Распределение пуассона числовые характеристики. Распределение пуассона

$Х$ имеет распределение Пуассона с параметром $\lambda$ ($\lambda$$>$0), если эта величина принимает целые неотрицательные значения $к=0, 1, 2,\dots$ с вероятностями $рк$=$\frac{\lambda ^{:} }{:!} \cdot 5^{-\lambda } .$ (Это распределение впервые было рассмотрено французским математиком и физиком Симеоном Дени Пуассоном в 1837 г.)

Распределение Пуассона также называют законом редких событий, потому, что вероятности рк дают приближенное распределение числа наступлений некоторого редкого события при большом количестве независимых испытаний. В этом случае полагают $\lambda =n \cdot р$ , где $n$- число испытаний Бернулли, $р$- вероятность осуществления события в одном испытании.

Правомерность использования закона Пуассона вместо биномиального распределения при большом числе испытаний дает следующая теорема.

Теорема 1

Теорема Пуассона.

Если в схеме Бернулли n$\rightarrow$$\infty$, p$\rightarrow$0, так что $n \cdot p$$\rightarrow$$\lambda$ (конечному числу), то

$!_{n}^{k} p^{k} (1-p)^{n-k} \to \frac{\lambda ^{k} }{k!} e^{-\lambda } $ при любых $k=0, 1, 2,... $

Без доказательства.

Примечание 1

Формула Пуассона становится точнее, при малениких $p$ и больших чисел $n$, причём $n \cdot p $

Математическое ожидание случайной величины, имеющей распределение Пуассона с параметром $\lambda$:

$М(Х)$=$\sum \limits _{k=0}^{\infty }k\cdot \frac{\lambda ^{k} }{k!} e^{-\lambda } =\lambda \cdot e^{-\lambda } \sum \limits _{k=1}^{\infty }\frac{\lambda ^{k} }{k!} =\lambda \cdot e^{-\lambda } \cdot e^{\lambda } = $$\lambda$.

Дисперсия случайной величины, имеющей распределение Пуассона параметром $\lambda$:

$D(X)$=$\lambda$ .

Применение формулы Пуассона при решении задач

Пример 1

Вероятность появления бракованного изделия при массовом производстве равна $0,002$. Найти вероятность того, что в партии из $1500$ изделий будет не более 3-х бракованных. Найти среднее число бракованных изделий.

  • Пусть $А$-число бракованных изделий в партии из $1500$ изделий. Тогда искомая вероятность, это вероятность того, что $А$ $\leq$ $3$. В данной задаче мы имеем схему Бернулли с $n=1500$ и $р=0,002$. Для применения теоремы Пуассона положим $\lambda=1500 \cdot 0,002=3$. Тогда искомая вероятность
\
  • Среднее число бракованных изделий $М(А)$=$\lambda$=3.

Пример 2

Коммутатор учреждения обслуживает $100$ абонентов. Вероятность того, что в течение $1$ минуты абонент позвонит, равна $0,01$. Найти вероятность того, что в течение $1$ минуты никто не позвонит.

Пусть $А$- число позвонивших на коммутатор в течение $1$ минуты. Тогда искомая вероятность -- это вероятность того, что $А=0$. В данной задаче применима схема Бернулли с $n=100$, $p=0,01$. Для использования теоремы Пуассона положим

$\lambda=100 \cdot 0,01=1$.

Тогда искомая вероятность

$Р = е^-1$ $\approx0,37$.

Пример 3

Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти вероятности того, что в пути будет повреждено

  1. ровно три изделия;
  2. менее трех изделий.

    Рассмотрев замечание к формуле Пуассона, поскольку вероятность $р=0,002$ повреждения изделия мала, а число изделий $n=500$ велико, и $a=n\cdot p=1

    Для решения второй задачи применима формула, где $k1=0$ и $k2=2$. Имеем:

\

Пример 4

Учебник издан тиражом $100000$ экземпляров. Вероятность того, что один учебник сброшюрован неправильно, равна $0,0001$. Какова вероятность того, что тираж содержит $5$ бракованных книг?

По условию задачи $n = 100000$, $p = 0,0001$.

События "из $n$ книг ровно $m$ книг сброшюрованы неправильно", где $m = 0,1,2, \dots ,100000$, являются независимыми. Так как число $n$ велико, а вероятность $p$ мала, вероятность $P_n (m)$ можно вычислить по формуле Пуассона: $P_n$(m)$\approx \frac{{\lambda }^m\cdot e^{-\lambda }}{m!}$ , где $\lambda = np$.

В рассматриваемой задаче

$\lambda = 100000 \cdot 0,0001 = 10$.

Поэтому искомая вероятность $P_{100000}$(5) определяется равенством:

$P_{100000}$ (5)$\approx \frac{e^{-10}\cdot {10}^5}{5!}\approx $ ${10}^5$ $\frac{0,000045}{120}$ = $0,0375$.

Ответ: $0,0375$.

Пример 5

Завод отправил на базу $5000$ доброкачественных изделий. Вероятность того, что в пути изделие повредиться равно $0,0002$. Найти вероятность того, что на базу прибудут три негодных изделия.

По условию $n=5000$; $р = 0,0002$; $k = 3$. Найдем $\lambda $:

$\lambda = n \cdot p = 5000 \cdot 0,0002 = 1$.

Искомая вероятность по формуле Пуассона равна:

Пример 6

Вероятность того, что на телефонную станцию в течение одного часа позвонит один абонент, равна 0,01. В течение часа позвонили 200 абонентов. Найти вероятность того, что в течение часа позвонят 3 абонента.

Рассматрев условие задачи видим, что:

Найдем $\lambda $ для формуллы Пуассона:

\[\lambda =np=200\cdot 0,01=2.\]

Подставим значения в формулу Пуассона и получим значение:

Пример 7

На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для 2-х студентов?

Имеем $n=500$; $p=1/365 \approx 0,0027$, $q=0,9973$. Поскольку количество испытаний велико, а вероятность выполнения очень мала и $npq=1,35 \

Распределение Пуассона.

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть событие А появляется некоторое число раз в фиксированном участке пространства (интервале, площади, объеме) или промежутке времени с постоянной интенсивностью. Для определенности рассмотрим последовательное появление событий во времени, называемое потоком событий. Графически поток событий можно иллюстрировать множеством точек, расположенных на оси времени.

Это может быть поток вызовов в сфере обслуживания (ремонт бытовой техники, вызов скорой помощи и др.), поток вызовов на АТС, отказ в работе некоторых частей системы, радиоактивный распад, куски ткани или металлические листы и число дефектов на каждом из них и др. Наиболее полезным распределение Пуассона оказывается в тех задачах, где требуется определить лишь число положительных исходов («успехов»).

Представим себе булку с изюмом, разделенную на маленькие кусочки равной величины. Вследствие случайного распределения изюминок нельзя ожидать, что все кусочки будут содержать их одинаковое число. Когда среднее число изюминок, содержащееся в этих кусочках, известно, тогда распределение Пуассона задает вероятность того, что любой взятый кусочек содержит X =k (k = 0,1,2,...,)число изюминок.

Иначе говоря, распределение Пуассона определяет, какая часть длинной серии кусочков будет содержать равное 0, или 1, или 2, или и т.д. число изюминок.

Сделаем следующие предположения.

1. Вероятность появления некоторого числа событий в данном промежутке времени зависит только от длины этого промежутка, а не от его положения на временной оси. Это свойство стационарности.

2. Появление более одного события в достаточно малом промежутке времени практически невозможно, т.е. условная вероятность появления в этом же интервале другого события стремится к нулю при ® 0. Это свойство ординарности.

3. Вероятность появления данного числа событий на фиксированном промежутке времени не зависит от числа событий, появляющихся в другие промежутки времени. Это свойство отсутствия последействия.

Поток событий, удовлетворяющий перечисленным предложениям, называется простейшим .

Рассмотрим достаточно малый промежуток времени . На основании свойства 2 событие может появиться на этом промежутке один раз или совсем не появиться. Обозначим вероятность появления события через р , а непоявления – через q = 1-p. Вероятность р постоянна (свойство 3) и зависит только от величины (свойство 1). Математическое ожидание числа появлений события в промежутке будет равно 0×q + 1×p = p . Тогда среднее число появления событий в единицу времени называется интенсивностью потока и обозначается через a, т.е. a = .

Рассмотрим конечный отрезок времени t и разделим его на n частей = . Появления событий в каждом из этих промежутков независимы (свойство 2). Определим вероятность того, что в отрезке времени t при постоянной интенсивности потока а событие появится ровно X = k раз и не появится n – k . Так как событие может в каждом из n промежутков появиться не более чем 1 раз, то для появления его k раз на отрезке длительностью t оно должно появиться в любых k промежутках из общего числа n. Всего таких комбинаций , а вероятность каждой равна . Следовательно, по теореме сложения вероятностей получим для искомой вероятности известную формулу Бернулли

Это равенство записано как приближенное, так как исходной посылкой при его выводе послужило свойство 2, выполняемое тем точнее, чем меньше . Для получения точного равенства перейдем к пределу при ® 0 или, что то же, n ® . Получим после замены

P = a = и q = 1 – .

Введем новый параметр = at , означающий среднее число появлений события в отрезке t . После несложных преобразований и переходу к пределу в сомножителях получим.

= 1, = ,

Окончательно получим

, k = 0, 1, 2, ...

е = 2,718... –основание натурального логарифма.

Определение . Случайная величина Х , которая принимает только целые, положительные значения 0, 1, 2, ... имеет закон распределения Пуассона с параметром , если

для k = 0, 1, 2, ...

Распределение Пуассона было предложено французским математиком С.Д. Пуассоном (1781-1840 гг). Оно используется для решения задач исчисления вероятностей относительно редких, случайных взаимно независимых событий в единицу времени, длины, площади и объема.

Для случая, когда а) – велико и б) k = , справедлива формула Стирлинга:

Для расчета последующих значений используется рекуррентная формула

P (k + 1) = P (k ).

Пример 1. Чему равна вероятность того, что из 1000 человек в данный день родились: а) ни одного, б) один, в) два, г) три человека?

Решение. Так как p = 1/365, то q = 1 – 1/365 = 364/365 » 1.

Тогда

а) ,

б) ,

в) ,

г) .

Следовательно, если имеются выборки из 1000 человек, то среднее число человек, которые родились в определенный день, соответственно будут равны 65; 178; 244; 223.

Пример 2. Определить значение , при котором с вероятностью Р событие появилось хотя бы один раз.

Решение. Событие А = {появиться хотя бы один раз} и = {не появиться ни одного раза}. Следовательно .

Отсюда и .

Например, для Р = 0,5 , для Р = 0,95 .

Пример 3. На ткацких станках, обслуживаемых одной ткачихой, в течение часа происходит 90 обрывов нити. Найти вероятность того, что за 4 минуты произойдет хотя бы один обрыв нити.

Решение. По условию t = 4 мин. и среднее число обрывов за одну минуту , откуда . Требуемая вероятность равна .

Свойства . Математическое ожидание и дисперсия случайной величины, имеющей распределение Пуассона с параметром , равны:

M (X ) = D (X ) = .

Эти выражения получаются прямыми вычислениями:

Здесь была осуществлена замена n = k – 1 и использован тот факт, что .

Выполнив преобразования, аналогичные использованным при выводе М (X ), получим

Распределение Пуассона используется для аппроксимации биноминального распределения при больших n

Рассмотрим распределение Пуассона, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL ПУАССОН.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения, его математического ожидания и стандартного отклонения.

Сначала дадим сухое формальное определение распределения, затем приведем примеры ситуаций, когда распределение Пуассона (англ. Poisson distribution ) является адекватной моделью для описания случайной величины.

Если случайные события происходят в заданный период времени (или в определенном объеме вещества) со средней частотой λ(лямбда ), то число событий x , произошедших за этот период времени, будет иметь распределение Пуассона .

Применение распределения Пуассона

Примеры, когда Распределение Пуассона является адекватной моделью:

  • число вызовов, поступивших на телефонную станцию за определенный период времени;
  • число частиц, подвергнувшихся радиоактивному распаду за определенный период времени;
  • число дефектов в куске ткани фиксированной длины.

Распределение Пуассона является адекватной моделью, если выполняются следующие условия:

  • события происходят независимо друг от друга, т.е. вероятность последующего события не зависит от предыдущего;
  • средняя частота событий постоянна. Как следствие, вероятность события пропорциональна длине интервала наблюдения;
  • два события не могут произойти одновременно;
  • число событий должно принимать значения 0; 1; 2…

Примечание : Хорошей подсказкой, что наблюдаемая случайная величина имеет распределение Пуассона, является тот факт, что приблизительно равно (см. ниже).

Ниже представлены примеры ситуаций, когда Распределение Пуассона не может быть применено:

  • число студентов, которые выходят из университета в течение часа (т.к. средний поток студентов не постоянен: во время занятий студентов мало, а в перерыве между занятиями число студентов резко возрастает);
  • число землетрясений амплитудой 5 баллов в год в Калифорнии (т.к. одно землетрясение может вызвать повторные толчки сходной амплитуды – события не независимы);
  • число дней, которые пациенты проводят в отделении интенсивной терапии (т.к. число дней, которое пациенты проводят в отделении интенсивной терапии всегда больше 0).

Примечание : Распределение Пуассона является приближением более точных дискретных распределений: и .

Примечание : О взаимосвязи распределения Пуассона и Биномиального распределения можно прочитать в статье . О взаимосвязи распределения Пуассона и Экспоненциального распределения можно прочитать в статье про .

Распределение Пуассона в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Распределения Пуассона имеется функция ПУАССОН.РАСП() , английское название - POISSON.DIST(), которая позволяет вычислить не только вероятность того, что за заданный период времени произойдет х событий (функцию плотности вероятности p(x), см. формулу выше), но и (вероятность того, что за заданный период времени произойдет не меньше x событий).

До MS EXCEL 2010 в EXCEL была функция ПУАССОН() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). ПУАССОН() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Распределение Пуассона имеет скошенную форму (длинный хвост справа у функции вероятности), но при увеличении параметра λ становится все более симметричным.

Примечание : Среднее и дисперсия (квадрат ) равны параметру распределения Пуассона – λ (см. файл примера лист Пример ).

Задача

Типичным применением Распределения Пуассона в контроле качества является модель количества дефектов, которые могут появиться в приборе или устройстве.

Например, при среднем количестве дефектов в микросхеме λ (лямбда) равном 4, вероятность, что случайно выбранная микросхема будет иметь 2 или меньше дефектов, равна: =ПУАССОН.РАСП(2;4;ИСТИНА)=0,2381

Третий параметр в функции установлен = ИСТИНА, поэтому функция вернет интегральную функцию распределения , то есть вероятность того, что число случайных событий окажется в диапазоне от 0 до 4 включительно.

Вычисления в этом случае производятся по формуле:

Вероятность того, что случайно выбранная микросхема будет иметь ровно 2 дефекта, равна: =ПУАССОН.РАСП(2;4;ЛОЖЬ)=0,1465

Третий параметр в функции установлен = ЛОЖЬ, поэтому функция вернет плотность вероятности.

Вероятность того, что случайно выбранная микросхема будет иметь больше 2-х дефектов, равна: =1-ПУАССОН.РАСП(2;4;ИСТИНА) =0,8535

Примечание : Если x не является целым числом, то при вычислении формулы . Формулы =ПУАССОН.РАСП(2 ; 4; ЛОЖЬ) и =ПУАССОН.РАСП(2,9 ; 4; ЛОЖЬ) вернут одинаковый результат.

Генерация случайных чисел и оценка λ

При значениях λ>15 , Распределение Пуассона хорошо аппроксимируется Нормальным распределением со следующими параметрами: μ, σ 2 .

Подробнее о связи этих распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

Основные законы распределения случайной величины

ЛЕКЦИЯ 9

(продолжение)

Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р . Для определения вероятности k – появлений события А в этих испытаниях используют, как вам уже известно, формулу Бернулли. Однако, как быть если n велико, а вероятность р события А достаточно мала (). В таких случаях прибегают к асимптотической формуле Пуассона.

Итак, поставим своей задачей найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз.

Сделаем важное допущение: пусть произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появлений события в различных сериях испытаний, то есть при различных значениях n , остаётся неизменным.

Воспользуемся формулой Бернулли для вычисления интересующей нас вероятности:

Приняв во внимание, что n имеет очень большое значение, вместо найдём . При этом будет найдено лишь приближённое значение отыскиваемой вероятности: n хотя и велико, но всё же конечно, а при отыскании предела мы устремим n к бесконечности.

В результате (для простоты записи знак приближённого равенства опущен) запишем

.

Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) редких (р мало) событий.

Таким образом, будем говорить, что дискретная случайная величина , принимающая счётное множество значений, подчиняется закону распределения Пуассона, если вероятности её возможных значений задаются выражением:

Свойства распределения Пуассона:

Действительно:

2. .

3. если , то из биномиального распределения следует закон распределения Пуассона.

ПРИМЕР 1 .Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут: а) три негодных изделия; б) не более трёх повреждённых изделия.

Решение : по условию n =5000, p =0,0002. Найдём .

а) k = 3. Искомая вероятность по формуле Пуассона приближённо равна

.

б) Пусть случайная величина Х – число изделий, повреждённых в пути, то есть . Очевидно, что данная случайная величина распределена по биномиальному закону. Следовательно, искомую вероятность можно вычислить по формуле

Но, так как , то по свойству 3 о можем воспользоваться законом распределения Пуассона, то есть, можем записать.

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут: