Многоугольник распределения

Графическое изображение ряда распределения называется многоугольником распределения. Строится он так: для каждого возможного значения с. в. восстанавливается перпендикуляр к оси абсцисс, на котором откладывается вероятность данного значения с. в. Полученные точки для наглядности (и только для наглядности!) соединяются отрезками прямых.

Интегральная функция распределения (или просто функция распределения).

Это функция, которая при каждом значении аргумента х численно равна вероятности того, что случайная величина  окажется меньше, чем значение аргумента х.

Функция распределения обозначается F(x): F(x) = P {X  x}.

Теперь можно дать более точное определение непрерывной случайной величины: случайную величину называют непрерывной, если ее функция распределения есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.

Функция распределения – это наиболее универсальная форма задания с. в., которая может использоваться для задания законов распределения как дискретных, так и непрерывных с. в.