Время ожидания в очередях. Основная модель расчета среднего времени ожидания

Перед выходом на передачу любой, исходящий из процессора ЭВМ, блок должен некоторое время ожидать в очереди. В общем случае при использовании относительных приоритетов обработка сообщений организуется по схеме рис. 11

Сообщениям типа Z 1 ,…,Z n присвоены относительные приоритеты 1,…,n соответственно. Сообщение Z p , поступившее в систему, и ожидающее передачи, заносится в очередь О р, в которой хранятся сообщения приоритета Р. В очереди О р сообщения упорядочены по времени их поступления. Когда процессор Пр заканчивает передачу ранее обслуживаемого сообщения, то управление передается программе "ДИСПЕТЧЕР”. Программа выбирает для очередной передачи сообщение с наивысшим приоритетом - сообщение Z i , если очереди более старших приоритетов О 1 ,..,О i-1 не содержат сообщений (т.е. оказываются пустыми). Выбранное для передачи сообщение захватывает исходящий канал на все время передачи. Если в систему поступает n простейших потоков сообщений с интенсивностями, а длительность передачи сообщений каждого типа имеют средние значения и вторые начальные моменты, соответственно, то среднее время ожидания сообщений, имеющих приоритет k, определится соотношением

Используя понятие коэффициента вариации

где - среднеквадратическое отклонение времен передачи сообщений i-го типа, получим соотношение:

В рассматриваемом нами конкретном случае анализа сети имеются всего два типа передаваемых блоков сообщений: исходящие интерактивные блоки, имеющие более высокий приоритет, и исходящие почтовые блоки, имеющие более низкий относительный приоритет.

Следовательно,

Для сообщений первого приоритета

Для сообщений второго приоритета

Следовательно, для интерактивных блоков:


Для почтовых блоков:


Для вычисления значений коэффициентов вариации длин блоков необходимо учесть следующее:

При каждом успешном опросе, ЦДП передает абоненту случайное число N исходящих блоков. Будем считать, что случайная величина N распределена по экспоненциальному закону.

Это означает, что коэффициент вариации (34)

Поскольку почтовые сообщения имеют постоянную длину, (35)

Расчет показывает, что при малой загрузке, время ожидания в очереди блоков почтовых сообщений незначительно превышает время ожидания блоков интерактивных сообщении (сообщений мало и они не мешают друг другу при передаче). С увеличением нагрузок ранним возрастает за счет того, что интерактивные блоки сообщений "выясняют" почтовые.

Время ожидания в очередях в узлах коммутации

Блоки сообщений, попадающие в центры коммутации, анализируются и направляются в соответствии с указанным в них адресом получателя через другие центры коммутации к абоненту или к ЭВМ. Прежде, чем центр коммутации (ЦК) прочтет адрес для направления блока, необходимо, чтобы вся управляющая часть блока (в у = 19 байт), содержащая адресную информацию, была полностью принята УК. Затрачиваемое на это время

Затем, спустя некоторое время реакции УК (рцк =1 мс), если очередь сообщений в УК отсутствует, рассматриваемый блок направится дальше к следующему центру коммутации.

Одновременно с приемом блоков УК ведет передачу выходящих из него блоков.

(37)

является полным временем, необходимым дня обслуживания передачи блока сообщений в УК.

Интерактивные и почтовые блоки сообщений поступают в УК вперемешку. При этом в него попадают как исходящие от ЭВМ ЦДП, так и предназначенные для нее блоки. Поэтому при рассмотрении времени ожидания очереди на передачу сообщения УК- необходимо учитывать полную загрузку сети

Учитывая, что является величиной постоянной (= 0), для определения значения времени tцк следует воспользоваться соотношением

Ввиду малой нагрузки эта величина получилась весьма незначительной, однако, при возрастании суммарной загрузки в 2 раза значение увеличивается, а при дальнейшем повышении нагрузки центры коммутации могут оказаться «узким местом» сети.

Значение эквивалентного времени ожидания в очередях центров коммутации определяется соотношением

аналогично тому, как это делалось при определении эквивалентной задержки в центре коммутации. Если принять, например, что для рассматриваемой сети каждый блок проходит один раз через 3,5 узла коммутации, то

Указанная задержка и должна учитываться при определении времени ответа для интерактивных и почтовых сообщений.

Пери Куклин (Perry Kuklin)

Каждый владелец бизнеса со всеми своими менеджерами хотел бы ежедневно и еженощно видеть не только растущие прибыли, но и счастливых, полностью удовлетворённых покупателей. Один из путей достижения этой цели - создание в грядущем 2014 году лучших условий для ожидающих в очереди клиентов. Вот пять простых способов:

1. Развлеките посетителей

Скопившихся в очереди покупателей надо чем-то отвлечь. А поскольку сегодняшняя культура настроена на все виды экранного действа, занятие ваших очередей созерцанием дисплеев займёт всё внимание посетителей и в их памяти не отложатся связанные с ожиданием отрицательные эмоции.

2. Вперёд, в виртуальность

Электронная очередь – вот на чём всё ещё спотыкаются многие компании. Как такая «куча мала» может сработать в вашу пользу, если вы всё время были зависимы от классической очереди типа «кто последний, я за вами»?

Никогда не забывайте, что большинство людей высоко ценят своё время и свободу действий. Создание электронной очереди глушит в посетителях чувство потери времени и дискомфорт от вынужденного выстраивания в ряд. При наличии электронной очереди клиенты могут присесть, заняться чем-то, кроме утомительного ожидания, да просто насладиться возможностью делать что угодно, без необходимости топтаться в очереди.

3. Следите за очередями

Разрешение проблемы очередей не только в создании более комфортных условий для покупателей; рассмотрите вопрос с точки зрения менеджмента – в конечном итоге это принесёт выгоду вам и удовлетворение покупателям.

Отслеживание движения очереди в реальном времени позволяет ответственным за это менеджерам в любое мгновение держать руку на пульсе каждой из очередей. Для информирования менеджера торгового зала о том, что где-то произошёл сбой, можно настроить любую форму извещения (текстовое сообщение, электронное письмо и пр.). Так он сразу узнает, что персонал компании тормозит, очереди движутся слишком медленно и т.д.

Отслеживание очередей позволяет также фиксировать рекордные показатели скорости их движения, что является бесценной информацией для менеджеров. На её основе они могут прогнозировать периоды пиков и спадов нагрузки, соответственно маневрируя персоналом и количеством работающих кассовых терминалов.

4. Добавьте немного мобильности

Общайтесь с покупателями в очереди самым доступным сегодня способом – через смартфоны. В электронную очередь можно привнести элемент мобильности, позволяющий клиентам через телефон регистрировать своё место в очереди и общаться с персоналом в текстовом режиме, когда их очередь уже подходит.

Развлекательному элементу, описанному выше, тоже не лишне придать мобильности. На экраны смартфонов можно выводить информацию о том, как клиентам улучшить свой покупательский опыт (подписка на купоны, дисконтные карты, грядущие промо-акции и, разумеется, оставшееся время ожидания в очереди).

5. Совместите трансляцию на смартфоны с мерчендайзингом

В розничной торговле решение проблемы очередей воистину элементарно. Клиенты могут увидеть товар и отметить его преимущества самостоятельно, но если представить им изделие в действии, то можно укрепить их стремление к покупке, которое до этого момента могло быть не слишком уверенным. Подумайте вот о чём: в интернет-торговле для увеличения конверсии и уровней продаж широко используются видеоматериалы. Что мешает применять эту технику в оффлайн торговле?

Воспользуйтесь тем, что у покупателя в руках дивайс, который может служить вашей витриной. Предложите клиенту посмотреть видеоролик с хорошо распродающимся товаром, рассказывающий о его особенностях; или даже видеозапись одобрительных высказываний о нём довольных покупателей. Доводя до томящихся в очереди людей такого рода информацию, да ещё с одновременной её прокруткой на больших дисплеях в зоне видимости, вы заботитесь об удовлетворении двух крайне важных потребностей: развлечение клиентов и увеличение продаж компании.

Ожидание в очереди становится последним впечатлением покупателя о вашем бизнесе (представьте себе розничный магазин), а последние слова разговора запоминаются лучше всего – это аксиома. В ряде случаев это вообще основа клиентского опыта (представьте себе аэропорт). Всегда найдутся пути улучшить взаимодействие с людьми, которые пользуются услугами вашего бизнеса, при этом одна из лучших точек для старта – изменение организации очередей.

Перевод Леонида Пеленицына

Будем использовать далее следующие обозначения для среднего значения времени ожидания в очереди требований из приоритетного класса p - W p , и среднего времени пребывания в системе для требований этого класса - T p :

Основное внимание будем уделять системам с относительным приоритетом. Рассмотрим процесс с момента поступления некоторого требования из приоритетного класса p . Будем далее называть это требование меченым. Первая составляющая времени ожидания для меченого требования связана с требованием, которое оно застает в сервере. Эта составляющая равна остаточному времени обслуживания другого требования. Обозначим теперь и будем использовать это обозначение и далее, среднюю задержку меченого требования, связанную с наличием другого требования на обслуживании W 0 . Зная распределение времени между соседними поступлениями входных требований для каждого приоритетного класса, можно всегда вычислить эту величину. В нашем предположении пуассоновского закона для потока заявок каждого класса можно записать

.

Вторая составляющая времени ожидания для меченого требования определяется тем, что перед меченым требованием обслуживаются другие требования, которые меченое требование застало в очереди. Обозначим далее число требований из класса i , которое застало в очереди меченое требование (из класса p ) и которые обслуживаются перед ним N ip . Среднее значение этого числа будет определять величину среднего значения этой составляющей задержки

Третья составляющая задержки связана с требованиями, поступившими после того как пришло меченое требование, однако получившими обслуживание раньше его. Число таких требований обозначим M ip . Среднее значение этой составляющей задержки находится аналогично и составляет

Складывая все три составляющие, получаем, что среднее время ожидания в очереди для меченого требования определяется формулой

Очевидно, что независимо от дисциплины обслуживания число требований, N ip и M ip в системе не может быть произвольным, поэтому существует некоторый набор соотношений, связывающий между собой задержки для каждого из приоритетного класса. Важность этих соотношений для СМО позволяет называть их ЗАКОНАМИ СОХРАНЕНИЯ. Основой законов сохранения для задержек является тот факт, что незаконченная работа в любой СМО в течение любого интервала времени занятости не зависит от порядка обслуживания, если система является консервативной (требования не исчезают внутри системы и сервер не простаивает при непустой очереди).

Распределение времени ожидания существенно зависит от порядка обслуживания, но если дисциплина обслуживания выбирает требования независимо от времени их обслуживания (или любой меры, зависящей от времени обслуживания), то распределение числа требований и времени ожидания в системе инвариантно относительно порядка обслуживания.


Для СМО типа M/G/1 можно показать, что для любой дисциплины обслуживания должно выполняться следующее важное равенство

Это равенство означает, что взвешенная сумма времен ожидания никогда не изменяется, независимо от того, насколько сложна или искусно подобрана дисциплина обслуживания. Если удается сократить задержку для одних требований, то она немедленно возрастет для других.

Для более общей системы с произвольным распределением времени поступления требований G/G/1 закон сохранения может быть записан в виде

.

Общий смысл этого соотношения таков: взвешенная сумма времен задержки остается постоянной. Просто в правой части стоит разность средней незавершенной работы и остаточного времени обслуживания. Если предположить пуассоновский характер входного потока, то выражение для незавершенной работы можно записать в виде

Подставляя его в предыдущее выражение, сразу получается приведенный ранее закон сохранения для СМО типа M/G/1.

Рассмотрим теперь расчет среднего времени ожидания для СМО с обслуживанием в порядке приоритета, задаваемого приоритетной функцией

На рис.1 приведена схема функционирования СМО с такой дисциплиной обслуживания: поступающее требование ставится в очередь слева от требования с равным или большим приоритетом.

Рис. 1 СМО с обслуживанием в порядке приоритета.

Воспользуемся формулой для W p . Исходя из механизма функционирования, можно сразу выписать

Все требования более высокого, чем у меченого приоритета будут обслужены раньше. Из формулы Литтла число требований класса i находящихся в очереди, будет равно:

Требования более высокоприоритетных классов, поступившие в систему после меченого требования, пока оно находится в очереди, также будут обслужены перед ним. Так как меченое требование будет находиться в очереди в среднем W p секунд, то число таких требований будет равно

Непосредственно из формулы (*) получаем:

Эта система уравнений может быть решена рекуррентно, начиная с W 1 ,W 2 и т.д.

Полученная формула позволяет рассчитывать характеристики качества обслуживания для всех приоритетных классов. На рисунке 7.2. показано, как изменяется нормированная величина времени ожидания в очереди для СМО с пятью приоритетными классами с равной интенсивностью потока требований каждого приоритетного класса и равным средним временем обслуживания требований каждого класса (нижний рисунок детализирует кривые при значениях малой нагрузки).

Рисунок 2.Обслуживание в порядке приоритетов в случае относительных приоритетов (Р=5, l Р = l/5, ).

Особую задачу представляет определение законов распределения времени ожидания.

Рассмотрим теперь систему с абсолютными приоритетами и обслуживанием в порядке приоритета с дообслуживанием. Применим подход полностью аналогичный рассмотренному ранее. Средняя задержка в системе меченого требования также состоит из трех составляющих: первая составляющая- это среднее время обслуживания, вторая – это задержка из-за обслуживания тех требований равного или более высокого приоритета, которые меченое требование застало в системе. Третья составляющая средней задержки меченого требования представляет собой задержку за счет любых требований, поступающих в систему до ухода меченого требования и имеющих строго больший приоритет. Расписывая все эти три составляющие общего времени нахождения в системе, получим

.

Весьма интересной задачей является выбор приоритетов для заявок различных классов. Поскольку имеет место закон сохранения, оптимизация имеет смысл только при рассмотрении некоторых дополнительных атрибутов каждого класса требований. Предположим, что можно оценить каждую секунду задержки заявки приоритетного класса p некоторой стоимостью C p . Тогда средняя стоимость секунды задержки для системы может быть выражена через среднее число требований каждого класса, находящихся в системе

Решим задачу нахождения дисциплины обслуживания с относительными приоритетами для системы M/G/1, которая минимизирует среднюю стоимость задержки C . Пусть имеется P приоритетных классов заявок с заданной интенсивностью поступления и средним временем обслуживания. Перенесем в левую часть постоянную сумму и выразим правую часть через известные параметры

Задача состоит в минимизации суммы в правой части этого равенства путем выбора соответствующей дисциплины обслуживания, т.е. выбора последовательности индексов p .

Обозначим

В этих обозначениях задача выглядит так: нужно минимизировать сумму произведений при условии

Условие независимости суммы функций g p от выбора дисциплины обслуживания определяется законом сохранения. Иначе говоря задача состоит в минимизации площади под кривой произведения двух функций, при условии, что площадь под кривой одной из них постоянна.

Решение состоит в том, что сначала упорядочим последовательность значений f p : .

А затем выберем для каждого f p свое значение g p , так, чтобы минимизировать сумму их произведений. Интуитивно ясно, что оптимальная стратегия выбора состоит в подборе наименьшего значения g p для наибольшего f p , далее для оставшихся значений следует поступать тем же образом. Поскольку g p =W p r p , то минимизация сводится к минимизации значений средней задержки. Таким образом, решение рассматриваемой задачи оптимизации состоит в том, что из всех возможных дисциплин обслуживания с относительным приоритетом минимум средней стоимости обеспечивает дисциплина с упорядоченными приоритетами в соответствие с неравенствами

.

Расчетное время ожидания в очереди

Имея в своем распоряжении такой важный параметр, как расчетное время ожидания в очереди, можно в значительной мере повысить эффективность обслуживания вызовов за счет:

Объявления клиенту о том, сколько он может прождать в очереди (подробнее об этом мы говорили выше). Гораздо предпочтительнее, чтобы в случае резко возросшего расчетного времени ожидания в момент пиковой нагрузки (например, 3 минуты и более) клиенты вешали трубку и перезванивали позже, а не бесконечно «висели» на линии;

Прямого вмешательства супервизора,

Автоматической перенастройки системы.

Вручную супервизор может предупредить пиковые нагрузки следующим простым способом: увидев, что в одной из операторских групп расчетное время ожидания приближается к опасной черте, а в другой равно нулю или чрезвычайно мало, он может просто перебросить операторов из второй группы в первую и таким образом сократить время ожидания в проблемной группе. В небольшом Сall Center супервизор может также проверить, по какой причине его подчиненные ушли на перерыв, и, если это возможно, попросить их вернуться на рабочее место.

Конечно, приведенная картина весьма схематична, в жизни все гораздо сложнее (например, см. главу 5), но все же подход описан верно.

Гораздо эффективнее, если система сама сможет перенастраиваться, т. е. выбирать оптимальный алгоритм обслуживания в зависимости от расчетного времени ожидания. Например, она может сравнить несколько операторских групп по этому параметру и направить вызов в ту, у которой такое время минимально.

Причем заметьте: и супервизор, и система анализируют не реальное, текущее, а расчетное, предполагаемое время ожидания. Таким образом, возникает очень ценная возможность проактивных, а не реактивных действий. Иными словами, можно не ждать возникновения проблем, а попытаться их предотвратить.

Но именно в том, что приходится оперировать не реальным, а только предполагаемым временем ожидания, и заключается вся сложность. Ведь длительность ожидания в очереди в каждый момент зависит от множества труднопредсказуемых составляющих: поведения вызывающих абонентов, длительности разговоров, даже, наконец, поведения и производительности операторов (хотя как раз в последнем случае прогноз сделать легче).

Существуют три основных подхода к определению расчетного времени ожидания:

На основе анализа хронологических данных;

На основе анализа текущей производительности;

На основе комбинирования оперативных и хронологических данных.

Расчет времени ожидания на основе хронологических данных

Методы, основанные на анализе хронологических данных за какой-то интервал времени, например за последние полчаса, оперируют такими показателями, как средняя скорость ответа, заданный уровень обслуживания и т. п. Давайте рассмотрим подробнее распространенный метод Average Speed of Answer (ASA), основанный на определении средней скорости ответа за какой-либо отрезок времени, чаще всего – за последние полчаса. Схематично это выглядит так.

Предположим, в операторский центр поступил вызов определенного типа. Система определяет, что среднее время ожидания для вызовов данного типа за последние полчаса составило 2 минуты, поэтому она экстраполирует этот показатель и на вновь поступивший вызов и прогнозирует, что он тоже прождет 2 минуты. Через каждые полчаса показатель ASA снова пересчитывается.

Такая схема вполне работоспособна, но лишь в случае постоянной равномерной нагрузки. Однако, как мы уже не раз говорили, для операторского центра такое положение вещей – идеальное и потому недостижимое. А как только происходит скачкообразное нарастание потока вызовов, любой метод, основанный на анализе не текущей, а уже прошедшей ситуации, начинает буксовать. Ведь оперативная ситуация резко изменилась и оказалась достаточно далека от той, что была 10, а тем более 20 минут назад. И чем дальше, тем больше расчетное время ожидания расходится с реальным.

Схематично данный процесс показан на рисунке 3.4.

Рис. 3.4. Графики реального и расчетного времени ожидания, определенные по методу ASA

Из приведенного графика видно, сколь неточно работает данная методика. Например, уже для 30-го звонка предполагаемое время ожидания, рассчитанное по методу ASA, может составить 3 минуты, в то время как в действительности оно будет равно 13 минутам. Разве можно принимать адекватные решения, базируясь на такой недостоверной информации?

Расчет времени ожидания на основе оперативной ситуации

При использовании методов, основанных на анализе производительности в данный момент времени, оперируют такими показателями, как число вызовов в очереди, время, которое провел в очереди самый ранний вызов, и т. п. Метод, построенный на анализе времени ожидания самого раннего вызова (Oldest Call Waiting, OCW), является наиболее популярным. Давайте рассмотрим его подробнее.

Предположим, в операторский центр поступил вызов определенного типа. Система определяет, что к данному моменту самый ранний вызов этого типа уже ожидает в очереди 2 минуты, поэтому она экстраполирует данный показатель и на вновь прибывший вызов, прогнозируя, что он тоже прождет 2 минуты.

На первый взгляд неплохая схема, но тоже лишь в случае равномерной нагрузки. Если она становится пиковой, использование этого метода дает неточные результаты.

Дело в том, что он основан на следующем предположении: вызов, стоящий в очереди самым последним, будет ждать обслуживания столько же, сколько и самый первый. Но за то время, пока этот последний вызов доберется до начала очереди, может произойти множество изменений, например в числе работающих операторов, количестве вызовов в очереди, времени обслуживания вызова и т. д. Поэтому чем длиннее очередь, тем хуже работает метод OCW.

Схематично данный процесс показан на рисунке 3.5.

Рис. 3.5. Графики реального и расчетного времени ожидания, определенные по методу OCW

Из приведенного графика видно, что хотя метод, основанный на анализе оперативной ситуации, работает немного лучше, чем построенный на анализе хронологических данных (например, для 30-го вызова соотношение между предполагаемым и реальным временем ожидания составит 6,5 против 13 минут вместо 3 против 13 минут по методу ASA), все равно его точности не хватает для эффективного управления операторским центром.

Расчет времени ожидания на основе одновременного анализа хронологических и оперативных данных

Как следует из двух предыдущих разделов, анализ оперативных и хронологических данных по отдельности не дает сколько-нибудь пригодного результата для расчета предполагаемого времени ожидания в очереди, а следовательно, и оснований для того, чтобы предпринять адекватные действия по перенастройке операторского центра и его адаптации к изменению нагрузки. Возникает естественный вопрос: а что, если эти два подхода скомбинировать? Сделать это очень непросто, потому что надо принять во внимание как минимум следующие факторы:

Число работающих операторов;

Время обработки вызовов;

Частоту поступления вызовов с учетом их приоритетности;

Параметры потерянных вызовов (их количество и время, после которого абоненты вешают трубку, не дождавшись ответа);

Возможность постановки вызовов в очередь в несколько групп одновременно;

Возможность работы операторов в нескольких группах одновременно и др.

Давайте посмотрим теперь, что получится. Назовем такой комбинированный метод просто Expected Wait Time (EWT). На рисунке 3.6 показаны графики реального и предполагаемого времени ожидания, рассчитанного по методам ASA, OCW и EWT. Эти графики свидетельствуют о том, что метод, основанный на комбинированном анализе хронологических и оперативных данных, работает точнее всего.

Рис. 3.6. Графики реального и расчетного времени ожидания, определенные по методам ASA, OCW, EWT

И это вполне объяснимо. Пользуясь хронологическими методами расчета (типа ASA), вы можете понять, что у вас только что были проблемы. Пользуясь методами расчета на основе оперативных данных (типа OCW), вы можете понять, что у вас сейчас есть проблемы . Пользуясь комбинированным методом, вы можете понять, что у вас могут возникнуть проблемы . Ну а кто предупрежден, тот вооружен!

Целесообразность использования расчетного времени ожидания

К сожалению, несмотря на высокую точность определения расчетного времени ожидания, а также на важность его использования для маршрутизации вызовов и оповещения абонентов, метод EWT имеет некоторые ограничения.

Так, его нецелесообразно использовать при малом числе вызовов (так как при этом время ожидания чаще всего просто равно нулю, ибо нет никакой очереди) и при малом числе операторов. EWT следует применять, когда одновременно работают не меньше 15, а еще лучше – 20 операторов. В противном случае пострадает точность расчета EWT. Во-первых, будет не хватать чисто статистической «пищи». Во-вторых, очень большое значение приобретут различные субъективные характеристики поведения как вызывающих абонентов, так и операторов.

Вообще, как и в любом статистическом методе, чем больше число работающих операторов, тем точнее рассчитывается предполагаемое время ожидания в очереди.

Кроме того, поскольку EWT определяется на основе как оперативной, так и хронологической информации, могут возникнуть трудности при первоначальном вводе системы в эксплуатацию или при добавлении новой операторской группы. Дело в том, что в этих случаях будет некоторое время «хромать» хронологическая составляющая, поскольку ей просто еще неоткуда взяться. Точно так же негативное влияние на точность показателя EWT будут оказывать крупные реорганизации операторских групп. Кстати, на эти обстоятельства следует обратить особое внимание, если для расчета предполагаемого времени ожидания вы пользуетесь хронологическими методами типа рассмотренного выше способа расчета на основе средней скорости ответа ASA.

Расчетное время ожидания на уровне группы и на уровне вызова

Расчетное время ожидания может быть определено:

На уровне каждого отдельного вызова;

На уровне отдельной операторской группы.

Это могут быть два совершенно разных значения, хотя иногда они могут и совпадать. EWT на уровне операторской группы означает время, в течение которого новый вызов будет ожидать в очереди, чтобы получить ответ оператора, входящего в эту конкретную группу. EWT на уровне вызова означает время, в течение которого данный конкретный вызов будет ожидать в очереди.

Поясним нашу мысль. Предположим, есть две операторские группы: № 1 и № 2. Расчетное время ожидания для первой группы (EWT1) составляет 2 минуты, для второй (EWT2) – 1,5 минуты. Это означает, что если бы сейчас в группу № 1 поступил новый вызов, то он прождал бы ответа ее оператора 2 минуты. Соответственно, если бы вызов поступил в группу № 2, то он прождал бы 1,5 минуты.

Теперь предположим, что вызов, о котором мы столько говорили, наконец поступил. Какое у него будет расчетное время ожидания? Здесь возможны три варианта:

Если этот вызов может быть обслужен только операторами из группы № 1, то его расчетное время будет равно расчетному времени ожидания именно для этой группы, т. е. 2 минутам;

Если этот вызов может быть обслужен только операторами из группы № 2, то его расчетное время будет равно расчетному времени ожидания именно для этой группы, т. е. 1,5 минутам;

Если же этот вызов может быть обслужен операторами из обеих групп, то его расчетное время будет равно минимальному EWT для каждой группы. Таким образом, поскольку EWT2 < EWT1, то в качестве EWT вызова будет выбрано значение EWT2, т. е. 1,5 минуты.

Влиять на EWT вызова супервизор, естественно, не может, в то время как на EWT группы – вполне.

Факторы, влияющие на расчетное время ожидания

Начнем, как водится, с хорошего – с уменьшения EWT. На уменьшение расчетного времени ожидания могут влиять следующие факторы (некоторые из них вполне очевидны, а некоторые не очень):

Уменьшение числа вызовов в очереди;

Увеличение числа операторов;

Сокращение времени разговора;

Увеличение числа потерянных вызовов (на первый взгляд выглядит странно, но если немного подумать, то понятно);

Уменьшение доли вызовов с самым высоким уровнем приоритета;

Уменьшение числа вызовов, пропущенных операторами.

Теперь перейдем к факторам, негативно влияющим на EWT, т. е. вызывающим его увеличение. В принципе, тут существует обратная зависимость:

Увеличение числа вызовов в очереди;

Уменьшение числа операторов (по любой причине: кто-то вышел из системы, кто-то ушел на перерыв и т. п.);

Увеличение времени разговора;

Сокращение числа потерянных вызовов;

Увеличение доли вызовов с самым высоким уровнем приоритета;

Увеличение числа вызовов, пропущенных операторами.

Коротко о главном

Основной принцип организации очереди – обрабатывать как можно большее число вызовов как можно меньшим числом операторов без ухудшения качества обслуживания и перегрузки сотрудников ЦОВ.

Очередь – нормальное явление в колл-центре. Однако необходимо эффективно управлять ее длиной за счет правильного планирования ресурсов, соблюдения дисциплины и реализации эффективных алгоритмов обслуживания вызовов.

В случае возникновения перегрузки лучше воспользоваться сигналом «занято», чем речевой почтой.

При оценке эффективности обслуживания не следует полагаться на усредненные показатели типа средней скорости ответа ASA. Важно исследовать уровень обслуживания, максимальные задержки с ответом и профиль вызовов.

Расчетное время ожидания – важнейший параметр, благодаря которому можно в значительной мере повысить эффективность обслуживания вызовов.

Существуют три основных метода определения расчетного времени ожидания: на основе анализа хронологических данных, на основе анализа текущей производительности и на основе комбинирования оперативных и хронологических данных.

Наиболее точно расчетное время ожидания определяется по методу, основанному на анализе одновременно хронологических и оперативных данных.

Рассмотрим n - канальную систему массового обслуживания с ожиданием.

Интенсивность потока обслуживания равна μ. Длительность обслуживания – случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий.

Размер очереди допускает нахождение в ней m заявок.

Для нахождения предельных вероятностей можно использовать следующие выражения.

(0‑1)

где.

Вероятность отказа в обслуживании заявки (отказ произойдет в случае, если все каналы заняты и в очереди находятся m заявок):

(0‑2)

Относительная пропускная способность .

(0‑3)

Абсолютная пропускная способность .

(0‑4)

Среднее число занятых каналов.

Для СМО с очередью среднее число занятых каналов не совпадает (в отличие от СМО с отказами) со средним числом заявок в системе. Отличие равно числу заявок, ожидающих в очереди.

Обозначим среднее число занятых каналов. Каждый занятый канал обслуживает в среднем μ заявок в единицу времени, а СМО в целом – А заявок в единицу времени. Разделив А на μ получим

(0‑5)

Среднее число находящихся в очереди заявок.

Для нахождения среднего числа ожидающих в очереди заявок в случае, если χ≠1, можно использовать выражение:

(0‑6)

(0‑7)

где = .

Среднее число находящихся в системе заявок.

(0‑8)

Среднее время ожидания заявки в очереди .

Среднее время ожидания заявки в очереди можно найти из выражения (χ≠1).

(0‑9)

Среднее время пребывания заявки в системе.

Так же как и в случае с одноканальной СМО имеем:

(0‑10)

Содержание работы .

Подготовка инструментария эксперимента .

Выполняется в соответствии с общими правилами.

Расчет на аналитической модели .

1. В приложение Microsoft Excel подготовьте таблицу следующего вида.

Параметры
СМО

Аналитическая
модель

Имитационная
модель

n

m

T a

Ts

ρ

χ

P0

P1

p2

Pотк

W

nож

q

A

Pотк

W

q

A

2. В столбцах для параметров СМО таблицы запишите свои исходные данные, которые определяются по правилу:

n =1,2,3

m=1,3,5

Для каждой комбинации { n ,m} необходимо найти теоретические и экспериментальные значения показателей СМО для таких пар значений:

= <порядковый номер в списке группы>

3. В столбцы с показателями аналитической модели впишите соответствующие формулы.

Эксперимент на имитационной модели .

1. Установите режим запусков с экспоненциально распределенным временем обслуживания, задав значение соответствующего параметра равным 1.

2. Для каждой комбинации n, m, и осуществите запуск модели.

Результаты запусков внесите в таблицу.

3. Внесите в соответствующие столбцы таблицы формулы для расчета среднего значения показателя Pотк, q и А.

Анализ результатов .

1. Проанализируйте результаты, полученные теоретическим и экспериментальным способами, сравнив результаты между собой.

2. Для одной из комбинаций {n,m} постройте на одной диаграмме графики зависимости Pотк от на теоретически и экспериментально полученных данных.

Оптимизация параметров СМО .

Решите задачу оптимизации размера числа мест в очереди m для двух приборов со средним временем обслуживания = с точки зрения получения максимальной прибыли. В качестве условий задачи возьмите:

- доход от обслуживания одной заявки равным 80у.е./час,

- стоимость содержания одного прибора - 1у.е./час,

- стоимость содержания одного места в очереди – 0.2у.е./час.

1. Для расчетов целесообразно создать таблицу:

Первый столбец заполняется значениями числа приборов n =1.

Второй столбец заполняется значениями чисел натурального ряда (1,2,3…).

Все клетки третьего и четвертого столбцов заполняются значениями.

В клетки столбцов с пятого по четырнадцатый переносятся формулы для столбцов таблицы раздела 0.

В столбцы с исходными данными разделов Доход, Расход, Прибыль внесите значения (см. выше).

В столбцах с вычисляемыми значениями разделов Доход, Расход, Прибыль запишите расчетные формулы:

- число заявок в единицу времени

N r =A

- суммарный доход в единицу времени

I S = I r *N r

- суммарный расход в единицу времени

E S =E s *n + E q *m

- прибыль в единицу времени

P = I S - E S

где

I r - доход от одной заявки ,

E s - расход на один прибор ,

E q - расход на одно место в очереди

2. Заполните строки таблицы для n=2 и n=3.


Найдите m опт для n =1 ,2,3.

3. Постройте на одной диаграмме графики зависимости C(m) для n=1,2,3.

Отчет по работе :

Отчет по работе должен включать:

- исходные данные,

- результаты расчетов и экспериментов с программной моделью,

Графики для P отк ,

- таблицу с данными для нахождения наилучшего m и значение m опт,

- графики зависимости прибыли в единицу времени от m для n=1,2,3.

Контрольные вопросы :

1) Дайте краткое описание многоканальной модели СМО с ограниченной очередью.

2) Какими показателями характеризуется функционирование многоканальной СМО с ограниченной очередью?

3) Как рассчитываются предельные вероятности многоканальной СМО с ограниченной очередью?

4) Как найти вероятность отказа обслуживания заявки?

5) Как найти относительную пропускную способность?

6) Чему равна абсолютная пропускная способность?

7) Как подсчитывается среднее число заявок в системе?

8) Приведите примеры многоканальной СМО с ограниченной очередью.

Задачи .

1) На автозаправочной станции установлены 3 колонки и площадка на 3 автомобиля для ожидания заправки. В среднем на станцию прибывает одна машина каждые 4 минуты. Среднее время обслуживания одной машины - 2,8 мин. Определить характеристики работы автозаправочной станции.

2) На станцию технического осмотра автомобилей, имеющего 3 смотровых поста, в среднем поступает 1 автомобиль за 0,4 часа. Стоянка во дворе вмещает 3 машины. Среднее время работы одного поста - 0,5 часа. Определить характеристики работы СТО.

3) В магазин осуществляется завоз товаров автомобилями. В течение дня прибывают в среднем 6 машин. Подсобные помещения для подготовки товаров к продаже позволяют обрабатывать и хранить товар, привезенный двумя машинами. В магазине работают посменно три фасовщика товаров, каждый из которых в среднем может обрабатывать товар одной машины в течение 5 часов. Продолжительность рабочего дня фасовщиков составляет 12 часов. Определить характеристики работы магазина, а также, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была больше 0,96.

4) В магазине работают три кассы. Среднее время обслуживания одного покупателя - 3 мин. Интенсивность потока покупателей - 7 человек в минуту. Число покупателей, стоящих в очереди к кассе, не может превышать 5 человек. Покупатель, пришедший в магазин, в котором в каждой очереди в кассу 5 человек, не ждет, а уходит из магазина. Определить характеристики работы магазина.

5) Оптовый склад производит отпуск товаров клиентам. Погрузку автомашины осуществляют три бригады грузчиков, каждая из которых состоит из 4 человек. Склад одновременно вмещает 5 автомашин и, если в это время прибывает новая автомашина, то она не обслуживается. Интенсивность входящего потока составляет 5 автомашин в час. Интенсивность по грузки составляет 2 автомашины в час. Дайте оценку работы склада и вариант его реорганизации.

6) Таможня располагает тремя терминалами. Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 30 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 3 часа. Если в очереди на прохождение таможенного контроля стоят 5 автомашин, то приезжающие автомашины уезжают на другую таможню. Найти показатели эффективности работы таможни.

7) На строительную площадку в среднем через 40 мин прибывают автомашины со строительным материалом. Среднее время разгрузки одной автомашины составляет 1,8 часа. В разгрузке принимают участие две бригады грузчиков. На территории строительной площадки может находиться в очереди на разгрузку не более 5 автомашин. Определить показатели эффективности работы строительной площадки.

8) На мойку, имеющую три рабочих места, в среднем в час приезжает 12 автомашин. Если в очереди уже находится 6 автомашин, вновь приезжающие автомобили не встают в очередь, а покидают мойку. Среднее время мойки автомашины составляет 20 мин, средняя стоимость услуг мойки - 150 руб. Определить показатели эффективности работы мойки и среднюю величину потери выручки в течение рабочего дня (с 9 до 19 часов).

9) Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 50 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 2,8 часа. Максимальная очередь на прохождение таможенного контроля должна быть не более 8 автомашин. Определить, какое количество терминалов надо открыть на таможне, чтобы вероятность простоя автомашин была минимальна.