Формула бернулли теория вероятности примеры. Схема Бернулли

Формула Бернулли - формула в теории вероятностей , позволяющая находить вероятность появления события A {\displaystyle A} при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли , который вывел эту формулу.

Энциклопедичный YouTube

    1 / 3

    ✪ Теория вероятностей. 22. Формула Бернулли. Решение задач

    ✪ Формула Бернулли

    ✪ 20 Повторение испытаний Формула Бернулли

    Субтитры

Формулировка

Теорема. Если вероятность p {\displaystyle p} наступления события A {\displaystyle A} в каждом испытании постоянна, то вероятность P k , n {\displaystyle P_{k,n}} того, что событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, равна: P k , n = C n k ⋅ p k ⋅ q n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}} , где q = 1 − p {\displaystyle q=1-p} .

Доказательство

Пусть проводится n {\displaystyle n} независимых испытаний, причём известно, что в результате каждого испытания событие A {\displaystyle A} наступает с вероятностью P (A) = p {\displaystyle P\left(A\right)=p} и, следовательно, не наступает с вероятностью P (A ¯) = 1 − p = q {\displaystyle P\left({\bar {A}}\right)=1-p=q} . Пусть, так же, в ходе испытаний вероятности p {\displaystyle p} и q {\displaystyle q} остаются неизменными. Какова вероятность того, что в результате n {\displaystyle n} независимых испытаний, событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз?

Оказывается можно точно подсчитать число "удачных" комбинаций исходов испытаний, для которых событие A {\displaystyle A} наступает k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, - в точности это количество сочетаний из  n {\displaystyle n}  по  k {\displaystyle k} :

C n (k) = n ! k ! (n − k) ! {\displaystyle C_{n}(k)={\frac {n!}{k!\left(n-k\right)!}}} .

В то же время, так как все испытания независимы и их исходы несовместимы (событие A {\displaystyle A} либо наступает, либо нет), то вероятность получения "удачной" комбинации в точности равна: .

Окончательно, для того чтобы найти вероятность того, что в n {\displaystyle n} независимых испытаниях событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз, нужно сложить вероятности получения всех "удачных" комбинаций. Вероятности получения всех "удачных" комбинаций одинаковы и равны p k ⋅ q n − k {\displaystyle p^{k}\cdot q^{n-k}} , количество "удачных" комбинаций равно C n (k) {\displaystyle C_{n}(k)} , поэтому окончательно получаем:

P k , n = C n k ⋅ p k ⋅ q n − k = C n k ⋅ p k ⋅ (1 − p) n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}=C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k}} .

Последнее выражение есть не что иное, как Формула Бернулли. Полезно также заметить, что в силу полноты группы событий, будет справедливо:

∑ k = 0 n (P k , n) = 1 {\displaystyle \sum _{k=0}^{n}(P_{k,n})=1} .

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Пусть относительно события А проводится n испытаний. Введем события: Аk -- событие А осуществилось при k-том испытании, $ k=1,2,\dots , n$. Тогда $\bar{A}_{k} $ - противоположное событие (событие А не осуществилось при k-том испытании, $k=1,2,\dots , n$).

Что такое однотипные и независимые испытания

Определение

Испытания называются однотипными по отношению к событию А, если вероятности событий $А1, А2, \dots , Аn$ совпадают: $Р(А1)=Р(А2)= \dots =Р(Аn)$ (т.е. вероятность появления события А в одном испытании постоянна во всех испытаниях).

Очевидно, что в этом случае вероятности противоположных событий также совпадают: $P(\bar{A}_{1})=P(\bar{A}_{2})=...=P(\bar{A}_{n})$.

Определение

Испытания называются независимыми по отношению к событию А, если события $А1, А2, \dots , Аn$ независимы.

В этом случае

При этом равенство сохраняется при замене любого события Аk на $\bar{A}_{k} $.

Пусть по отношению к событию А проводится серия из n однотипных независимых испытаний. Ведем обозначения: р -- вероятность осуществления события А в однoм испытании; q -- вероятность противоположного события. Таким образом, Р(Ак)=р, $P(\bar{A}_{k})=q$ для любого k и p+q=1.

Вероятность того, что в серии из n испытаний событие А осуществится ровно k раз (0 ≤ k ≤ n), вычисляется по формуле:

$P_{n} (k)=C_{n}^{k} p^{k} q^{n-k} $ (1)

Равенство (1) называется формулой Бернулли.

Вероятность того, что в серии из n однoтипных независимых испытаний событие А осуществится не менее k1 раз и не более k2 раз, вычисляется по формуле:

$P_{n} (k_{1} \le k\le k_{2})=\sum \limits _{k=k_{1} }^{k_{2} }C_{n}^{k} p^{k} q^{n-k} $ (2)

Применение формулы Бернулли при больших значениях n приводит к громоздким вычислениям, поэтому в этих случаях лучше использовать другие формулы -- асимптотические.

Обобщение схемы Бернулли

Рассмотрим обобщение схемы Бeрнулли. Если в серии из n независимых испытаний, каждое из которых имеет m попарно несовместимых и возможных результатов Аk с соответствующими вероятностями Рk= рk(Аk). То справедлива формула полиномиального расспредиления:

Пример 1

Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из 6 сoтрудников фирмы заболеют

  1. ровно 4 сотрудника;
  2. не более 4-х сотрудников.

Решение. 1) Очевидно, что для решения данной задачи применима формула Бернулли, где n=6; k=4; р=0,4; q=1-р=0,6. Применяя формулу (1), получим: $P_{6} (4)=C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,138$.

Для решения этой задачи применима формула (2), где k1=0 и k2=4. Имеем:

\[\begin{array}{l} {P_{6} (0\le k\le 4)=\sum \limits _{k=0}^{4}C_{6}^{k} p^{k} q^{6-k} =C_{6}^{0} \cdot 0,4^{0} \cdot 0,6^{6} +C_{6}^{1} \cdot 0,4^{1} \cdot 0,6^{5} +C_{6}^{2} \cdot 0,4^{2} \cdot 0,6^{4} +} \\ {+C_{6}^{3} \cdot 0,4^{3} \cdot 0,6^{3} +C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,959.} \end{array}\]

Следует заметить, что эту задачу проще решать, используя противоположное событие -- заболело более 4-х сотрудников. Тогда с учетом формулы (7) о вероятностях противоположных событий получим:

Ответ:$\ 0,959$.

Пример 2

В урнe 20 белых и 10 черных шаров. Вынули 4 шара , причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых рисунок 1.

Рисунок 1.

Решение. Пусть событие А состоит в том, что -- достали белый шар. Тогда вероятности $D (A)=\frac{2}{3} ,\, \, D (\overline{A})=1-\frac{2}{3} =\frac{1}{3} $.

По формуле Бернулли требуемая вероятность равна $D_{4} (2)=N_{4}^{2} \left(\frac{2}{3} \right)^{2} \left(\frac{1}{3} \right)^{2} =\frac{8}{27} $.

Ответ: $\frac{8}{27} $.

Пример 3

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки $\partial =\frac{1}{2} ,\, q=\frac{1}{2} $-вероятность рождения мальчика. В семье не больше трех девочек означает, что девочек родилась либо одна, либо две, либо три, либо в семье все мальчики.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки: $D_{5} (0)=q^{5} =\frac{1}{32} $,

\ \ \

Следовательно, искомая вероятность $D =D_{5} (0)+D_{5} (1)+D_{5} (2)+D_{5} (3)=\frac{13}{16} $.

Ответ: $\frac{13}{16} $.

Пример 4

Первый стрeлок при одном выстриле может попасть в десятку с вероятностью 0,6 в девятку с вероятностью 0,3, а в восьмерку с вероятностью 0,1. Какая вероятность того, что при 10 выстрелах он попадет в десятку шесть раз, в девятку три раза и в восьмерку 1 раз?

Производится n опытов по схеме Бернулли с вероятностью успеха p . Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: , где C m n - число сочетаний из n по m .
Ряд распределения имеет вид:

x 0 1 ... m n
p (1-p) n np(1-p) n-1 ... C m n p m (1-p) n-m p n
Этот закон распределения называется биноминальным .

Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np формула Пуассона.

Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1 . Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x) .
Решение . Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P 3 (0) = (1-p) n = (1-0.3) 3 = 0.34
P 3 (1) = np(1-p) n-1 = 3(1-0.3) 3-1 = 0.44

P 3 (3) = p n = 0.3 3 = 0.027

x i 0 1 2 3
p i 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.34 + 1 2 *0.44 + 2 2 *0.19 + 3 2 *0.027 - 0.9 2 = 0.63
Среднее квадратическое отклонение σ(x) .

Функция распределения F(X) .
F(xF(0F(1F(2F(x>3) = 1
  1. Вероятность появления события в одном испытании равна 0.6 . Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2 . Вероятность появления события в отдельном испытании равна 0.6 . Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1 , больше 0.97 . (Ответ: 801)

Пример №3 . Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение . Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4 . Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2) . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание . Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5 . Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99 . Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

Рассмотрим Биномиальное распределение, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL БИНОМ.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения p, математического ожидания распределения и стандартного отклонения. Также рассмотрим распределение Бернулли.

Определение . Пусть проводятся n испытаний, в каждом из которых может произойти только 2 события: событие «успех» с вероятностью p или событие «неудача» с вероятностью q =1-p (так называемая Схема Бернулли, Bernoulli trials ).

Вероятность получения ровно x успехов в этих n испытаниях равна:

Количество успехов в выборке x является случайной величиной, которая имеет Биномиальное распределение (англ. Binomial distribution ) p и n являются параметрами этого распределения.

Напомним, что для применения схемы Бернулли и соответственно Биномиального распределения, должны быть выполнены следующие условия:

  • каждое испытание должно иметь ровно два исхода, условно называемых «успехом» и «неудачей».
  • результат каждого испытания не должен зависеть от результатов предыдущих испытаний (независимость испытаний).
  • вероятность успеха p должна быть постоянной для всех испытаний.

Биномиальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Биномиального распределения имеется функция БИНОМ.РАСП() , английское название - BINOM.DIST(), которая позволяет вычислить вероятность того, что в выборке будет ровно х «успехов» (т.е. функцию плотности вероятности p(x), см. формулу выше), и интегральную функцию распределения (вероятность того, что в выборке будет x или меньше «успехов», включая 0).

До MS EXCEL 2010 в EXCEL была функция БИНОМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). БИНОМРАСП() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и .

Биномиальное распределения имеет обозначение B (n ; p ) .

Примечание : Для построения интегральной функции распределения идеально подходит диаграмма типа График , для плотности распределения Гистограмма с группировкой . Подробнее о построении диаграмм читайте статью Основные типы диаграмм.

Примечание : Для удобства написания формул в файле примера созданы Имена для параметров Биномиального распределения : n и p.

В файле примера приведены различные расчеты вероятности с помощью функций MS EXCEL:

Как видно на картинке выше, предполагается, что:

  • В бесконечной совокупности, из которой делается выборка, содержится 10% (или 0,1) годных элементов (параметр p , третий аргумент функции =БИНОМ.РАСП() )
  • Чтобы вычислить вероятность, того что в выборке из 10 элементов (параметр n , второй аргумент функции) будет ровно 5 годных элементов (первый аргумент), нужно записать формулу: =БИНОМ.РАСП(5; 10; 0,1; ЛОЖЬ)
  • Последний, четвертый элемент, установлен =ЛОЖЬ, т.е. возвращается значение функции плотности распределения .

Если значение четвертого аргумента =ИСТИНА, то функция БИНОМ.РАСП() возвращает значение интегральной функции распределения или просто Функцию распределения . В этом случае можно рассчитать вероятность того, что в выборке количество годных элементов будет из определенного диапазона, например, 2 или меньше (включая 0).

Для этого нужно записать формулу:
= БИНОМ.РАСП(2; 10; 0,1; ИСТИНА)

Примечание : При нецелом значении х, . Например, следующие формулы вернут одно и тоже значение:
=БИНОМ.РАСП(2 ; 10; 0,1; ИСТИНА)
=БИНОМ.РАСП(2,9 ; 10; 0,1; ИСТИНА)

Примечание : В файле примера плотность вероятности и функция распределения также вычислены с использованием определения и функции ЧИСЛКОМБ() .

Показатели распределения

В файле примера на листе Пример имеются формулы для расчета некоторых показателей распределения:

  • =n*p;
  • (квадрата стандартного отклонения) = n*p*(1-p);
  • = (n+1)*p;
  • =(1-2*p)*КОРЕНЬ(n*p*(1-p)).

Выведем формулу математического ожидания Биномиального распределения , используя Схему Бернулли .

По определению случайная величина Х в схеме Бернулли (Bernoulli random variable) имеет функцию распределения :

Это распределение называется распределение Бернулли .

Примечание : распределение Бернулли частный случай Биномиального распределения с параметром n=1.

Сгенерируем 3 массива по 100 чисел с различными вероятностями успеха: 0,1; 0,5 и 0,9. Для этого в окне Генерация случайных чисел установим следующие параметры для каждой вероятности p:

Примечание : Если установить опцию Случайное рассеивание (Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию =25 можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца по 100 чисел, на основании которых можно, например, оценить вероятность успеха p по формуле: Число успехов/100 (см. файл примера лист ГенерацияБернулли ).

Примечание : Для распределения Бернулли с p=0,5 можно использовать формулу =СЛУЧМЕЖДУ(0;1) , которая соответствует .

Генерация случайных чисел. Биномиальное распределение

Предположим, что в выборке обнаружилось 7 дефектных изделий. Это означает, что «очень вероятна» ситуация, что изменилась доля дефектных изделий p , которая является характеристикой нашего производственного процесса. Хотя такая ситуация «очень вероятна», но существует вероятность (альфа-риск, ошибка 1-го рода, «ложная тревога»), что все же p осталась без изменений, а увеличенное количество дефектных изделий обусловлено случайностью выборки.

Как видно на рисунке ниже, 7 – количество дефектных изделий, которое допустимо для процесса с p=0,21 при том же значении Альфа . Это служит иллюстрацией, что при превышении порогового значения дефектных изделий в выборке, p «скорее всего» увеличилось. Фраза «скорее всего» означает, что существует всего лишь 10% вероятность (100%-90%) того, что отклонение доли дефектных изделий выше порогового вызвано только сучайными причинами.

Таким образом, превышение порогового количества дефектных изделий в выборке, может служить сигналом, что процесс расстроился и стал выпускать бо льший процент бракованных изделий.

Примечание : До MS EXCEL 2010 в EXCEL была функция КРИТБИНОМ() , которая эквивалентна БИНОМ.ОБР() . КРИТБИНОМ() оставлена в MS EXCEL 2010 и выше для совместимости.

Связь Биномиального распределения с другими распределениями

Если параметр n Биномиального распределения стремится к бесконечности, а p стремится к 0, то в этом случае Биномиальное распределение может быть аппроксимировано .
Можно сформулировать условия, когда приближение распределением Пуассона работает хорошо:

  • p <0,1 (чем меньше p и больше n , тем приближение точнее);
  • p >0,9 (учитывая, что q =1- p , вычисления в этом случае необходимо производить через q х нужно заменить на n - x ). Следовательно, чем меньше q и больше n , тем приближение точнее).

При 0,1<=p<=0,9 и n*p>10 Биномиальное распределение можно аппроксимировать .

В свою очередь, Биномиальное распределение может служить хорошим приближением , когда размер совокупности N Гипергеометрического распределения гораздо больше размера выборки n (т.е., N>>n или n/N<<1).

Подробнее о связи вышеуказанных распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .