Курсовая работа: Дисперсионный анализ. Однофакторный дисперсионный анализ

ДИСПЕРСИОННЫЙ АНАЛИЗ

в математической статистике - статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов. Первоначально Д. а. был предложен Р. Фишером для обработки результатов агрономич. опытов по выявлению условий, при к-рых испытываемый сорт сельскохозяйственной культуры дает максимальный урожай. Современные приложения Д. а. охватывают широкий задач экономики, социологии, биологии и техники и трактуются обычно в терминах статистич. теории выявления систематич. различий между результатами непосредственных измерений, выполненных при тех пли иных меняющихся условиях.

Если значения неизвестных постоянных a 1 , ... , a I могут быть измерены с помощью различных методов или измерительных средств М 1 ,. .., M J , и в каждом случае систематич. ошибка b ij может, вообще говоря, зависеть как от выбранного метода Mj, так и от неизвестного измеряемого значения а i , то результаты таких измерений представляют собой суммы вида

где К- количество независимых измерений неизвестной величины а i методом M j , a у ijk - случайная ошибка k-го измерения величины а i методом M j (предполагается, что все y ijk - независимые одинаково распределенные случайные величины, имеющие нулевое математич. ожидание: Е у ijk =0). Такая линейная наз. двухфакторной схемой Д. а.; первый - истинное значение измеряемой величины, второй - метод измерения, причем в данном случае для каждой возможной комбинации значений первого и второго факторов осуществляется одинаковое количество Кнезависимых измерений (это допущение для целей Д. а. не является существенным и введено здесь лишь ради простоты изложения).

Примером подобной ситуации могут служить спортивные соревнования I спортсменов, мастерство к-рых оценивается J судьями, причем каждый участник соревнований выступает Краз (имеет К"попыток"). В этом случае а i - истинное значение показателя мастерства спортсмена с номером i, b ij - систематич. ошибка, вносимая в оценку мастерства i -го спортсмена судьей с номером j, x ijk - оценка, выставленная j -м судьей г-му спортсмену после выполнений последним k-й попытки, а y ijk - соответствующая случайная . Подобная типична для так наз. субъективной экспертизы качества нескольких объектов, осуществляемой группой независимых экспертов. Другой пример - статистич. исследование урожайности сельскохозяйственной культуры в зависимости от одного из J сортов почвы и J методов ее обработки, причем для каждого сорта г почвы и каждого метода обработки с номером J осуществляется kнезависимых экспериментов (в этом примере b ij - истинное значение урожайности для г-го сорта почвы при j-м способе обработки, x ijk - соответствующая экспериментально наблюдаемая урожайность в k-м опыте, а y ijk - ее случайная ошибка, возникающая из-за тех или иных случайных причин; что же касается величин а i , то в агрономич. опытах их разумно считать равными нулю).

Положим c ij =a i +b ij , и пусть с i *, с *j и с ** - результаты осреднений с ij по соответствующим индексам, т. е.

Пусть, кроме того, a=c ** , b i = с i* - с ** , g j = с *j -с ** и d ij = с ij - с i* - с *j +c ** . Идея Д. а. основана на очевидном тождестве

Если символом (c ij )обозначить размерности IJ , получаемый из матрицы ||с ij || порядка IXJ с помощью какого-либо заранее фиксированного способа упорядочивания ее элементов, то (1) можно записать в виде равенства где все векторы имеют IJ , причем a ij =a, b ij =b i , g ij =g j . Так как четыре вектора в правой части (2) ортогональны, то a ij =a - наилучшее приближение функции c ij от аргументов i и j постоянной величиной [в смысле минимальности суммы квадратов отклонений ]. В том же смысле a ij +b ij =a+b i - наилучшее c ij функцией, зависящей лишь от i, a ij +g ij =a+g j - наилучшее приближение c ij функцией, зависящей лишь от j, a a ij +b ij +g ij =a+b i +g j - наилучшее приближение c ij суммой функций, из к-рых одна (напр., a+b i ) зависит лишь от г, а другая - лишь от j. Этот факт, установленный Р. Фишером (см. ) в 1918, позднее послужил основой теории квадратичных приближений функций.

В примере, связанном со спортивными соревнованиями, d ij выражает "взаимодействие" г-го спортсмена и j-го судьи (положительное значение б/у означает "подсуживание", т. с. систематич. завышение /-м судьей оценки мастерства i-го спортсмена, а отрицательное значение б/у означает "засуживание", т. е. систематич. снижение оценки). Равенство всех б/у нулю - необходимое требование, к-рое надлежит предъявлять к работе группы экспертов. В случае же агрономич. опытов такое равенство рассматривается как гипотеза, подлежащая проверке по результатам экспериментов, поскольку основная цель здесь - отыскание таких значений i и j, при к-рых функция (1) достигает максимального значения. Если эта гипотеза верна, то

и значит, выявление наилучших "почвы" и "обработки" может быть осуществлено раздельно, что приводит к существенному сокращению числа экспериментов (напр., можно при каком-либо одном способе обработки испытать все Iсортов "почвы" и определить наилучший сорт, а затем на этом сорте опробовать все J способов "обработки" и найти наилучший способ; общее количество экспериментов с повторениями будет равно (I+J) К). Если же гипотеза {все d ij =0} неверна, то для определения max c ij необходим описанный выше "полный план", требующий при Кповторениях IJК экспериментов.

В ситуации спортивных соревнований функция g ij =g j может трактоваться как систематич. ошибка, допускаемая j-м судьей по отношению ко всем спортсменам. В конечном счете g j - характеристика "строгости" или "либеральности" j-го судьи. В идеале хотелось бы, чтобы все g j были нулевыми, но в реальных условиях приходится мириться с наличием ненулевых значений g j и учитывать это обстоятельство при подведении итогов экспертизы (напр., за основу сравнения мастерства спортсменов можно принять не последовательности истинных значений a+b 1 +g j , ..., a+b I +g j , a лишь результаты упорядочиваний этих чисел по их величине, поскольку при всех j=1, . . . , J такие упорядочивания будут одинаковыми). Наконец, сумма двух оставшихся функций a ij +b ij =a+b i зависит лишь от iи поэтому может быть использована для характеризации мастерства г-го спортсмена. Однако здесь нужно помнить, что Поэтому упорядочивание всех спортсменов по значениям a+b i (или по a+ + b i +g j при каждом фиксированном j) может не совпадать с упорядочиванием по значениям a i . При практической обработке экспертных оценок этим обстоятельством приходится пренебрегать, так как Упомянутый полный план экспериментов не позволяет оценивать отдельно a i и b i* . Таким образом, a+b i =a i + b i* характеризует не только мастерство i -го спортсмена, но и в той или иной мере экспертов к этому мастерству. Поэтому, напр., результаты субъективных экспертных оценок, осуществленных в разное время (в частности, на нескольких Олимпийских играх), едва ли можно считать сопоставимыми. В случае же агрономич. опытов подобные трудности не возникают, поскольку все a i =0 и значит, a+b i =b i* .

Истинные значения функций a, b i , g i и d ij неизвестны и выражаются в терминах неизвестных функций c ij . Поэтому первый этап Д. а. заключается в отыскании статистич. оценок для c ij по результатам наблюдений x ijk .Несмещенная и имеющая минимальную дисперсию для c ij выражается формулой

Так как a, b i , g j и d ij - линейные функции от элементов матрицы ||c ij ||, то несмещенные линейные оценки для этих функций, имеющие минимальную дисперсию, получаются в результате замены аргументов c ij соответствующими оценками, c ij , т. е. причем случайные векторы и определенные так же, как введенные выше (a ij ), (b ij ), (g ij ). и (d ij ), обладают свойством ортогональности, и значит, они представляют собой некоррелированные случайные векторы (иными словами, любые две компоненты, принадлежащие разным векторам, имеют нулевой корреляции). Кроме того, любая вида

некоррелирована с любой из компонент этих четырех векторов. Рассмотрим пять совокупностей случайных величин {x ijk }, {x ijk -x ij* }, Так как

то дисперсии эмпирич. распределений, соответствующих указанным совокупностям, выражаются формулами

Эти эмпирич. дисперсии представляют собой суммы квадратов случайных величин, любые две из к-рых некоррелированы, если только они принадлежат разным суммам; при этом относительно всех y ijk справедливо тождество

объясняющее происхождение термина "Д. а."" Пусть и пусть

в таком случае

где s 2 - дисперсия случайных ошибок y ijk .

На основе этих формул и строится второй этап Д. а., посвященный выявлению влияния первого и второго факторов на результаты эксперимента (в агрономич. опытах первый фактор - сорт "почвы", второй - способ "обработки"). Напр., если требуется проверить гипотезу отсутствия "взаимодействия" факторов, к-рая выражается равенствомто разумно вычислить дисперсионное отношение s 2 3 /s 2 0 = F 3 . Если это отношение значимо отличается от единицы, то проверяемая гипотеза отвергается. Точно так же для проверки гипотезы полезно отношение s 2 2 /s 2 0 = F 2 , к-рое надлежит также сравнить с единицей; если при этом известно, чтото вместо F 2 целесообразно сравнить с единицей отношение

Аналогичным образом можно построить статистику, позволяющую дать заключение о справедливости или ложности гипотезы

Точный смысл понятия значимого отличия указанных отношений от единицы может быть определен лишь с учетом закона распределения случайных ошибок y ijk . В Д. а. наиболее обстоятельно изучена ситуация, в к-рой все y ijk распределены нормально. В этом случае - независимые случайные векторы, а - независимые случайные величины, причем

отношения подчиняются нецентральным распределениям хи-квадрат с f m степенями свободы и параметрами нецентральности l т, m =0, 1, 2, 3, где

Если параметр нецентральности равен нулю, то нецентральное хи-квадрат совпадает с обычным распределением хи-квадрат. Поэтому в случае справедливости гипотезы l 3 =0 отношение подчиняется F-распре делению (распределению дисперсионного отношения) с параметрами f 3 и f 0 . Пусть х- такое число, для к-рого события {F 3 >x} равна заданному значению е, называемому уровнем значимости (таблицы функции х= х (e; f 3 , f 0) имеются в большинстве пособий по математич. статистике). Критерием для проверки гипотезы l 3 =0 служит правило, согласно к-рому эта гипотеза отвергается, если наблюдаемое значение F 3 превышает х;в противном случае гипотеза считается не противоречащей результатам наблюдений. Аналогичным образом конструируются критерии, основанные на статистиках F 2 и F* 2 .

Дальнейшие этапы Д. а. существенно зависят не только от реального содержания конкретной задачи, но также и от результатов статистич. проверки гипотез на втором этапе. Напр., в условиях агрономич. опытов справедливость гипотезы l 3 =0, как указано выше, позволяет более экономно спланировать аналогичные дальнейшие эксперименты (если помимо гипотезы l 3 =0 справедлива также и гипотеза l 2 =0, то это означает, что урожайность зависит лишь от сорта "почвы", и поэтому в дальнейших опытах можно воспользоваться схемой однофакторного Д. а.); если же гипотеза l 3 =0 отвергается, то разумно проверить, нет ли в данной задаче неучтенного третьего фактора? Если сорта "почвы" и способы ее "обработки" варьировались не в одном и том же месте, а в различных географич. зонах, то таким фактором могут быть климатич. или географич. условия, и "обработка" наблюдений потребует применения трехфакторного Д. а.

В случае экспертных оценок статистически подтвержденная справедливость гипотезы l 3 = 0 дает основание для упорядочивания сравниваемых объектов (напр., спортсменов) по значениям величин i=l, . .. , I.

Если же гипотеза l 3 =0 отвергается (в задаче о спортивных соревнованиях это означает статистич. обнаружение "взаимодействия" нек-рых спортсменов и судей), то естественно попытаться перевычнслить все результаты заново, предварительно исключив из рассмотрения x ijk с такими парами индексов (i, j ), для к-рых абсолютные значения статистич. оценок d ij превышают нек-рый заранее установленный допустимый уровень. Это означает, что из матрицы ||x ij* || вычеркиваются нек-рые элементы, и значит, план Д. а. становится неполным.

Модели современного Д. а. охватывают широкий круг реальных экспериментальных схем (напр., схемы неполных планов, со случайно или неслучайно отобранными элементами x ij* ). Соответствующие этим схемам статистич. выводы во многих случаях находятся в стадии разработки. В частности, еще (к 1978) далеки от окончательного решения те задачи, в к-рых результаты наблюдений x ijk =c ij +y ijk не являются одинаково распределенными случайными величинами; еще более трудная задача возникает в случае зависимости величин x ijk . Неизвестно проблемы выбора факторов (даже в линейном случае). Суть этой проблемы заключается в следующем: пусть с=с ( и, v )- и пусть u=u (z, w u=u (z, w )- какие-либо линейные функции от переменных г и w. Фиксируя значения z 1 , . .., z I и w 1 , . . ., w J , можно при каждом заданном выборе линейных функций ии u. определить c ij формулой и построить Д. а. этих величин по результатам соответствующих наблюдений x ijk . Проблема заключается в отыскании таких линейных функций u и u, к-рым соответствует минимальное значение суммы квадратов

где (предполагается, что функция с( и, v )неизвестна). В терминах Д. а. эта проблема сводится к статистич. отысканию таких факторов z=z (u, v w-w (u, v ), к-рым соответствует "наименьшее взаимодействие".

Лит. : Fisher R. A., Statistical methods for research workers, Edinburgh, 1925; Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Xальд А., Математическая с техническими приложениями, пер. с англ., М., 1956; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961.

Л. Н. Большее.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ДИСПЕРСИОННЫЙ АНАЛИЗ" в других словарях:

    Метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия

    - (analysis of variance) Статистический метод, основанный на разложении общей дисперсии (variance) какой либо характеристики населения на составные части, коррелирующие с другими характеристиками, и остаточную вариацию (residual variation). В… … Экономический словарь

    Один из методов математической статистики, применяемый для анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, к рые не поддаются, как правило, количеств. описанию. Рассмотрим простейшую из задач Д. а. Пусть … Физическая энциклопедия

    Дисперсионный анализ - раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Д.а. возник как средство обработки результатов… … Экономико-математический словарь

    дисперсионный анализ - — дисперсионный анализ Раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного,… … Справочник технического переводчика

Дисперсионный анализ

1. Понятие дисперсионного анализа

Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

2. Однофакторный дисперсионный анализ для несвязан­ных выборок

2.1. Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Гипотезы

H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

Количество воспроизведенных слов Таблица 1

№ испытуемого

низкая скорость

средняя скорость

высокая скорость

Общая сумма

H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

Таблица 2

Таблица 3

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

SS общ - общую вариативность признака;

S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

Пример решения задачи в Excel представлен ниже:

Исходные данные:

Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

Средние квадраты и s R 2 представляют собой несмещенные оценки зависимой переменной, обусловленных соответственно регрессией или объясняющей переменной х и воздействием неучтенных случайных факторов и ошибок; m – число оцениваемых параметров регрессии, n – число наблюдений. При отсутствии линейной зависимости между зависимой и объясняющей (факторной) переменной случайные величины и s R 2 имеют 2 – распределение соответственно с m-1 и n-m степенями свободы, а их отношение F – распределение с теми же степенями свободы. Поэтому, уравнение регрессии значимо на уровне , если фактически наблюдаемое значение статистики превышает табличное:

(5.11),

где - табличное значение F – критерия Фишера – Снедекора, определенное на уровне значимости при k1 = m-1 и k2 = n-m степенях свободы.

Учитывая смысл величин и s R 2 , можно сказать, что значение F показывает, в какой мере регрессия лучше оценивает значение зависимой переменной по сравнению с ее средней.

В случае парной линейной регрессии m = 2, и уравнение регрессии значимо на уровне , если

(5.12)

Мерой значимости линии регрессии может служить следующее соотношение:

где ŷ i -i-e выравненное значение; -средняя арифметическая значений y i ; σ y.x -средняя квадратическая ошибка (ошибка аппроксимации) регрессионного уравнения, вычисляемая по известной формуле; n-число сравниваемых пар значений признаков; m-число факторных признаков.

Действительно, связь тем больше, чем значительнее мера рассеяния признака, обусловленная регрессией, превосходит меру рассеяния отклонений фактических значений от выравненных.

Данное соотношение позволяет решить вопрос о значимости уравнения регрессии в целом, то есть о наличии реально существующей статистической зависимости между переменными. Уравнение регрессия значимо, т. е. между признаками существует статистическая связь, если для данного уровня значимости расчетное значение критерия Фишера F превышает критическое значение F кр , стоящее на пересечении m-го столбца и -й строки специальной статистической таблицы, которая так и называется «Таблица значений F-критерия Фишера».

Пример. Воспользуемся критерием Фишера для оценки значимости уравнения регрессии, построенного на прошлой лекции, то есть уравнения, выражающего зависимость между сбором урожая и размером посева на душу населения.

Подставив в формулу для расчета критерия Фишера, данные предыдущего примера, получим

Обращаясь к таблице F-распределения для Р=0,95 (α=1-Р=0,5) и учитывая, что n-2=21, m-1 =1, в таблице значений F-критерия на пересечения 1-го столбца и 21-й строки находим критическое значение F кр, равное 4,32 при степени надежности Р=0,95. Поскольку расчетное значение F-критерия существенно превосходит по величине F кр, то обнаруженная линейная связь существенна, т. е. априорная гипотеза о наличии линейной связи подтвердилась. Вывод сделан при степени надежности P=0,95. Можно проверить, что вывод в данном случае останется прежним, если надежность повысить до Р=0,99 (соответствующее значение F кр =8,02 для уровня значимости α=0,01).


Коэффициент детерминации. С помощью F-критерия мы установили, что существует линейная зависимость между величиной сбора хлеба и величиной посева на душу. Следовательно, можно утверждать, что величина сбора хлеба, приходящегося на душу, линейно зависит от величины посева на душу. Теперь уместно поставить уточняющий вопрос - в какой степени величина посева на душу определяет величину сбора хлеба на душу? На этот вопрос можно ответить, рассчитав, какая часть вариации результативного признака может быть объяснена влиянием факторного признака. Этой цели служит индекс (или коэффициент) детерминации R 2 , который позволяет оценить долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Коэффициент детерминации , равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько «удачно» выбран вид функции, описывающей реальную статистическую зависимость.

Если известен коэффициент детерминации R 2 , то критерий значимости уравнения регрессии или самого коэффициента детерминации (критерий Фишера) может быть записан в виде:

Критерий Фишера позволяет также оценивать полезность включения дополнительных факторов в модель для уравнения множественной линейной регрессии.

В эконометрике, помимо общего критерия Фишера, используется также понятие частного критерия . Частный F-критерий показывает степень влияния дополнительной независимой переменной на результативный признак и может использоваться при решении вопроса о добавлении в уравнение или исключении из него этой независимой переменной.

Разброс признака, объясняемый уравнением двухфакторной регрессии, построенным ранее, можно разложить на два вида: 1) разброс признака, обусловленный независимой переменной х 1 , и 2) разброс признака, обусловленный независимой переменной x 2 , когда х 1 уже включена в уравнение. Первой составляющей соответствует разброс признака, объясняемый уравнением, включающим только переменную х 1 . Разность между разбросом признака, обусловленным уравнением парной линейной регрессии, и разбросом признака, обусловленным уравнением двухфакторной линейной регрессии, определит ту часть разброса, которая объясняется дополнительной независимой переменной x 2 .

Отношение указанной разности к разбросу признака, регрессией не объясняемому, представляет собой значениечастного критерия. Частный F-критерий называется также последовательным, если статистические характеристики строятся при последовательном добавлении переменных в регрессионное уравнение.

Пример. Оценить полезность включения в уравнение регрессии дополнительной переменной «урожайность» (по данным и результатам ранее рассмотренных примеров).

Разброс признака, объясняемый уравнением множественной регрессии и рассчитываемый как сумма квадратов разностей выравненных значений и их средней, равен 1623,8815. Разброс признака, объясняемый уравнением простой регрессии, составляет 1545,1331.

Разброс признака, регрессией не объясняемый, определяется квадратом средней квадратической ошибки уравнения и равен 10,9948.

Воспользовавшись этими характеристиками, рассчитаем частный F-критерий

С уровнем надежности 0,95 (α=0,05) табличное значение F (1,20), т. е. значение, стоящее на пересечении 1-го столбца и 20-й строки табл. 4А приложения, равно 4,35. Рассчитанное значение F-критерия значительно превосходит табличное, и, следовательно, включение в уравнение переменной «урожайность» имеет смысл.

Таким образом, выводы, сделанные ранее относительно коэффициентов регрессии, вполне правомерны.

4й учебный вопрос. Оценка значимости отдельных параметров уравнения регрессии с помощью критерия Стьюдента.

Очень часто в эконометрике требуется оценить значимость коэффициента корреляции r , то есть определить, насколько существенно отличие коэффициента корреляции от нуля (например, при анализе мультиколлинеарности и оценке парных коэффициентов корреляции между факторами в уравнении множественной регрессии).

При этом исходят из того, что при отсутствии корреляционной связи статистика t ,

имеет t -распределение Стьюдента с (n-2) степенями свободы.

Коэффициент корреляции r xy значим на уровне , (иначе – гипотеза Н 0 о равенстве генерального коэффициента корреляции нулю отвергается), если

(5.13),

Где -табличное значение t -критерия Стьюдента, определенное на уровне значимости a при числе степеней свободы (n-2).

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров. С этой целью по каждому из параметров определяется его стандартная ошибка. Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии; вычисляется значение t-критерия, его величина сравнивается с табличным значением при (n-2) степенях свободы. Проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Заключение. Итак, мы рассмотрели на данной лекции общие правила проверки статистических гипотез и их практическое применение при оценке значимости уравнений регрессии и их отдельных параметров с помощью критериев Фишера и Стьюдента.

Результаты проведения опытов и испытаний могут зависеть от некоторых факторов, влияющих на изменчивость средних значений случайной величины . Значения факторов называют уровнями факторов, а величину называют результативным признаком. Например, объем выполненных на стройке работ может зависеть от работающей бригады. В этом случае номер бригады является уровнем фактора, а объем работ за смену - результативным признаком.

Метод дисперсионного анализа , или ANOVA (Analysis of Variance - дисперсионный анализ), служит для исследования статистической значимости различия между средними при трех и более выборках (уровнях фактора). Для сравнения средних в двух выборках используется t -критерий .

Процедура сравнения средних называется дисперсионным анализом, так как при исследовании статистической значимости различия между средними нескольких групп наблюдений проводится анализ выборочных дисперсий. Фундаментальная концепция дисперсионного анализа была предложена Фишером .

Сущность метода состоит в разделении общей дисперсии на две части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, экономическая эффективность, урожайность, результат тестирования), называются зависимыми переменными или признаками. Переменные, которыми можно управлять при проведении эксперимента (например, уровень управления, тип почвы, методы обучения) называются факторами или независимыми переменными.

В классическом дисперсионном анализе полагается, что исследуемые величины имеют нормальное распределение с постоянной дисперсией и средними значениями, которые могут отличаться для разных выборочных совокупностей. В качестве критерия проверки нулевых гипотез используется отношение дисперсии групповых средних и остаточной дисперсии. Однако было показано, что дисперсионный анализ справедлив и для негауссовских случайных величин, причем при объеме выборок для каждого уровня фактора n > 4 погрешность невысока. Если требуется высокая точность выводов, а распределение неизвестно, то следует использовать непараметрические критерии, например, использовать ранговый дисперсионный анализ.

Однофакторный дисперсионный анализ

Пусть проводится m групп измерений значений случайной величины Y при различных уровнях значения некоторого фактора, и a 1 , a 2 , a m - математическое ожидание результативного признака при уровнях фактора A (1) , A (2) , A (m) (i =1, 2, m ) соответственно.


Предположение о независимости результативного признака от фактора сводится к проверке нулевой гипотезы о равенстве групповых математических ожиданий

H 0: a 1 = a 2 = a m (6.12)

Проверка гипотезы возможна при соблюдении следующих требований для каждого уровня фактора:

1) наблюдения независимы и проводятся в одинаковых условиях;

2) измеряемая случайная величина имеет нормальный закон распределения с постоянной для различных уровней фактора генеральной дисперсией σ 2 . То есть справедлива гипотеза

H 0: σ 1 2 = σ 2 2 = σ m 2 .

Для проверки гипотезы о равенстве дисперсий трех и более нормальных распределений применяется критерий Бартлета.

Если гипотеза H 0: σ 1 2 = σ 2 2 = σ m 2 подтверждается, то приступают к проверке гипотезы о равенстве групповых математических ожиданий H 0: a 1 = a 2 = a m , то есть собственно к дисперсионному анализу. В основе дисперсионного анализа лежит положение, что изменчивость результативного признака вызвана как изменением уровней фактора А, так и изменчивостью значений случайных неконтролируемых факторов. Случайные факторы называются остаточными.

Можно доказать, что общая выборочная дисперсия может быть представлена в виде суммы дисперсии групповых средних и средней из групповых дисперсий

, где

Общая дисперсия выборки;

Дисперсия групповых средних (), рассчитанных для каждого уровня фактора;

Средняя по групповым дисперсиям (), рассчитанным для каждого уровня фактора. связана с влиянием на Y остаточных (случайных) факторов.

Перейдя от разложения для генеральной дисперсии к выборочным значениям, получим

, (6.13)

Представляет собой взвешенную сумму квадратов отклонений выборочных средних по каждому уровню A (i) от общего выборочного среднего,

Среднее значение квадратов отклонений внутри уровней.

Случайные величины , , имеют следующие значения для степеней свобод соответственно: n - 1, m - 1, n - m . Здесь n - общее число выборочных значений, m - число уровней фактора.

В математической статистике доказывается, что если нулевая гипотеза о равенстве средних (10.8) верна, то величина

имеет F -распределение с числом степеней свободы k = m - 1 и l = n- m , то есть

(6.14)

При выполнении нулевой гипотезы внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета групповой принадлежности. В дисперсионном анализе, как правило, числитель в больше знаменателя. В противном случае считается, что наблюдения не подтверждают влияние фактора на результирующий признак и дальнейший анализ не проводится. Полученные внутригрупповые дисперсии можно сравнить с помощью F -критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1.

В связи с этим для проверки гипотезы (6.12) с помощью F -критерия анализируется правосторонняя критическая область .

Если рассчитанное значение F попадает в указанный интервал, то нулевая гипотеза отвергается, и считается установленным влияние фактора А на результативный признак Y .

Приведем пример расчета сумм квадратов и выборочных дисперсий. Рассмотрим набор данных, представленный в таблице 6.2. В данном примере требуется определить, есть ли значимое различие в производительности бригад.

Таблица 6.2. Пример расчета сумм квадратов

Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

от количества рассматриваемых независимых факторов;

от количества результативных переменных, подверженных действию факторов;

от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть – различных) выборок . Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок , то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе . Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

    вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

    вариативность, обусловленную взаимодействием исследуемых независимых переменных.

    вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).